

St Anthony's Catholic Primary School North Rockhampton Transport Impact Assessment

transportation planning, design and delivery

ROCKHAMPTON REGIONAL COUNCIL

These plans are approved subject to the current conditions of approval associated with Development Permit No. D 188-2014

Dated: 31/07/2015

St Anthony's Catholic Primary School North Rockhampton

Transport Impact Assessment

Issue: A 13/10/14

Client: Roman Catholic Diocese of Rockhampton

Reference: 14B1125000

GTA Consultants Office: QLD

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
Α	13/10/14	Final	Lucas Stewart	Davin Brown	John Hulbert (RPEQ #8902)	mill

© GTA Consultants (GTA Consultants (QLD) Pty Ltd) 2014

The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of GTA Consultants constitutes an infringement of copyright. The intellectual property contained in this document remains the property of GTA Consultants.

ROCKHAMP FON REGIONAL COUNCIL

MELBOURNE - SYDNEY - BRISBANE - CANBERRA ADELAIDE - GOLD COAST - TOWNSVILLE

Table of Contents

1.	Intro	oduction		1
	1.1	Backgro	ound and Proposal	1
	1.2	Purpose	of this Report	1
	1.3	Referen	ces	1
2.	Site	Environs		3
	2.1	Subject	Site	3
	2.2	Existing	Road Network	3
	2.3	Existing	Access Arrangements	4
	2.4	Existing	Car Parking & Pick-Up/Drop-Off Areas	5
	2.5	Traffic V	olumes	7
	2.6	Integrat	ed Transport Infrastructure	7
3.	Car	Parking A	Arrangements	9
	3.1	Statutor	y Requirement	9
	3.2	Propose	d Car Parking Provision	9
4.	Veh	icle Acc	ess	10
	4.1	Propose	d Access Arrangements	10
	4.2	Adequa	cy of Proposed Arrangements	10
5.	Traff	ic Impac	t Assessment	11
	5.1	Assessm	ent Scenarios	11
	5.2	Traffic G	eneration	11
	5.3	Intersect	tion Operation	13
5.	Con	clusion		18
	App	endices		
	A:		ment Plans	
	B:	Surveyed	d Traffic Volumes	
	C:		tersection Results	
	Figu	res		
	_	e 2.1:	Subject Site and Its Environs	3
	(0 7 16)	e 2.10:	Formal Western Car Parking and Pick-Up/Drop-Off Area	6
	Figur	e 2.11:	Informal Western Car Parking Area	6
		e 2.12:	Visitor Parking and Ambulance / Bus Bays	6
	Figur	e 2.13:	Staff / Pre-School Car Parking Area	6
	Figur	e 5.1:	AM Peak Hour Site Generated Traffic Volumes (New & Diverted Trips)	13
	Figur	e 5.2:	PM Peak Hour Site Generated Traffic Volumes (New & Diverted Trips)	13

Figure 5.3:	Feez Street / Western Site Access intersection layout as assessed in SIDF	RA 14
Figure 5.4:	Bruigom Street / Eastern Access intersection layout as assessed in SIDRA	15
Figure 5.5:	Bruigom Street / Eastern Site Access intersection layout as assessed in S	SIDRA 17
Tables		
Table 1.1:	Current and Projected Numbers of Staff and Students at St Anthony's S	School
	[1]	1
Table 2.1:	Existing Road Network	4
Figure 2.3:	Feez Street (adjacent to western site access), facing northwest	4
Table 2.2:	Public Transport Provision	8
Table 3.1:	Rockhampton Regional Council's Car Parking Requirements	9
Table 5.1:	Assessment Scenarios and Incorporated Traffic Volumes	11
Table 5.2:	Estimated Increase in Development Traffic Generation	12
Table 5.3:	Feez Street / Western Access Intersection	15
Table 5.4:	Bruigom Street / Eastern Access Intersection SIDRA Results	16
Table 5.5	Bruigom Street / Eastern Site Access Intersection SIDRA Results	17

1. Introduction

1.1 Background and Proposal

A Development Application has been lodged with Rockhampton Regional Council (Council) for a proposed expansion to the existing St Anthony's Catholic Primary School (the School) located at Feez Street, North Rockhampton. GTA Consultants (GTA) was commissioned by the Roman Catholic Diocese of Rockhampton ('the Applicant') in February 2014 to undertake a Transport Impact Assessment (TIA) for the proposed expansion.

The proposal includes the expansion of the existing primary school to include additional kindergarten and prep classes when Year Seven students relocate to secondary school in 2015. The planned changes in student numbers are summarised in Table 1.1.

Table 1.1: Current and Projected Numbers of Staff and Students at St Anthony's School [1]

Educational Use	Current Staff / Student Numbers in 2014	Projected Staff / Student Numbers by 2020	Change in Staff / Student Numbers	
Kindergarten	-	88 students	+88 students	
kindergarien	-	4 full-time staff	+4 full-time staff	
	620 students	700 students	+80 students	
Primary School	28 full-time staff 42 part-time staff	34 full-time staff 40 part-time staff	+6 full-time staff -2 part-time staff	
	620 students	788 students	+168 students	
Total	28 full-time staff 42 part-time staff	38 full-time staff 40 part-time staff	+10 full-time staff	

^[1] As stated in email correspondence between Michael McLaughlin (Catholic Diocese of Rockhampton) and Mac Hulbert (GTA), dated 29 January 2014

A copy of the plans of the proposed expansion is contained at Appendix A.

1.2 Purpose of this Report

This report sets out an assessment of the anticipated transport implications of the proposed school expansion, including consideration of the following:

- i existing traffic and parking conditions within and surrounding the site
- ii parking demand likely to be generated by the proposed expansion
- iii suitability of the proposed parking in terms of supply (quantum) and layout
- iv suitability of the proposed access arrangements for the site
- v the traffic generating characteristics of the proposed expansion
- vi the transport impact of the proposed expansion on the surrounding road network.

1.3 References

In preparing this report, reference has been made to the following:

- an inspection of the site and its surrounds undertaken by GTA on 27 February 2014
- Council's Rockhampton City Plan (dated 8 May 2009)
- Department of Transport and Main Roads (TMR) Guidelines for Assessment of Road
 Impacts of Development (GARID) (dated March 2006)
- Australian/New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking 2890.1:2004 (AS/NZS 2890.1:2004)

- Australian Standard, Parking Facilities, Part 2: Off-Street Commercial Vehicle Facilities 2890.2-2002 (AS 2890.2-2002)
- Australian Standard, Parking Facilities, Part 3: Bicycle Parking Facilities 2890.3-1993 (AS 2890.3-1993)
- Australian/New Zealand Standard, Parking Facilities, Part 6: Off-Street Parking for People with Disabilities 2890.6:2009 (AS/NZS 2890.6:2009)
- traffic and car parking surveys undertaken by GTA and Austraffic as referenced in the context of this report
- plans for the proposed school expansion prepared by Tony Madden Architects, provided at Appendix A
- other documents and data as referenced in this report.

2. Site Environs

2.1 Subject Site

The subject site is located at 390 Feez Street, North Rockhampton and is described as Lot 6 on SP123558, Lot 7 on RP618703 and Lots 44 & 45 on RP615945. The site of approximately 68,000sq.m has frontages of 73mm to Feez Street and 40m to Bruigom Street. The site is currently occupied by St Anthony's Catholic Primary School.

The surrounding properties predominantly include residential uses.

The location of the subject site and its surrounding environs is shown in Figure 2.1.

Figure 2.1: Subject Site and Its Environs

(Reproduced with permission from Google Maps)

2.2 Existing Road Network

Characteristics of existing roads in the vicinity of the subject site are outlined in Table 2.1.

Typical cross-sections of Feez Street, Bruigom Street and the site access roads are shown in Figure 2.2 to Figure 2.5.

Table 2.1: Existing Road Network

10 M M 140 20 20 20 20 20 20 20 20 20 20 20 20 20	
Major Council Road	Council Road
40kph (during school times) 60kph (outside school times)	40kph (during school times) 50kph (outside school times)
4-lane / divided / two-way	2-lane / undivided / two-way
20m	8m
30m	20m
Dedicated kerbside parking lane provided	Unrestricted
12,000 vehicles per day[1]	3,700 vehicles per day[1]
	60kph (outside school times) 4-lane / divided / two-way 20m 30m Dedicated kerbside parking lane provided

^[1] Based on traffic counts obtained / undertaken by Austraffic, and assuming a peak-to-daily ratio of 10%

Figure 2.2: Feez Street (adjacent to western site access), facing southeast

Figure 2.4: Bruigom Street (adjacent to site), facing west

Figure 2.3: Feez Street (adjacent to western site access), facing northwest

Figure 2.5: Bruigom Street (adjacent to site), facing east

2.3 Existing Access Arrangements

Vehicle access is currently provided at the following locations:

- a signalised intersection to Feez Street at the west of the site; and
- a crossover to Bruigom Street at the east of the site.

The existing access locations are shown in Figure 2.6 to Figure 2.9.

Figure 2.6: Western Site Access, facing west

Figure 2.8: Eastern Site Access, facing west

Figure 2.7: Western Site Access, facing east

Figure 2.9: Eastern Site Access, facing east

2.4 Existing Car Parking & Pick-Up/Drop-Off Areas

2.4.1 Western Car Parking Area

The western site access allows for ingress and egress to/from an at-grade car parking area with 56 car parking spaces including a pick-up / drop-off area for students. A gravel area to the west was also observed to be utilised for car parking. These areas were observed to be well utilised during the PM school peak period (i.e. pick-up period).

Additional car parking areas for visitors and staff, as well as bus and ambulance stopping bays, are located closer to the school buildings and are also accessible via the western access. These car parking areas are shown in Figure 2.10 to Figure 2.13.

Figure 2.10: Formal Western Car Parking and Pick-Up/Drop-Off Area

Figure 2.12: Visitor Parking and Ambulance / Bus Bays

Figure 2.11: Informal Western Car Parking Area

Figure 2.13: Staff / Pre-School Car Parking Area

2.4.2 Eastern Car Parking Area

The eastern site access allows for ingress and egress of vehicles to an informal car parking area adjacent to the school oval. This car parking area was observed to be primarily utilised by parents for pick-ups and drop-offs before and after school, as well as a small number of visitors to the school. While the parking supply cannot be properly determined due to the informal nature of the car parking area, a peak parking demand of 46 vehicles was observed during the PM school peak period.

This car parking area is shown in Figure 2.14 and Figure 2.15.

St Anthony's Catholic Primary School, North Rockhampton

Figure 2.14: Eastern Car Parking Area During
Peak Demand Times

Figure 2.15: Eastern Car Parking Area During Peak Demand Times

2.5 Traffic Volumes

GTA commissioned traffic movement counts at the following key intersections in the vicinity of the subject site:

- Feez Street / Western Site Access (signalised T-intersection)
- Bruigom Street / Eastern Site Access (unsignalised T-intersection)
- Bruigom Street / Moores Creek Road (signalised T-intersection).

Traffic movement counts were undertaken on Thursday 27 February 2014 at the following times:

- 7:30am to 9:30am
- 3:00pm to 5:00pm.

Analysis of the survey data indicates that the background peak hour periods are as follows:

- Feez Street / Western Site Access intersection:
 - AM Peak Period 8:00am to 9:00am
 - PM Peak Period 3:00pm to 4:00pm.
- Bruigom Street / Eastern Site Access
 - AM Peak Period 7:45am to 8:45am
 - PM Peak Period 3:00pm to 4:00pm.
- Bruigom Street / Moores Creek Road
 - AM Peak Period 7:45am to 8:45am
 - PM Peak Period 3:00pm to 4:00pm¹.

Traffic counts are contained at Appendix B.

2.6 Integrated Transport Infrastructure

2.6.1 Public Transport

A review of the public transport available in the vicinity of the site is summarised in Table 2.2.

¹ Stated peak period is for school-related traffic into and out of Bruigom Street

Table 2.2: Public Transport Provision

Service	Route #	Route Description	Location of Stop	Distance to Nearest Stop	Bus Times
Bus	411	University to Lakes Creek	Feez Street, adjacent to Site Entrance	100m	7:47am (to University) 2:55pm (to Lakes Creek)

Pedestrian Infrastructure 2.6.2

Internal Pedestrian Infrastructure

A pedestrian path is provided from the church to Feez Street, along the southern side of the western site access road. An informal pedestrian route is available across the school oval to pedestrian gates adjacent to the eastern site access driveway on Bruigom Street, though these gates were observed to be closed during on-site observations.

A formalised waiting area is provided within the pick-up / drop-off area in the western car park, with direct pedestrian access to/from the school grounds.

External Pedestrian Infrastructure

Pedestrian paths are located on both sides of Feez Street and on the northern side of Bruigom

3. Car Parking Arrangements

3.1 Statutory Requirement

The car parking provision requirements for educational establishments are set out in Council's *Parking and Access Code*. A review of the car parking requirement rates and projected staff and student numbers results in a statutory parking requirement for the fully-developed school (post-expansion) as summarised in Table 3.1 below.

Table 3.1: Rockhampton Regional Council's Car Parking Requirements

Land Use	Council's Land Use Classification	Council's Statutory Parking Rate	Projected Staff Numbers	Council's Statutory Parking Requirement
		1 space per full-time employee	38 full-time staff 40 part-time staff	38 spaces
Kindergarten / School	Educational Establishment	Provision for loading and unloading of passengers as determined by Council		-
	Total		***	38 spaces

Based on the above, the school is required to provide 38 car parking spaces for staff plus provision for loading and unloading of passengers as determined by Council upon full completion of the proposed expansion.

3.2 Proposed Car Parking Provision

The following additions are proposed to the existing car parking areas on site:

- formalisation of the gravel area west of the western car park & pick-up/drop-off area
- improving the operation of the formal pick-up/drop-off area
- reduction in the number of access points to this car park from the access road
- improvements to pedestrian safety and connectivity within the car parking area
- expansion and redesign of the staff / pre-school car parking area
- formalisation of the informal eastern car parking area.

The proposed design will result in the provision of 164 car parking spaces. This number is subject to confirmation upon finalisation of the plans for the proposed expansion.

Vehicle Access 4

Proposed Access Arrangements 4.1

The existing signalised site access to Feez Street is to be maintained as per the current arrangement.

The site access to Bruigom Street is proposed to be formalised along with the existing informal car park adjacent to the school oval, by way of:

- retaining the existing crossover to Bruigom Street
- widening the access gate to a minimum of 7m
- sealing the driveway to the proposed car parking and pick-up / drop-off area.

4.2 Adequacy of Proposed Arrangements

The location of the existing eastern access at Bruigom Street is generally compliant with the requirements of Council's Parking and Access Code. However, site observations indicated that the gate along the property frontage to Bruigom Street is less than 6m wide.

The development plans indicate that the driveway is to be widened to tie in with the width of the existing 10.4m wide crossover to Bruigom Street. The width of this driveway meets the requirements of the Australian Standard and is therefore considered adequate.

It is expected that the eastern access will only provide for cars, with all buses and heavy vehicles utilising the signalised western access to the school as per the existing arrangement.

5. Traffic Impact Assessment

5.1 Assessment Scenarios

To assess the impact of the proposal it is appropriate to have consideration to a relevant "Base Case" against which to test the impact of the expansion. A "Base Case" examines the performance of the road network without the proposed expansion at key points in time. These key points in time are defined in GARID as the year of opening and 10-year design horizon. The 10-year design horizon is taken to be 10 years post completion of the proposed expansion.

It has been advised that the fourth stream of students have commenced as of 2014, and that the school is likely to be fully expanded when this stream of students enter Grade Six in 2020. It is understood that the kindergarten is to be operational by 2015.

To forecast the traffic flows without expansion of the school from existing levels, a 2% per annum growth rate (linear) has been applied to the traffic counts at Appendix B, with the exception of traffic movements into and out of the school. Growth of these movements is covered in the assessment of expected traffic generation as detailed below.

Assessment scenarios have been established incorporating the existing traffic movements, background traffic growth on nearby roads and the increase in traffic associated with the school's expansion component. These scenarios and the traffic volumes incorporated within them are detailed in Table 5.1.

Table 5.1: Assessment Scenarios and Incorporated Traffic Volumes

Assessment Scenario	Existing Traffic Movements	Background Traffic Growth on Nearby Roads	Additional Traffic associated with School Expansion	
2014 Existing Conditions	✓		-	
2020 Base Case	✓	✓ (6 years growth)	-	
2020 With Development	✓	✓ (6 years growth)		
2030 Base Case	✓	✓ (16 years growth)		
2030 With Development	✓	✓ (16 years growth)	_	

5.2 Traffic Generation

5.2.1 Design Rates

Traffic generation estimates for the school's expansion component have been sourced from the following locations:

- kindergarten traffic generation rates are the pre-school rates as sourced from the NSW
 RTA (now RMS) Guide to Traffic Generating Developments
- primary school traffic generation rates have been estimated from the surveyed traffic movements into and out of the school, using the current student population figures as provided to GTA to determine a rate of vehicle movements per student².

² As stated in email correspondence between Michael McLaughlin (Catholic Diocese of Rockhampton) and Mac Hulbert (GTA), dated 29 January 2014.

An estimate of AM and PM peak hour traffic volumes resulting from the proposal are set out in Table 5.2.

Table 5.2: Estimated Increase in Development Traffic Generation

		Design Gene	eration Rates	Traffic Generation Estimates		
Use	Increase in Size	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hou	
Kindergarten (Pre-School)	88 students	1.4 vehicle movements / child	0.8 vehicle movements / child	123 vehicle movements / hour	70 vehicle movements / hour	
Primary School	100 students	0.96 vehicle movements / child	0.61 vehicle movements / child	77 vehicle movements / hour	49 vehicle movements / hour	
	To	200 vehicle movements / hour	119 vehicle movements / hour			

Table 5.2 indicates the school's expansion component could be expected to generate approximately 200 and 119 additional vehicle movements during the AM and PM peak hours on a typical weekday upon full completion of the proposed expansion.

Distribution and Assignment 5.2.2

The directional distribution and assignment of traffic generated by the proposed development will be influenced by a number of factors, including the:

- configuration of the arterial road network in the immediate vicinity of the site
- existing operation of the site access intersections and those providing access between the local and arterial road network
- distribution of households in the vicinity of the site iii
- proposed upgrade works to the access points and loading / unloading areas on the

Having consideration to the above, for the purposes of estimating vehicle movements, directional distributions and splits of traffic (i.e. the ratio between the inbound and outbound traffic movements) have been assumed in accordance with the existing vehicle movements surveyed.

Based on the above, Figure 5.1 and Figure 5.2 have been prepared to show the estimated increase in turning movements in the vicinity of the subject property following full site development.

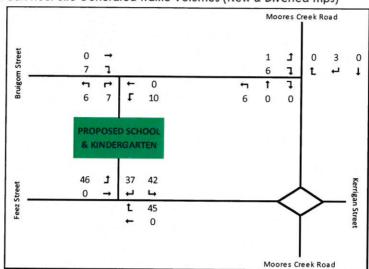
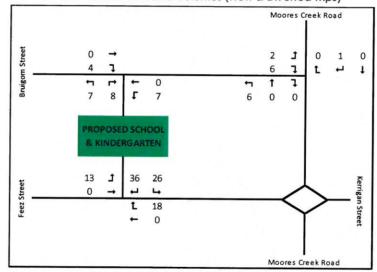



Figure 5.1: AM Peak Hour Site Generated Traffic Volumes (New & Diverted Trips)

Figure 5.2: PM Peak Hour Site Generated Traffic Volumes (New & Diverted Trips)

5.3 Intersection Operation

5.3.1 SIDRA Intersection

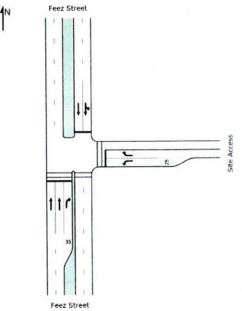
The operation of subject intersections has been assessed using SIDRA Intersection³ (SIDRA), a computer based modelling package which calculates intersection performance.

The commonly used measure of intersection performance is referred to as the *Degree of Saturation (X)*. The X-value represents the flow-to-capacity ratio for the most critical movement on each leg of the intersection. For signalised intersections, an X-value of around 0.90 has been

Program used under license from Akcelik & Associates Pty Ltd.

typically considered the 'ideal' limit, beyond which queues and delays increase disproportionately⁴. For unsignalised intersections an X-value of 0.80 is typically the 'ideal' limit.

It is noted that the default gap acceptance values contained in SIDRA have been adjusted in accordance with Austroads 'Guide to Traffic Engineering Practice, Part 5: Intersections at Grade' when analysing unsignalised intersections.


The following sections set out findings of SIDRA assessments of the key intersection in the vicinity of the site.

5.3.2 Feez Street / Western Access Intersection

The operation of the Feez Street / Western Access intersection has been assessed using SIDRA. Figure 5.3 shows the intersection layout assessed in SIDRA, and Table 5.3 presents a summary of the anticipated future operation of the intersection following the full development of the site.

From the analysis presented in Table 5.3, the intersection is expected to operate within acceptable limits to the year 2030 across the AM and PM school peak hours.

Figure 5.3: Feez Street / Western Site Access intersection layout as assessed in SIDRA

4 SIDRA INTERSECTION adopts the following criteria for Level of Service assessment:

		Intersection Degree of Saturation (X)				
Level of Service		Unsignalised Intersection	Signalised Intersection			
Α	Excellent	<=0.50	<=0.60			
В	Very Good	0.50-0.70	0.60-0.75			
С	Good	0.70-0.80	0.75-0.90			
D	Acceptable	0.80-0.90	0.90-0.95			
E	Poor	0.90-1.00	0.95-1.00			
F	Very Poor	>=1.0	>=1.0			

^{13/10/14}

Table 5.3: Feez Street / Western Access Intersection

			Base	Case		With Development			
Assessment Scenario	Approach	DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	LOS (X)	DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	LOS (X)
1222	South	0.64	16 sec	46m	LOS B	-	-	-	-
2014 AM Peak	East	0.41	19 sec	20m	LOS B	-	-		-
	North	0.66#	25 sec	64m	LOS C	-	-		-
2014 PM Peak	South	0.42	14 sec	39m	LOS B	-	-	***	-
	East	0.32	21 sec	23m	LOS C	-	-	.=:	-
	North	0.54#	21 sec	51m	LOS C	-	-	-	-
	South	0.65	16 sec	53m	LOS B	0.77	18 sec	53m	LOS B
2020 AM Peak	East	0.41	19 sec	20m	LOS B	0.53	19 sec	27m	LOS B
711117 0011	North	0.72#	27 sec	73m	LOS C	0.81#	31 sec	89m	LOS C
	South	0.42	14 sec	45m	LOS B	0.55	15 sec	45m	LOS B
2020 PM Peak	East	0.32	21 sec	23m	LOS C	0.42	21 sec	31m	LOS C
· · · · · · · · ·	North	0.60#	22 sec	58m	LOS C	0.61#	22 sec	60m	LOS C
	South	0.76	16 sec	67m	LOS B	0.86	18 sec	67m	LOS B
2030 AM Peak	East	0.42	19 sec	20m	LOS B	0.55	20 sec	27m	LOS B
Jak	North	0.78#	28 sec	87m	LOS C	0.88	35 sec	110m	LOS D
	South	0.44	14 sec	56m	LOS B	0.55	15 sec	56m	LOS B
2030 PM Peak	East	0.32	21 sec	23m	LOS C	0.42	21 sec	31m	LOS C
	North	0.71#	24 sec	73m	LOS C	0.72#	24 sec	77m	LOS C

DOS – Degree of Saturation, # - Intersection DOS

5.3.3 Bruigom Street / Eastern Access Intersection

The operation of the Bruigom Street / Eastern Access intersection has been assessed using SIDRA. Figure 5.4 shows the intersection layout assessed in SIDRA, and Table 5.4 presents a summary of the anticipated future operation of the intersection following the full development of the site.

From the results presented in Table 5.4, the intersection is expected to operate within acceptable limits with full development to the year 2030 across the AM and PM school peak hours.

Figure 5.4: Bruigom Street / Eastern Access intersection layout as assessed in SIDRA

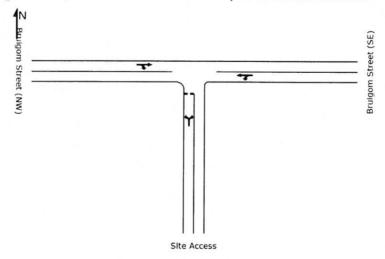


Table 5.4: Bruigom Street / Eastern Access Intersection SIDRA Results

Assessment Scenario		Base Case				With Development			
	Approach	DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	LOS (X)	DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	ros (x)
COMMON TO	South	0.06	11 sec	2m	LOS B	-	-	-	-
2014 AM Peak	Southeast	0.06	2 sec	0m	NA	-	18	-	-
AM Peak	Northwest	0.15#	1 sec	8m	NA	-	-	-	-
	South	0.08	11 sec	2m	LOS B	-	-	9	-
2014 PM Peak	Southeast	0.10#	1 sec	0m	NA	-	-	-	-
FMFEUK	Northwest	0.10	1 sec	5m	NA	-	-	-	-
	South	0.06	11 sec	2m	LOS B	0.08	11 sec	2m	LOS B
2020 AM Peak	Southeast	0.07	2 sec	0m	NA	0.07	3 sec	0m	NA
AMITEUR	Northwest	0.17#	1 sec	9m	NA	0.17#	1 sec	9m	NA
	South	0.08	11 sec	2m	LOS B	0.10	11 sec	3m	LOS B
2020 PM Peak	Southeast	0.11#	1 sec	0m	NA	0.12#	1 sec	0m	NA
FMFEGK	Northwest	0.11	2 sec	6m	NA	0.11	2 sec	6m	NA
	South	0.07	12 sec	2m	LOS B	0.09	12 sec	3m	LOS B
2030 AM Peak	Southeast	0.08	2 sec	0m	NA	0.08	2 sec	0m	NA
AMTEUR	Northwest	0.19#	1 sec	11m	NA	0.20#	1 sec	11m	NA
	South	0.09	12 sec	2m	LOS B	0.11	12 sec	3m	LOS B
2030 PM Peak	Southeast	0.13#	1 sec	0m	NA	0.14#	1 sec	0m	NA
FMFECK	Northwest	0.13	2 sec	7m	NA	0.13	2 sec	7m	NA

DOS - Degree of Saturation, # - Intersection DOS

Bruigom Street / Moores Creek Road Intersection 5.3.4

The operation of the Bruigom Street / Moores Creek Road intersection has been assessed using SIDRA. Figure 5.5 shows the intersection layout assessed in SIDRA, and Table 5.5 presents a summary of the anticipated future operation of the intersection following the full development of the site.

From the results presented in Table 5.5, the intersection is expected to operate within acceptable limits with full development to the year 2030 across the AM and PM school peak hours.

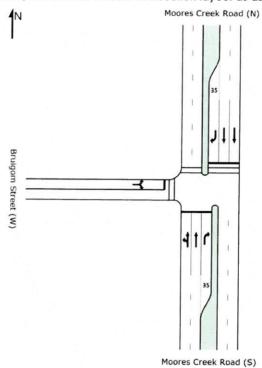


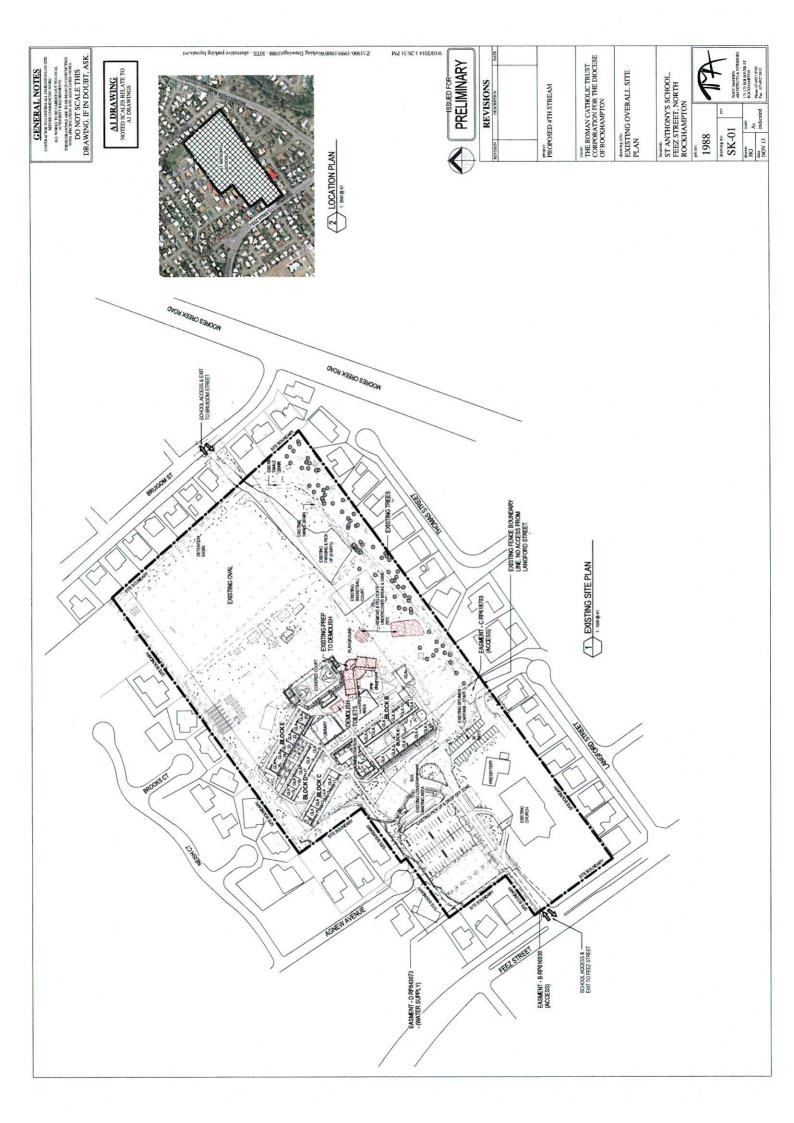
Figure 5.5: Bruigom Street / Eastern Site Access intersection layout as assessed in SIDRA

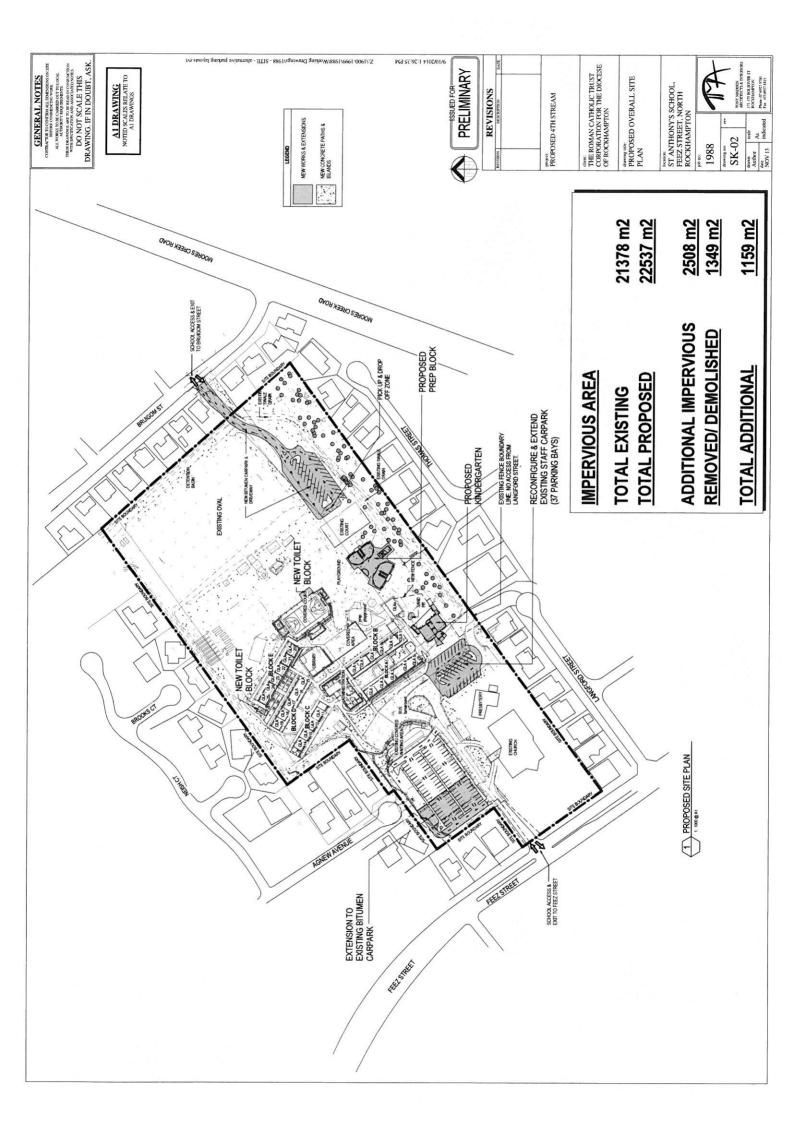
Table 5.5: Bruigom Street / Eastern Site Access Intersection SIDRA Results

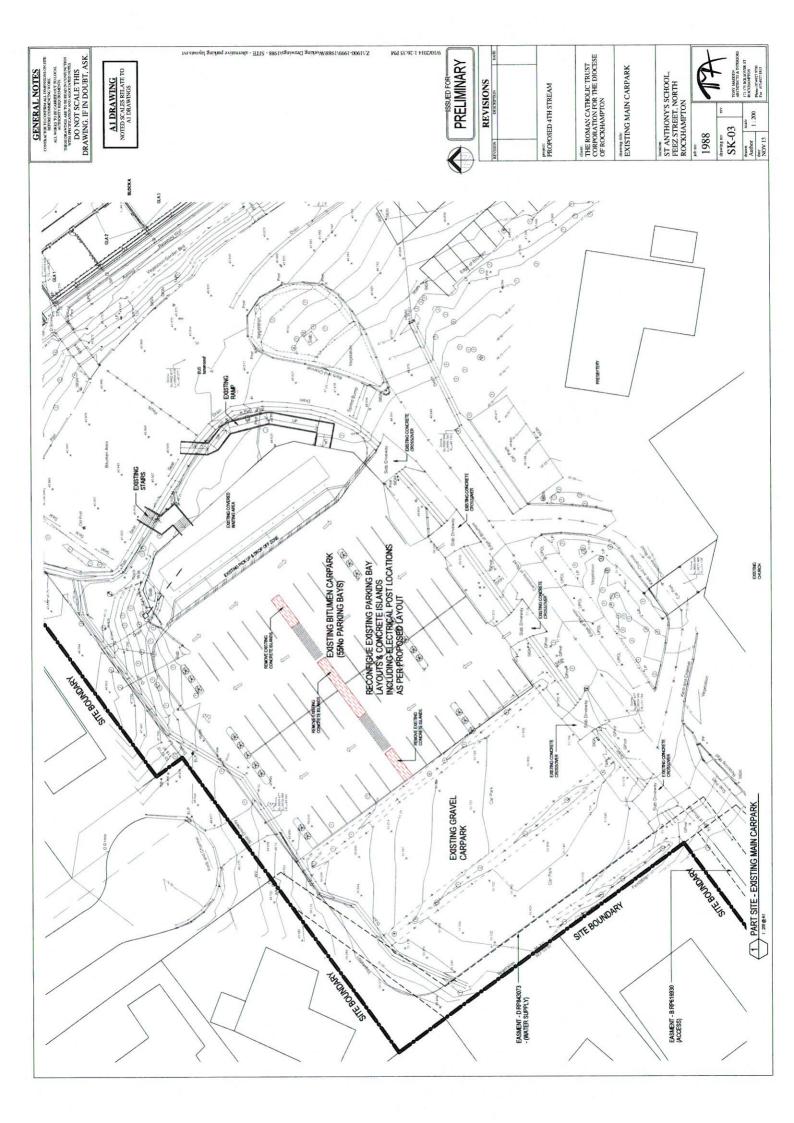
Assessment Scenario	Approach	Base Case				With Development			
		DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	LOS (X)	DOS (X)	Average Delay (sec)	95th Percentile Queue (m)	ros (x)
2014 AM Peak	South	0.29	18 sec	22m	LOS B	-	-	-	-
	North	0.53#	15 sec	50m	LOS B	_	-	-	-
	West	0.35	19 sec	33m	LOS B	-	-	-	-
2014 PM Peak	South	0.45#	17 sec	41m	LOS B	-	-	-	-
	North	0.23	14 sec	19m	LOS B		-	-	-
	West	0.26	19 sec	23m	LOS B	-	=	-	-
2020 AM Peak	South	0.36	18 sec	26m	LOS B	0.36	18 sec	26m	LOS B
	North	0.59#	16 sec	57m	LOS B	0.59#	16 sec	57m	LOS B
	West	0.39	19 sec	37m	LOS B	0.40	19 sec	38m	LOS B
2020 PM Peak	South	0.50#	17 sec	47m	LOS B	0.51#	17 sec	47m	LOS B
	North	0.25	14 sec	21m	LOS B	0.25	15 sec	21m	LOS B
	West	0.30	19 sec	27m	LOS B	0.31	19 sec	28m	LOS B
2030 AM Peak	South	0.50	19 sec	31m	LOS B	0.50	19 sec	32m	LOS B
	North	0.71#	18 sec	75m	LOS B	0.71#	18 sec	75m	LOS B
	West	0.47	20 sec	47m	LOS B	0.48	20 sec	48m	LOS B
2030 PM Peak	South	0.60#	18 sec	59m	LOS B	0.61#	18 sec	60m	LOS B
	North	0.30	15 sec	26m	LOS B	0.30	15 sec	26m	LOS B
	West	0.35	19 sec	33m	LOS B	0.36	19 sec	33m	LOS B

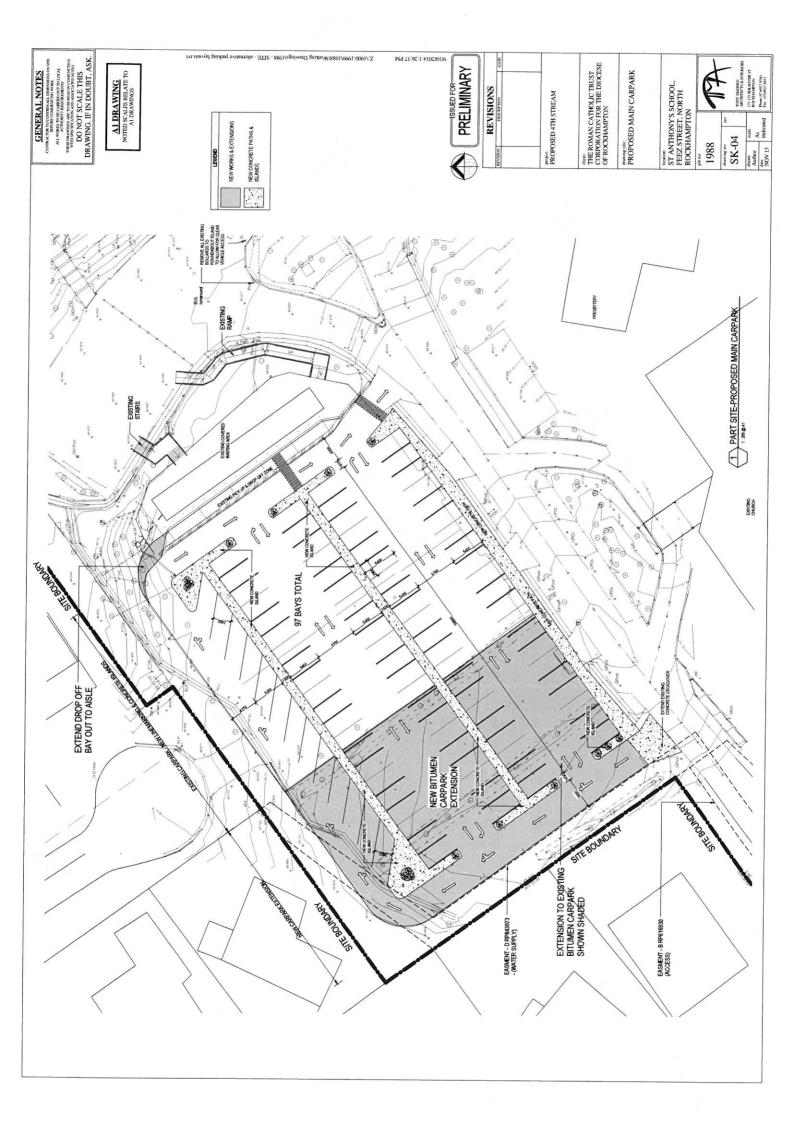
DOS – Degree of Saturation, # - Intersection DOS

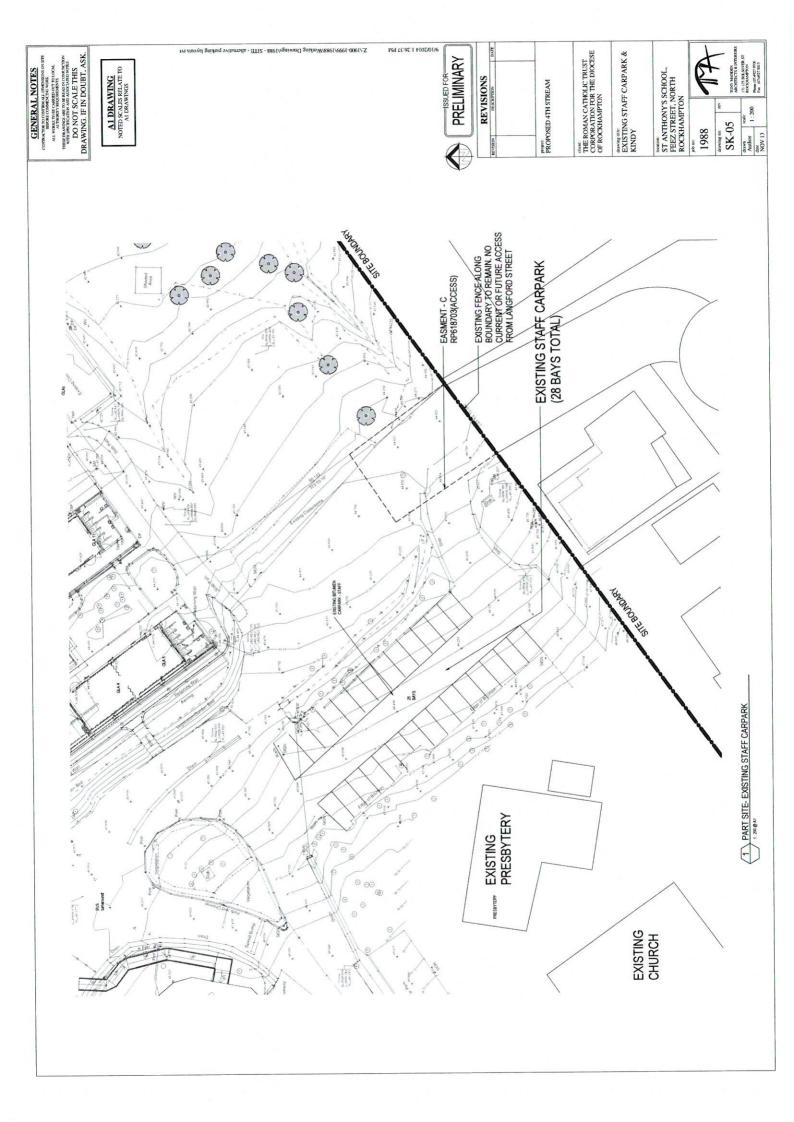
Conclusion 6.

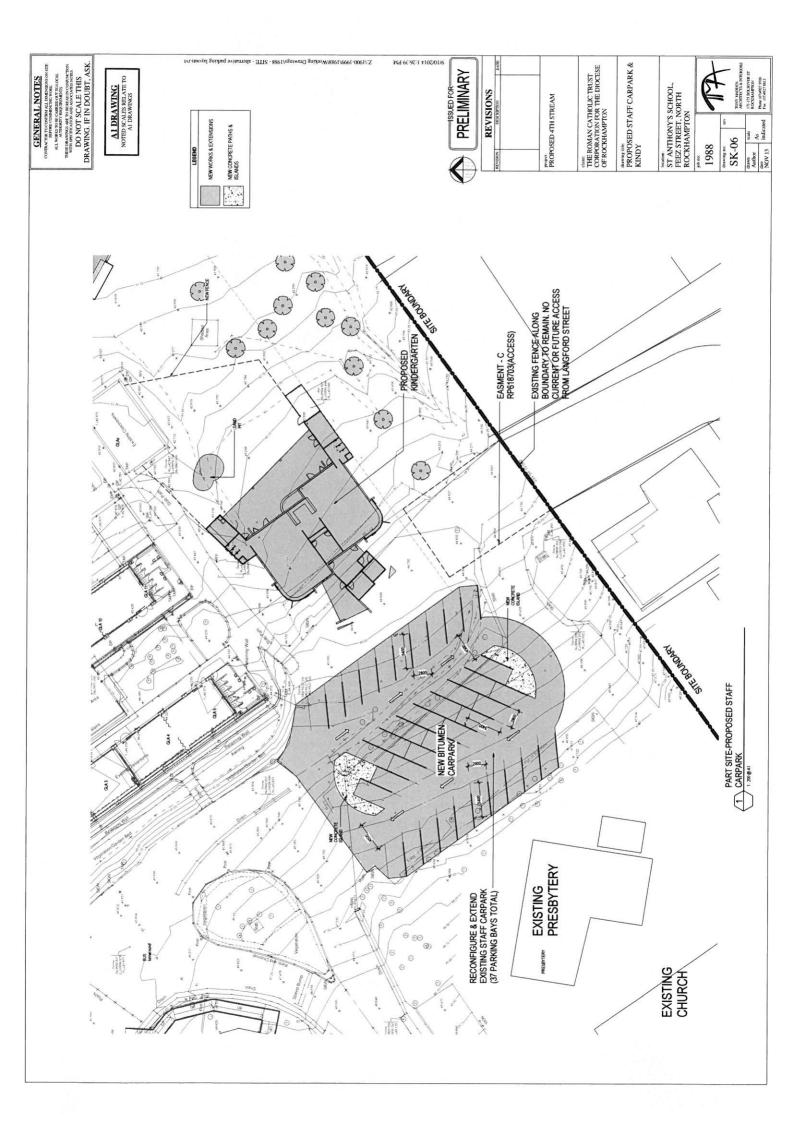

Based on the analysis and discussions presented within this report, the following conclusions are


- The school once expanded will generate a statutory parking requirement of 38 spaces and a pick-up / drop-off facility.
- The proposed extensions and formalisations to the existing parking areas results in an increase in 164 spaces on the subject site.
- The site is expected to generate up to 200 and 119 vehicle movements in the AM and PM school peak hours, respectively.
- There is expected to be adequate capacity in the surrounding road network to cater for the traffic generated by the proposed development until the year 2030.
- The proposed site access to Bruigom Street is considered acceptable, subject to the existing gate width being widened.




Appendix A


Development Plans

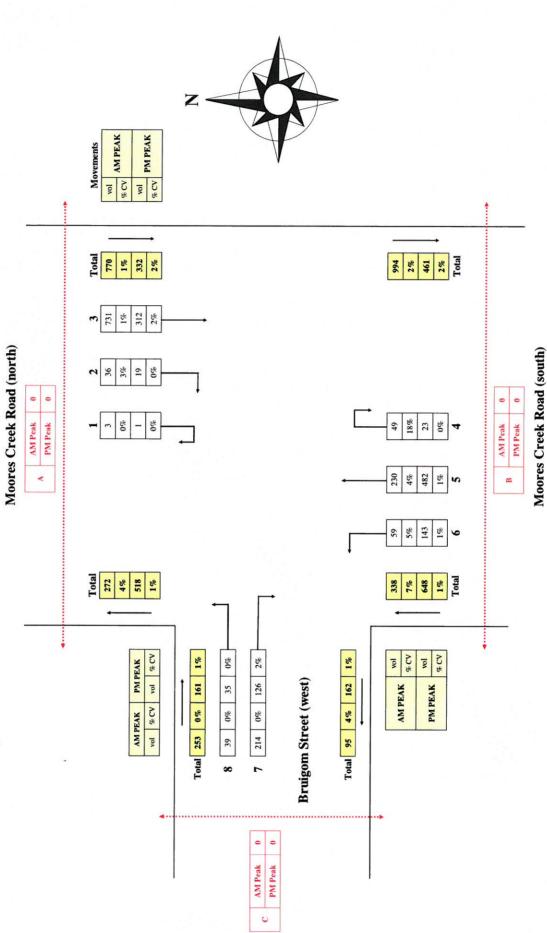




Appendix B

Surveyed Traffic Volumes

AUSTRAFFIC MANUAL INTERSECTION COUNT


Site No.: 1

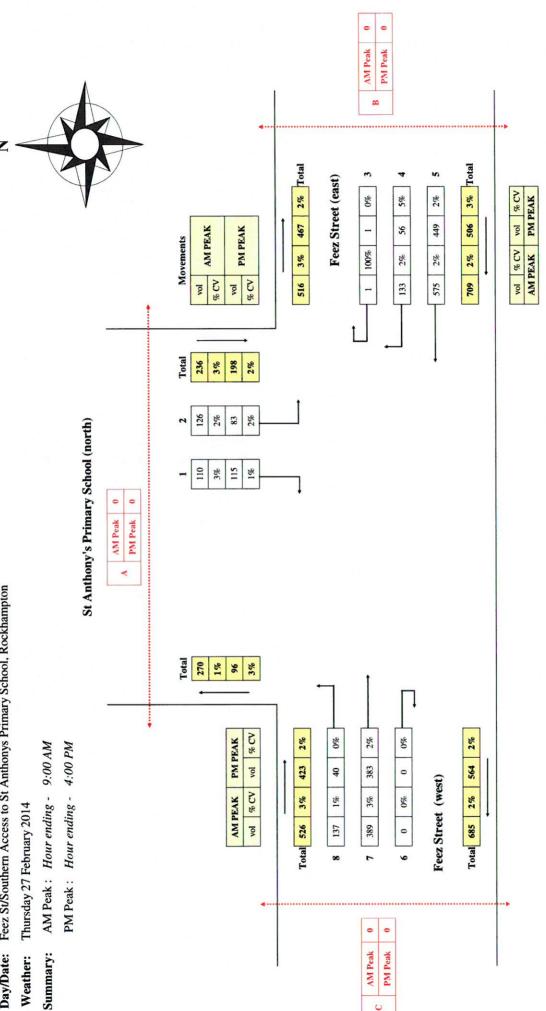
Location: Moores Creek Road/Bruigom Street, Rockhampton

Day/Date: Thursday 27 February 2014

Summary: AM Peak: Hour ending - 8:30 AM

PM Peak: Hour ending - 4:30 PM

<u>Legend</u>


vol = total vehicle volume

% CV = percentage of commercial vehicles (trucks and buses)

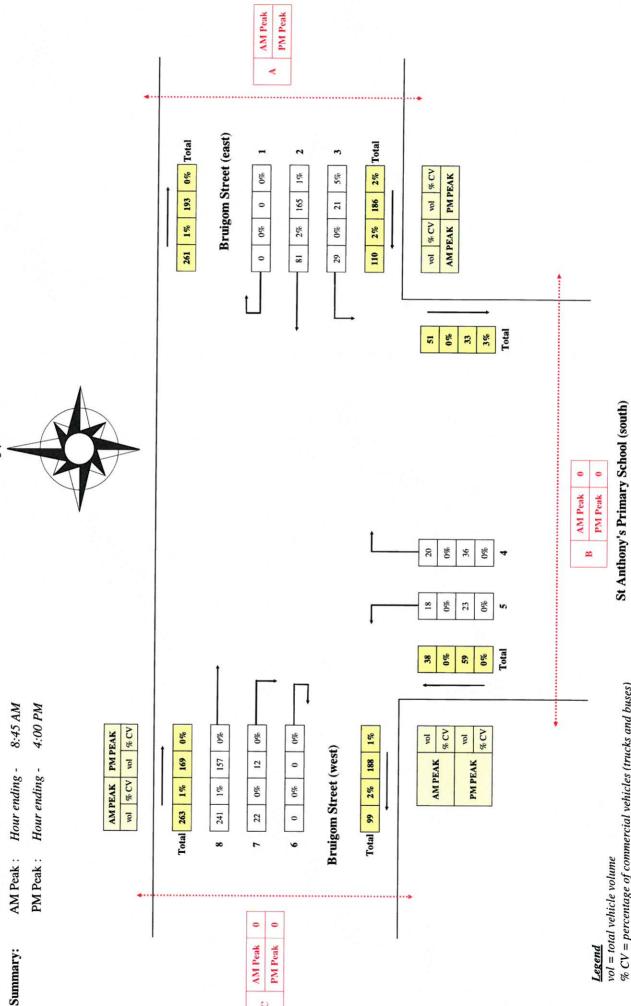
AUSTRAFFIC MANUAL INTERSECTION COUNT

Location:

Feez St/Southern Access to St Anthonys Primary School, Rockhampton Day/Date:

0

vol = total vehicle volume


% CV = percentage of commercial vehicles (trucks and buses)

AUSTRAFFIC MANUAL INTERSECTION COUNT

Weather: Fine Site No.:

Bruigom Street/Northern Access to St Anthonys Primary School Location:

Thursday 27 February 2014 Day/Date:

% CV = percentage of commercial vehicles (trucks and buses)

Appendix C

Appendix C

SIDRA Intersection Results

Site: Feez / Site Access - 2020 AM **Base Case**

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

		Demand	CONTRACTOR	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Feez Stre	et									
2	Т	758	2.0	0.422	11.6	LOS B	7.4	53.0	0.71	0.61	43.3
3	R	158	2.0	0.646	37.4	LOS D	4.8	34.1	1.00	0.84	29.6
Approa	ch	915	2.0	0.646	16.0	LOS B	7.4	53.0	0.76	0.65	40.1
East: Si	ite Access										
4	L	148	2.0	0.409	14.8	LOS B	2.0	14.5	0.50	0.73	42.6
6	R	129	3.0	0.214	24.1	LOS C	2.8	19.9	0.76	0.77	36.1
Approac	ch	278	2.5	0.409	19.1	LOS B	2.8	19.9	0.62	0.75	39.3
North: F	eez Stree	et									
7	L	161	1.0	0.720	32.0	LOS C	10.2	72.6	0.96	0.91	32.9
8	T	513	3.0	0.720	24.7	LOS C	10.2	72.6	0.97	0.88	33.4
Approac	ch	674	2.5	0.720	26.5	LOSC	10.2	72.6	0.97	0.89	33.3
All Vehi	cles	1867	2.3	0.720	20.3	LOSC	10.2	72.6	0.81	0.75	37.2

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

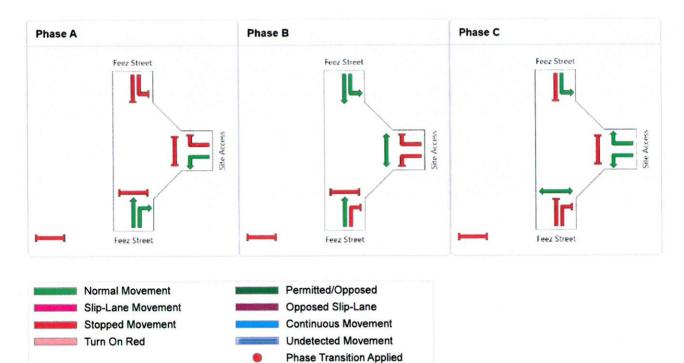
Movem	ent Performance -	Pedestrian	S					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	53	24.3	LOSC	0.1	0.1	0.90	0.90
P3	Across E approach	53	23.4	LOS C	0.1	0.1	0.88	0.88
All Pede	estrians	106	23.9	LOSC			0.89	0.89

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: Thursday, 20 March 2014 10:01:11 AM SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

r nase rinning results			
Phase	Α	В	С
Green Time (sec)	8	14	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	14	20	26
Phase Split	23 %	33 %	43 %

Processed: Thursday, 20 March 2014 10:01:11 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Feez / Site Access - 2020 PM Base Case

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

MATERIAL SERVICE	STATE OF THE PARTY	Demand		Deg.	Average	Level of	95% Back	of Ougue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	V/C	sec	Service	venicies	Distance m	Queueu	per veh	km/h
South:	Feez Stre	The second secon	7.0	7,0	300				THE PARTY OF THE P	porven	Addition
2	T	662	2.0	0.368	11.2	LOS B	6.3	44.9	0.69	0.59	43.6
3	R	75	5.0	0.418	38.0	LOS D	2.2	16.3	0.98	0.76	29.4
Approa	ch	737	2.3	0.418	13.9	LOS B	6.3	44.9	0.72	0.60	41.6
East: S	ite Access	3									
4	L	109	2.0	0.320	15.7	LOS B	1.6	11.3	0.52	0.73	41.9
6	R	151	1.0	0.246	24.2	LOS C	3.3	23.2	0.77	0.78	36.0
Approa	ch	261	1.4	0.320	20.6	LOS C	3.3	23.2	0.66	0.76	38.3
North: F	Feez Stre	et									
7	L	53	0.0	0.596	28.8	LOS C	8.1	57.7	0.91	0.86	35.2
8	Т	564	2.0	0.596	21.0	LOS C	8.1	57.7	0.92	0.78	35.8
Approa	ch	617	1.8	0.596	21.7	LOS C	8.1	57.7	0.92	0.78	35.7
All Vehi	icles	1614	2.0	0.596	18.0	LOS B	8.1	57.7	0.78	0.70	38.6

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	Across S approach	53	24.3	LOS C	0.1	0.1	0.90	0.90
P3	Across E approach	53	21.7	LOS C	0.1	0.1	0.85	0.85
All Pede	estrians	106	23.0	LOSC			0.88	0.88

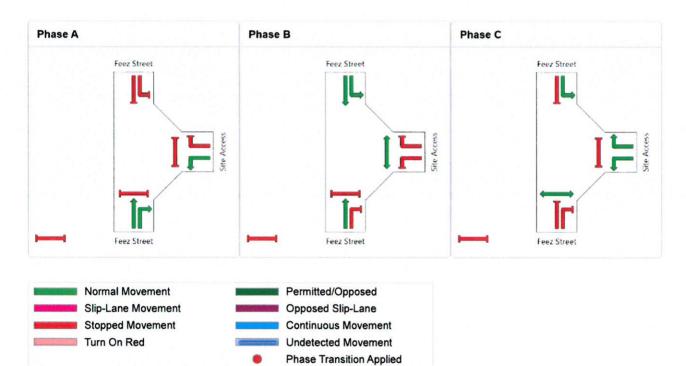
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:43:45 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\1481100-1199\1481125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

Phase times specified by the user

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

rnase rinning Results	•			
Phase	A	В	C	
Green Time (sec)	6	16	20	
Yellow Time (sec)	4	4	4	
All-Red Time (sec)	2	2	2	
Phase Time (sec)	12	22	26	
Phase Split	20 %	37 %	43 %	

Processed: Thursday, 20 March 2014 10:43:45 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Feez / Site Access - 2020 AM With Dev

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Feez Stre									por ton	
2	Т	758	2.0	0.422	11.6	LOS B	7.4	53.0	0.71	0.61	43.3
3	R	211	2.0	0.767	38.8	LOS D	6.7	47.8	1.00	0.91	29.0
Approa	ch	968	2.0	0.767	17.5	LOS B	7.4	53.0	0.77	0.68	39.1
East: S	ite Access										
4	L	198	2.0	0.529	14.5	LOS B	2.7	19.2	0.50	0.74	42.9
6	R	173	3.0	0.285	24.5	LOS C	3.8	27.4	0.78	0.79	35.8
Approa	ch	371	2.5	0.529	19.2	LOS B	3.8	27.4	0.63	0.76	39.3
North: F	eez Stree	et									
7	L	215	1.0	0.814	35.9	LOS D	12.5	88.8	1.00	0.99	31.0
8	Т	513	3.0	0.814	28.8	LOS C	12.5	88.8	1.00	0.98	31.4
Approa	ch	728	2.4	0.814	30.9	LOS C	12.5	88.8	1.00	0.98	31.2
All Vehi	icles	2067	2.2	0.814	22.5	LOSC	12.5	88.8	0.83	0.80	35.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

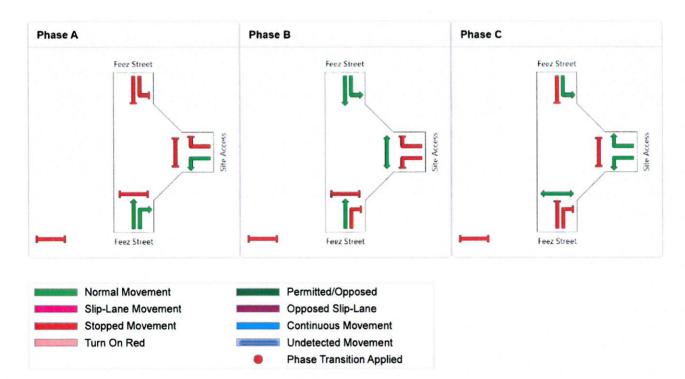
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	53	24.3	LOSC	0.1	0.1	0.90	0.90
P3	Across E approach	53	24.3	LOS C	0.1	0.1	0.90	0.90
All Ped	estrians	106	24.3	LOSC			0.90	0.90

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:03:15 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Posults

Phase Timing Results	5		
Phase	Α	В	С
Green Time (sec)	9	13	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	15	19	26
Phase Split	25 %	32 %	43 %

Processed: Thursday, 20 March 2014 10:03:15 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

Mover	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	Feez Stre	veh/h	%	v/c	sec		veh	m		per veh	km/h
2	T	662	2.0	0.368	11.2	LOS B	6.3	44.0	0.00	0.50	40.0
3	Ċ		0.000			(22) (2) (2) (2)	6.3	44.9	0.69	0.59	43.6
1980	R	99	5.0	0.550	38.7	LOS D	3.0	22.0	0.99	0.79	29.1
Approa	ch	761	2.4	0.550	14.8	LOS B	6.3	44.9	0.73	0.61	41.0
East: S	ite Access										
4	L	143	2.0	0.420	15.9	LOS B	2.1	15.1	0.53	0.74	41.8
6	R	199	1.0	0.323	24.7	LOS C	4.4	31.4	0.79	0.79	35.7
Approa	ch	342	1.4	0.420	21.0	LOS C	4.4	31.4	0.68	0.77	38.0
North: F	eez Stree	et									
7	L	70	0.0	0.610	28.9	LOS C	8.4	59.7	0.92	0.85	35.0
8	T	564	2.0	0.610	21.1	LOS C	8.4	59.7	0.92	0.78	35.6
Approac	ch	634	1.8	0.610	22.0	LOSC	8.4	59.7	0.92	0.79	35.6
All Vehi	cles	1737	2.0	0.610	18.6	LOS B	8.4	59.7	0.79	0.71	38.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

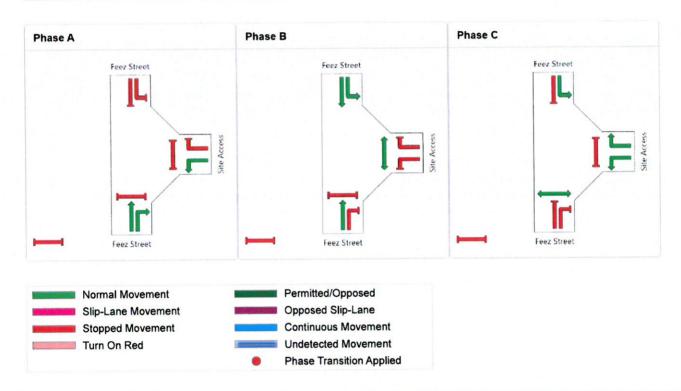
Moven	nent Performance -	- Pedestrian	S		电影的影响			
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	Across S approach	53	24.3	LOSC	0.1	0.1	0.90	0.90
P3	Across E approach	53	21.7	LOSC	0.1	0.1	0.85	0.85
All Pede	estrians	106	23.0	LOSC			0.88	0.88

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:43:20 AM SIDRA INTERSECTION 5.1.13.2093

SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com of Exp - Rockhampton\Modelling


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

Phase times specified by the user Sequence: Diamond 4

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Phase	Α	В	С
Green Time (sec)	6	16	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	22	26
Phase Split	20 %	37 %	43 %

Processed: Thursday, 20 March 2014 10:43:20 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip

Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Feez / Site Access - 2030 AM Base Case

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

MOVEII	ient r ei	formance - \	renicies		第四十二年				SHAFE SHE		A CONTRACTOR
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: F	Feez Stre							14.18			
2	Т	909	2.0	0.506	12.2	LOS B	9.4	67.0	0.75	0.65	42.6
3	R	161	2.0	0.755	40.2	LOS D	5.2	36.9	1.00	0.90	28.5
Approac	ch	1071	2.0	0.755	16.4	LOS B	9.4	67.0	0.78	0.69	39.7
East: Si	te Access	3									
4	L	148	2.0	0.422	15.4	LOS B	2.1	15.1	0.52	0.74	42.2
6	R	129	3.0	0.214	24.1	LOS C	2.8	19.9	0.76	0.77	36.1
Approac	ch	278	2.5	0.422	19.4	LOS B	2.8	19.9	0.63	0.75	39.1
North: F	eez Stre	et									
7	L	158	1.0	0.782	33.5	LOS C	12.2	86.9	0.98	0.96	32.3
8	Т	615	3.0	0.782	26.0	LOS C	12.2	86.9	0.99	0.94	32.8
Approac	ch	773	2.6	0.782	27.6	LOS C	12.2	86.9	0.98	0.94	32.7
All Vehic	cles	2121	2.3	0.782	20.9	LOSC	12.2	86.9	0.84	0.79	36.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	Across S approach	53	24.3	LOS C	0.1	0.1	0.90	0.90
P3	Across E approach	53	22.5	LOS C	0.1	0.1	0.87	0.87
All Pede	estrians	106	23.4	LOSC			0.88	0.88

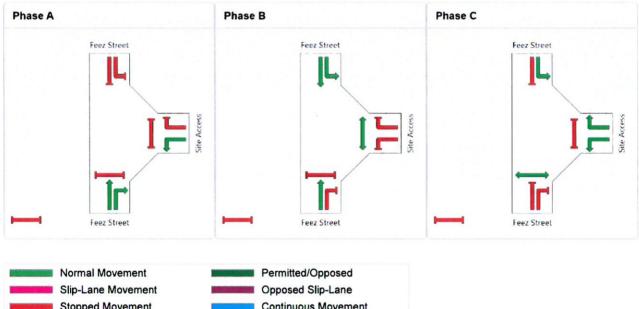
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:29:36 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

r nase mining result	•			
Phase	Α	В	C	
Green Time (sec)	7	15	20	
Yellow Time (sec)	4	4	4	
All-Red Time (sec)	2	2	2	
Phase Time (sec)	13	21	26	
Phase Split	22 %	35 %	43 %	

Processed: Thursday, 20 March 2014 10:29:36 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Feez / Site Access - 2030 PM Base Case

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

MOVE	ileliti ei	formance - \	remetes				OF0/ D1	-60		F#	A
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Feez Stre	- Contract Contract	70	V/C	300		Ven			per veri	
2	Т	793	2.0	0.442	11.7	LOS B	7.9	56.2	0.72	0.62	43.1
3	R	75	5.0	0.418	38.0	LOS D	2.2	16.3	0.98	0.76	29.4
Approa	ch	868	2.3	0.442	14.0	LOS B	7.9	56.2	0.74	0.63	41.5
East: S	ite Access	S									
4	L	109	2.0	0.320	15.7	LOS B	1.6	11.3	0.52	0.73	41.9
6	R	151	1.0	0.246	24.2	LOS C	3.3	23.2	0.77	0.78	36.0
Approa	ch	261	1.4	0.320	20.6	LOSC	3.3	23.2	0.66	0.76	38.3
North: F	eez Stre	et									
7	L	53	0.0	0.706	30.8	LOS C	10.4	73.7	0.95	0.90	34.2
8	Т	678	2.0	0.706	23.0	LOS C	10.4	73.7	0.96	0.86	34.6
Approa	ch	730	1.9	0.706	23.6	LOSC	10.4	73.7	0.96	0.86	34.6
All Vehi	cles	1859	2.0	0.706	18.7	LOSB	10.4	73.7	0.81	0.74	38.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

woven	ent Performance -	Demand		Lovelef	Average Book	of Ougus	Prop.	Effective
Mov ID	Description	Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	Distance m	Queued	Stop Rate
P1	Across S approach	53	24.3	LOSC	0.1	0.1	0.90	0.90
P3	Across E approach	53	21.7	LOSC	0.1	0.1	0.85	0.85
All Pede	estrians	106	23.0	LOSC			0.88	0.88

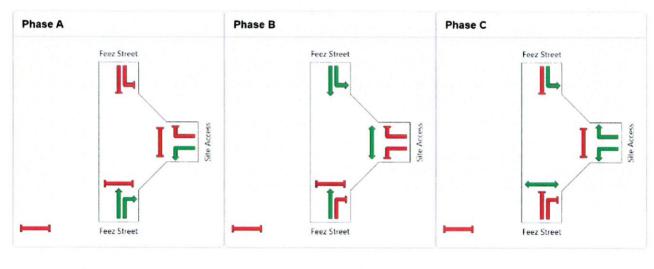
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:42:46 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

Phase times specified by the user

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

i nase riilling itesuits			
Phase	Α	В	С
Green Time (sec)	6	16	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	22	26
Phase Split	20 %	37 %	43 %

Processed: Thursday, 20 March 2014 10:42:46 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Feez / Site Access - 2030 AM With Dev

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Cycle Time)

Moven	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: I	Feez Stre		/0	V/C	300		ven	m		per veh	km/r
2	Т	909	2.0	0.506	12.2	LOS B	9.4	67.0	0.75	0.65	42.6
3	R	211	2.0	0.863	43.7	LOS D	7.3	52.0	1.00	1.00	27.3
Approa	ch	1120	2.0	0.863	18.1	LOS B	9.4	67.0	0.79	0.72	38.6
East: Si	ite Access										
4	L	198	2.0	0.546	15.1	LOS B	2.8	20.0	0.51	0.74	42.5
6	R	173	3.0	0.285	24.5	LOSC	3.8	27.4	0.78	0.79	35.8
Approac	ch	371	2.5	0.546	19.5	LOS B	3.8	27.4	0.64	0.76	39.1
North: F	eez Stree	et									
7	L	215	1.0	0.881	40.8	LOS D	15.4	109.7	1.00	1.07	29.0
8	Т	615	3.0	0.881	33.1	LOS C	15.4	109.7	1.00	1.06	29.5
Approac	ch	831	2.5	0.881	35.1	LOS D	15.4	109.7	1.00	1.06	29.4
All Vehic	cles	2321	2.2	0.881	24.4	LOSC	15.4	109.7	0.84	0.85	34.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

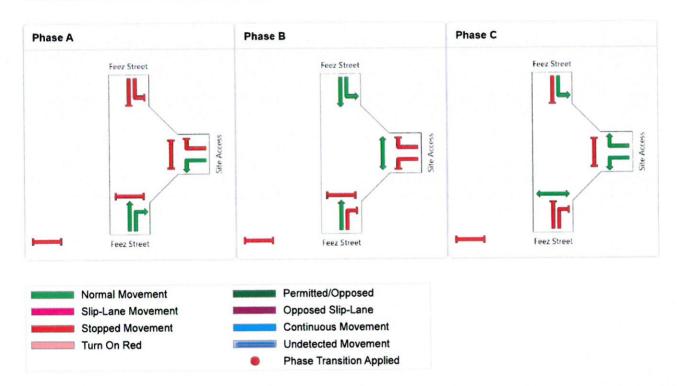
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Pedestrian	Distance	Prop. Queued	Effective Stop Rate
P1	Across S approach	53	24.3	LOS C	0.1	0.1	0.90	per ped 0.90
P3	Across E approach	53	23.4	LOS C	0.1	0.1	0.88	0.88
All Pede	estrians	106	23.9	LOSC			0.89	0.89

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:36:28 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE



Phase times determined by the program

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Filase Illilling Results				
Phase	Α	В	С	
Green Time (sec)	8	14	20	
Yellow Time (sec)	4	4	4	
All-Red Time (sec)	2	2	2	
Phase Time (sec)	14	20	26	
Phase Split	23 %	33 %	43 %	

Processed: Thursday, 20 March 2014 10:36:28 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access sin

Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE SIDRA INTERSECTION

Site: Feez / Site Access - 2030 PM With Dev

Feez Street / Site Access

Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Feez Stre	et									
2	Т	793	2.0	0.442	11.7	LOS B	7.9	56.2	0.72	0.62	43.1
3	R	99	5.0	0.550	38.7	LOS D	3.0	22.0	0.99	0.79	29.1
Approa	ch	892	2.3	0.550	14.7	LOS B	7.9	56.2	0.75	0.64	40.9
East: S	ite Access										
4	L	143	2.0	0.420	15.9	LOS B	2.1	15.1	0.53	0.74	41.8
6	R	199	1.0	0.323	24.7	LOS C	4.4	31.4	0.79	0.79	35.7
Approa	ch	342	1.4	0.420	21.0	LOS C	4.4	31.4	0.68	0.77	38.0
North: F	Feez Stree	et									
7	L	70	0.0	0.721	31.2	LOS C	10.8	76.5	0.96	0.91	33.9
8	Т	678	2.0	0.721	23.4	LOS C	10.8	76.5	0.96	0.87	34.3
Approa	ch	747	1.8	0.721	24.1	LOSC	10.8	76.5	0.96	0.88	34.3
All Vehi	icles	1982	2.0	0.721	19.3	LOS B	10.8	76.5	0.82	0.75	37.7

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate per ped
P1	Across S approach	53	24.3	LOS C	0.1	0.1	0.90	0.90
P3	Across E approach	53	21.7	LOS C	0.1	0.1	0.85	0.85
All Pede	estrians	106	23.0	LOSC			0.88	0.88

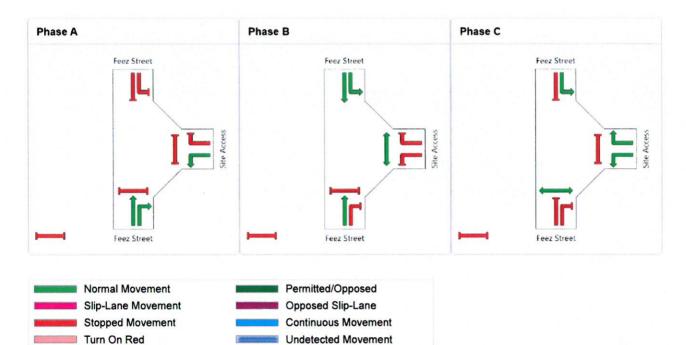
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 20 March 2014 10:41:02 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE


Signals - Fixed Time Cycle Time = 60 seconds (User-Given Phase Times)

Phase times specified by the user

Sequence: Diamond 4 Input Sequence: A, B, C Output Sequence: A, B, C

Phase Timing Results

Dhase Tilling Results		В	C
Phase	Α	В	C
Green Time (sec)	6	16	20
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	12	22	26
Phase Split	20 %	37 %	43 %

Phase Transition Applied

Processed: Thursday, 20 March 2014 10:41:02 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Feez and Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2020 **AM Base Case**

Bruigom / Site Access Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: \$	Site Acces	SS									
1	L	19	0.0	0.061	11.0	LOS B	0.2	1.6	0.30	0.59	46.0
3	R	21	0.0	0.061	11.2	LOS B	0.2	1.6	0.30	0.76	45.8
Approac	ch	40	0.0	0.061	11.1	LOS B	0.2	1.6	0.30	0.68	45.9
East: Bi	ruigom St	reet (SE)									
4	L	31	0.0	0.066	8.2	LOSA	0.0	0.0	0.00	0.94	49.0
5	T	96	2.0	0.066	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	126	1.5	0.066	2.0	NA	0.0	0.0	0.00	0.23	56.9
West: B	Bruigom S	treet (NW)									
11	T	284	1.0	0.165	0.6	LOS A	1.2	8.5	0.28	0.00	54.7
12	R	23	0.0	0.165	9.0	LOS A	1.2	8.5	0.28	0.95	48.9
Approac	ch	307	0.9	0.165	1.2	NA	1.2	8.5	0.28	0.07	54.2
All Vehi	cles	474	1.0	0.165	2.2	NA	1.2	8.5	0.21	0.16	54.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:21:46 AM Copyright © 2000-2011 Akcelik & SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

\140214sid-14B1125000-Bruigom_Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2020 PM Base Case

Bruigom / Site Access Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	No Post Contract	veh	m		per veh	km/h
South: \$	Site Acces	SS									
1	L	24	0.0	0.079	11.0	LOS B	0.3	2.1	0.40	0.62	45.9
3	R	27	0.0	0.079	11.3	LOS B	0.3	2.1	0.40	0.77	45.8
Approa	ch	52	0.0	0.079	11.1	LOS B	0.3	2.1	0.40	0.70	45.9
East: B	ruigom St	reet (SE)									
4	L	22	0.0	0.113	8.2	LOS A	0.0	0.0	0.00	1.02	49.0
5	Т	195	2.0	0.113	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	217	1.8	0.113	0.8	NA	0.0	0.0	0.00	0.10	58.7
West: B	Bruigom S	treet (NW)									
11	T	185	1.0	0.106	0.9	LOSA	0.8	5.5	0.37	0.00	53.3
12	R	13	0.0	0.106	9.4	LOSA	0.8	5.5	0.37	0.94	49.1
Approa	ch	198	0.9	0.106	1.5	NA	8.0	5.5	0.37	0.06	53.0
All Vehi	icles	466	1.2	0.113	2.2	NA	0.8	5.5	0.20	0.15	54.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:22:35 AM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling
\140214sid-14B1125000-Bruigom_Site Access.sip
8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA --INTERSECTION

Site: Bruigom / Site Access - 2020 **AM With Dev**

Bruigom / Site Access Giveway / Yield (Two-Way)

	ioner cr	formance - \	cilicles	REPORT AND A					0 图 图 0 2 2		
Mov ID	Turn	Demand Flow	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
		veh/h	%	Satn v/c	Delay sec	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: S	Site Acces		70	Vic	360		veh	m		per veh	km/h
1	L	25	0.0	0.084	11.2	LOS B	0.3	2.3	0.31	0.59	45.8
3	R	28	0.0	0.084	11.4	LOS B	0.3	2.3	0.31	0.77	45.6
Approac	h	54	0.0	0.084	11.3	LOS B	0.3	2.3	0.31	0.69	45.7
East: Br	uigom St	reet (SE)									
4	L	41	0.0	0.072	8.2	LOSA	0.0	0.0	0.00	0.91	49.0
5	Т	96	2.0	0.072	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	:h	137	1.4	0.072	2.5	NA	0.0	0.0	0.00	0.27	56.2
West: Bi	ruigom St	reet (NW)									
11	T	284	1.0	0.171	0.6	LOSA	1.2	8.8	0.30	0.00	54.4
12	R	31	0.0	0.171	9.1	LOSA	1.2	8.8	0.30	0.94	48.9
Approac	:h	315	0.9	0.171	1.4	NA	1.2	8.8	0.30	0.09	53.8
All Vehic	eles	505	0.9	0.171	2.8	NA	1.2	8.8	0.22	0.20	53.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: Thursday, 20 March 2014 11:24:08 AM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik a www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA INTERSECTION

Site: Bruigom / Site Access - 2020 PM With Dev

Bruigom / Site Access Giveway / Yield (Two-Way)

	Add Add Society	formance - V			Augusta	Level of	95% Back	of Outque	Prop.	Effective	Average
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: S	Site Acces	SS									
1	L	32	0.0	0.104	11.1	LOS B	0.4	2.9	0.41	0.63	45.8
3	R	36	0.0	0.104	11.4	LOS B	0.4	2.9	0.41	0.78	45.7
Approac	ch	67	0.0	0.104	11.3	LOS B	0.4	2.9	0.41	0.71	45.7
East: Br	ruigom St	reet (SE)									
4	L	29	0.0	0.117	8.2	LOS A	0.0	0.0	0.00	1.00	49.0
5	Т	195	2.0	0.117	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approac	ch	224	1.7	0.117	1.1	NA	0.0	0.0	0.00	0.13	58.3
West: B	ruigom S	treet (NW)									
11	Т	185	1.0	0.110	1.0	LOSA	0.8	5.7	0.37	0.00	53.1
12	R	17	0.0	0.110	9.4	LOS A	0.8	5.7	0.37	0.93	49.0
Approa	ch	202	0.9	0.110	1.7	NA	0.8	5.7	0.37	0.08	52.8
All Vehi	cles	494	1.2	0.117	2.7	NA	0.8	5.7	0.21	0.19	54.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:24:31 AM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling
\140214sid-14B1125000-Bruigom_Site Access.sip
8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2030 **AM Base Case**

Bruigom / Site Access Giveway / Yield (Two-Way)

Moven	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Site Acces									perven	KIRIA
1	L	19	0.0	0.068	11.7	LOS B	0.3	1.8	0.34	0.59	45.3
3	R	21	0.0	0.068	12.0	LOS B	0.3	1.8	0.34	0.78	45.1
Approa	ch	40	0.0	0.068	11.8	LOS B	0.3	1.8	0.34	0.69	45.2
East: B	ruigom St	reet (SE)									
4	L	31	0.0	0.076	8.2	LOSA	0.0	0.0	0.00	0.96	49.0
5	Т	115	2.0	0.076	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	145	1.6	0.076	1.7	NA	0.0	0.0	0.00	0.20	57.3
West: E	Bruigom S	treet (NW)									
11	Т	341	1.0	0.194	0.7	LOSA	1.5	10.5	0.32	0.00	54.1
12	R	23	0.0	0.194	9.1	LOSA	1.5	10.5	0.32	0.95	49.0
Approa	ch	364	0.9	0.194	1.2	NA	1.5	10.5	0.32	0.06	53.8
All Vehi	icles	549	1.0	0.194	2.1	NA	1.5	10.5	0.24	0.14	53.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:26:47 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.13,2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Bruigom_Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2030 **PM Base Case**

Bruigom / Site Access Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Site Acces	ss									
1	L	24	0.0	0.087	11.8	LOS B	0.3	2.3	0.45	0.64	45.2
3	R	27	0.0	0.087	12.0	LOS B	0.3	2.3	0.45	0.80	45.1
Approa	ch	52	0.0	0.087	11.9	LOS B	0.3	2.3	0.45	0.73	45.1
East: B	ruigom St	reet (SE)									
4	L	22	0.0	0.133	8.2	LOSA	0.0	0.0	0.00	1.03	49.0
5	Т	234	2.0	0.133	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ich	256	1.8	0.133	0.7	NA	0.0	0.0	0.00	0.09	58.9
West: E	Bruigom S	treet (NW)									
11	Т	222	1.0	0.126	1.2	LOSA	1.0	6.9	0.41	0.00	52.6
12	R	13	0.0	0.126	9.6	LOS A	1.0	6.9	0.41	0.94	49.1
Approa	ich	235	0.9	0.126	1.6	NA	1.0	6.9	0.41	0.05	52.4
All Veh	icles	542	1.3	0.133	2.2	NA	1.0	6.9	0.22	0.13	54.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: Thursday, 20 March 2014 11:27:42 AM Copyright © 2000-2011 Akcelik & SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2030 **AM With Dev**

Bruigom / Site Access Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Site Acces	SS									
1	L	25	0.0	0.093	11.9	LOS B	0.4	2.5	0.35	0.60	45.1
3	R	28	0.0	0.093	12.2	LOS B	0.4	2.5	0.35	0.80	44.9
Approa	ch	54	0.0	0.093	12.1	LOS B	0.4	2.5	0.35	0.70	45.0
East: B	ruigom St	reet (SE)									
4	L	41	0.0	0.082	8.2	LOS A	0.0	0.0	0.00	0.93	49.0
5	Т	115	2.0	0.082	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	156	1.5	0.082	2.2	NA	0.0	0.0	0.00	0.24	56.6
West: B	ruigom S	treet (NW)									
11	Т	341	1.0	0.200	0.7	LOS A	1.5	10.9	0.33	0.00	53.8
12	R	31	0.0	0.200	9.2	LOS A	1.5	10.9	0.33	0.93	49.0
Approa	ch	372	0.9	0.200	1.4	NA	1.5	10.9	0.33	0.08	53.4
All Vehi	cles	581	1.0	0.200	2.6	NA	1.5	10.9	0.24	0.18	53.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:28:18 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Site Access.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Bruigom / Site Access - 2030 PM With Dev

Bruigom / Site Access Giveway / Yield (Two-Way)

		Demand	建設的交易的	Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec	0011100	veh	m	Queucu	per veh	km/h
South:	Site Acces	SS									
1	L	32	0.0	0.114	11.9	LOS B	0.4	3.1	0.46	0.65	45.0
3	R	36	0.0	0.114	12.2	LOS B	0.4	3.1	0.46	0.82	44.9
Approa	ch	67	0.0	0.114	12.1	LOS B	0.4	3.1	0.46	0.74	45.0
East: B	ruigom St	reet (SE)									
4	L	29	0.0	0.137	8.2	LOSA	0.0	0.0	0.00	1.01	49.0
5	T	234	2.0	0.137	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	263	1.8	0.137	0.9	NA	0.0	0.0	0.00	0.11	58.5
West: E	Bruigom S	treet (NW)									
11	Т	222	1.0	0.129	1.2	LOSA	1.0	7.1	0.42	0.00	52.5
12	R	17	0.0	0.129	9.7	LOSA	1.0	7.1	0.42	0.93	49.1
Approa	ch	239	0.9	0.129	1.8	NA	1.0	7.1	0.42	0.07	52.2
All Vehi	icles	569	1.2	0.137	2.6	NA	1.0	7.1	0.23	0.17	53.9

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 20 March 2014 11:29:01 AM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling
\140214sid-14B1125000-Bruigom_Site Access.sip
8000056, GTA CONSULTANTS, ENTERPRISE

Site: Moores Creek / Bruigom - 2020 AM Base Case

		Demand		Deg.	Average	Level of	95% Back	of Ouous	Drop	Effective	Augraga
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Prop. Queued	Stop Rate	Average Speed
		veh/h	%	v/c	sec	SCIVICC	veh	m	Queueu	per veh	km/h
South: I	Moores Cr	eek Road (S)								per ven	
1	L	84	5.0	0.296	21.8	LOSC	3.4	25.0	0.77	0.82	38.8
2	Т	294	4.0	0.296	13.4	LOS B	3.5	25.5	0.77	0.63	41.1
3	R	69	18.0	0.359	31.9	LOSC	1.6	13.2	0.92	0.78	32.3
Approac	ch	447	6.4	0.359	17.9	LOS B	3.5	25.5	0.80	0.69	39.0
North: N	Moores Cre	eek Road (N)									
8	T	776	1.0	0.589	15.1	LOS B	8.1	57.0	0.88	0.75	39.9
9	R	45	3.0	0.141	23.5	LOS C	0.9	6.2	0.78	0.74	36.5
Approac	ch	821	1.1	0.589	15.6	LOS B	8.1	57.0	0.87	0.75	39.7
West: B	ruigom St	reet (W)									
10	L	39	0.0	0.394	19.3	LOS B	5.3	37.3	0.74	0.80	39.3
12	R	268	0.0	0.394	19.2	LOS B	5.3	37.3	0.74	0.80	39.3
Approac	ch	307	0.0	0.394	19.2	LOS B	5.3	37.3	0.74	0.80	39.3
All Vehic	cles	1576	2.4	0.589	16.9	LOS B	8.1	57.0	0.82	0.74	39.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrian	S					
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pede	estrians	106	16.9	LOS B			0.82	0.82

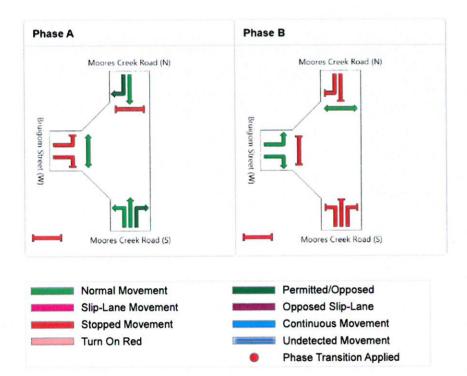
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:00:03 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

PHASING SUMMARY

Site: Moores Creek / Bruigom -2020 AM Base Case


Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Phase times determined by the program

Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

A	В
17	21
4	4
2	2
23	27
46 %	54 %
	A 17 4 2 23

Processed: Friday, 21 March 2014 11:00:03 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA --INTERSECTION

Site: Moores Creek / Bruigom -2020 PM Base Case

Moores Creek Road / Bruigom Street

Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

woven	nent Per	formance - V	enicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Moores C	reek Road (S)								2011	
1	L	180	1.0	0.502	22.8	LOSC	6.4	45.5	0.84	0.84	37.8
2	Т	472	1.0	0.502	14.6	LOS B	6.6	46.7	0.84	0.71	40.0
3	R	21	0.0	0.063	24.7	LOS C	0.4	2.7	0.76	0.73	35.8
Approac	ch	673	1.0	0.502	17.1	LOS B	6.6	46.7	0.84	0.75	39.2
North: N	Moores Cr	eek Road (N)									
8	Т	331	2.0	0.253	13.1	LOS B	3.0	21.3	0.76	0.62	41.8
9	R	36	0.0	0.138	26.2	LOS C	0.7	5.2	0.84	0.74	34.8
Approac	ch	366	1.8	0.253	14.4	LOS B	3.0	21.3	0.77	0.63	41.0
West: B	Bruigom St	treet (W)									
10	L	59	0.0	0.295	18.7	LOS B	3.7	26.6	0.70	0.79	39.6
12	R	168	2.0	0.295	18.7	LOS B	3.7	26.6	0.70	0.78	39.7
Approac	ch	227	1.5	0.295	18.7	LOS B	3.7	26.6	0.70	0.78	39.7
All Vehi	cles	1266	1.3	0.502	16.6	LOS B	6.6	46.7	0.80	0.72	39.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

	POST DE LO CONTRACTO DE LO COMPONIO	Demand	Average	Level of	Average Back	of Oueue	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance	Queued	Stop Rate
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pede	estrians	106	16.9	LOS B			0.82	0.82

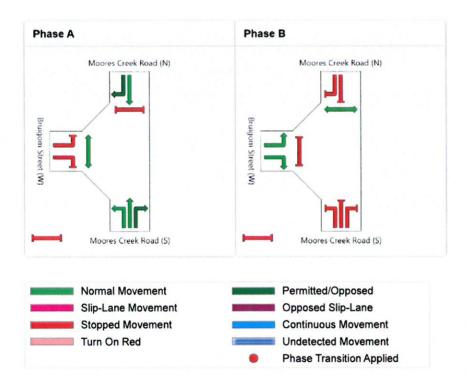
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

Processed: Friday, 21 March 2014 11:18:20 AM Copyright © 2000-2011 Akcelik at SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

PHASING SUMMARY


Site: Moores Creek / Bruigom -2020 PM Base Case

Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

i made imming reduce		
Phase	A	В
Green Time (sec)	17	21
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	23	27
Phase Split	46 %	54 %

Processed: Friday, 21 March 2014 11:18:20 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA INTERSECTION

Site: Moores Creek / Bruigom - 2020 AM With Dev

Movem	nent Per	formance - \	/enicles	Conference in						No. of the last	
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: I	Moores C	reek Road (S)		V/C	300		Ven			per ven	KIII
1	L	91	5.0	0.301	21.8	LOSC	3.5	25.4	0.78	0.82	38.7
2	T	294	4.0	0.301	13.4	LOS B	3.6	26.0	0.78	0.64	41.1
3	R	69	18.0	0.359	31.9	LOS C	1.6	13.2	0.92	0.78	32.3
Approac	ch	454	6.3	0.359	17.9	LOS B	3.6	26.0	0.80	0.69	39.0
North: N	Moores Cr	eek Road (N)									
8	Т	776	1.0	0.589	15.1	LOS B	8.1	57.0	0.88	0.75	39.9
9	R	49	3.0	0.154	23.6	LOS C	1.0	6.8	0.78	0.74	36.4
Approac	ch	825	1.1	0.589	15.7	LOS B	8.1	57.0	0.87	0.75	39.7
West: B	ruigom S	treet (W)									
10	L	40	0.0	0.404	19.3	LOS B	5.5	38.4	0.74	0.80	39.2
12	R	275	0.0	0.404	19.2	LOS B	5.5	38.4	0.74	0.80	39.2
Approac	ch	315	0.0	0.404	19.2	LOS B	5.5	38.4	0.74	0.80	39.2
All Vehi	cles	1594	2.4	0.589	17.0	LOS B	8.1	57.0	0.82	0.74	39.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

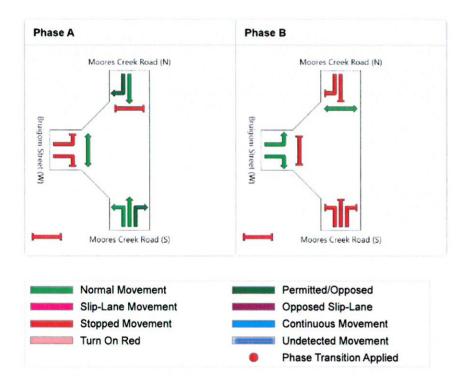
SCISCOLLUCIONE DI		Demand	s Average	Lovelof	Average Back	of Oueue	Prop.	Effective
Mov ID	Description	Flow ped/h	Delay	Service	Pedestrian ped	Distance	Queued	Stop Rate
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pede	estrians	106	16.9	LOS B			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:20:07 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE


PHASING SUMMARY

Site: Moores Creek / Bruigom - 2020 AM With Dev

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

Α	В	
17	21	
4	4	
2	2	
23	27	
46 %	54 %	
	A 17 4 2 23	A B 17 21 4 4 2 2 23 27

Processed: Friday, 21 March 2014 11:20:07 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom Moores Creek sip

Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Site: Moores Creek / Bruigom -2020 PM With Dev

Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: I	Moores C	reek Road (S)	/0	V/C	300		ven	m		per veh	km/h
1	L	186	1.0	0.507	22.9	LOSC	6.5	46.0	0.85	0.84	37.8
2	T	472	1.0	0.507	14.6	LOS B	6.7	47.3	0.85	0.72	39.9
3	R	21	0.0	0.063	24.7	LOSC	0.4	2.7	0.76	0.73	35.8
Approa	ch	679	1.0	0.507	17.2	LOS B	6.7	47.3	0.84	0.75	39.2
North: N	Moores Cr	reek Road (N)									
8	T	331	2.0	0.253	13.1	LOS B	3.0	21.3	0.76	0.62	41.8
9	R	37	0.0	0.143	26.3	LOS C	0.8	5.4	0.84	0.74	34.8
Approac	ch	367	1.8	0.253	14.5	LOS B	3.0	21.3	0.77	0.63	41.0
West: B	ruigom St	treet (W)									
10	L	61	0.0	0.305	18.8	LOS B	3.9	27.7	0.70	0.79	39.6
12	R	175	2.0	0.305	18.7	LOS B	3.9	27.7	0.70	0.78	39.6
Approac	ch	236	1.5	0.305	18.8	LOS B	3.9	27.7	0.70	0.78	39.6
All Vehic	cles	1282	1.3	0.507	16.7	LOS B	6.7	47.3	0.80	0.72	39.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

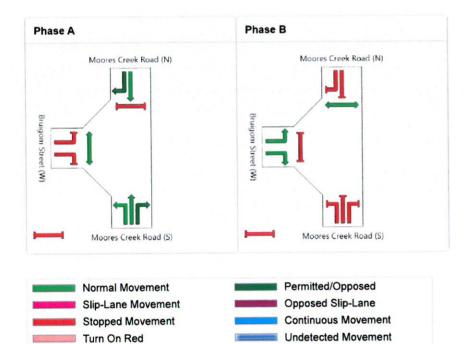
Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Ped	estrians	106	16.9	LOS B			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:23:29 AM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

PHASING SUMMARY

Site: Moores Creek / Bruigom -2020 PM With Dev


Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Actual Phasing

Input Sequence: A, B Output Sequence: A, B

Phase	Timing	Results	
rilase	I IIIIIIII	4 Legaire	3

r nase rinning result	•	
Phase	A	В
Green Time (sec)	17	21
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	23	27
Phase Split	46 %	54 %

Processed: Friday, 21 March 2014 11:23:29 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Phase Transition Applied

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA INTERSECTION

Site: Moores Creek / Bruigom -2030 AM Base Case

Moores Creek Road / Bruigom Street

Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Movem	ent Perl	formance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	Moores Ci	reek Road (S)	THE RESERVE TO A STATE OF THE PARTY OF THE P	V/C	300		VCII			per veri	KIII
1	L	100	5.0	0.355	22.1	LOSC	4.2	30.6	0.79	0.83	38.6
2	Т	353	4.0	0.355	13.7	LOS B	4.3	31.3	0.79	0.66	40.8
3	R	83	18.0	0.500	34.6	LOS C	2.1	17.0	0.97	0.79	31.1
Approac	h	536	6.4	0.500	18.5	LOS B	4.3	31.3	0.82	0.71	38.5
North: M	loores Cr	eek Road (N)									
8	Т	931	1.0	0.706	17.0	LOS B	10.7	75.2	0.93	0.84	38.5
9	R	56	3.0	0.172	24.6	LOS C	1.1	8.0	0.81	0.75	35.8
Approac	h	986	1.1	0.706	17.5	LOS B	10.7	75.2	0.92	0.84	38.3
West: Br	ruigom St	reet (W)								1	
10	L	46	0.0	0.472	19.8	LOS B	6.7	46.7	0.77	0.82	38.9
12	R	322	0.0	0.472	19.6	LOS B	6.7	46.7	0.77	0.81	38.9
Approac	:h	368	0.0	0.472	19.7	LOS B	6.7	46.7	0.77	0.81	38.9
All Vehic	cles	1891	2.4	0.706	18.2	LOS B	10.7	75.2	0.86	0.80	38.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Ped	estrians	106	16.9	LOS B			0.82	0.82

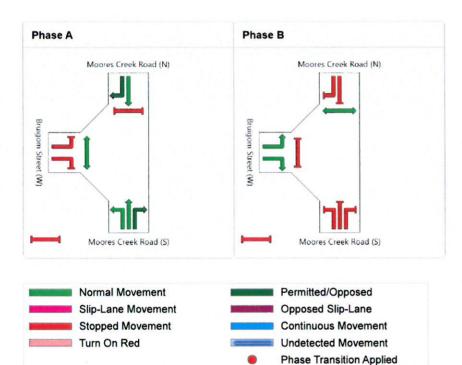
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:29:16 AM SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

PHASING SUMMARY


Site: Moores Creek / Bruigom -2030 AM Base Case

Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

Phase	A	В
Green Time (sec)	17	21
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	23	27
Phase Split	46 %	54 %

Processed: Friday, 21 March 2014 11:29:16 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA INTERSECTION

Site: Moores Creek / Bruigom - 2030 PM Base Case

Moores Creek Road / Bruigom Street

Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Movem	ent Perf	ormance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	Moores Cr	eek Road (S)									
1	L	217	1.0	0.603	23.5	LOS C	8.1	57.2	0.88	0.85	37.4
2	Т	566	1.0	0.603	15.2	LOS B	8.3	58.7	0.88	0.76	39.4
3	R	25	0.0	0.072	24.8	LOS C	0.5	3.3	0.76	0.74	35.7
Approac	:h	808	1.0	0.603	17.8	LOS B	8.3	58.7	0.88	0.78	38.7
North: N	loores Cr	eek Road (N)									
8	Т	396	2.0	0.302	13.4	LOS B	3.6	26.0	0.78	0.64	41.5
9	R	42	0.0	0.189	28.4	LOSC	0.9	6.6	0.88	0.74	33.6
Approac	:h	438	1.8	0.302	14.9	LOS B	3.6	26.0	0.79	0.65	40.6
West: B	ruigom St	reet (W)									
10	L	71	0.0	0.353	19.1	LOS B	4.6	32.8	0.72	0.80	39.4
12	R	202	2.0	0.353	19.0	LOS B	4.6	32.8	0.72	0.79	39.4
Approac	:h	273	1.5	0.353	19.0	LOS B	4.6	32.8	0.72	0.79	39.4
All Vehic	cles	1519	1.3	0.603	17.2	LOS B	8.3	58.7	0.82	0.74	39.4

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Mov ID	Description	Demand Flow ped/h	Average Delay sec	Level of Service	Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pedestrians		106	16.9	LOS B			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

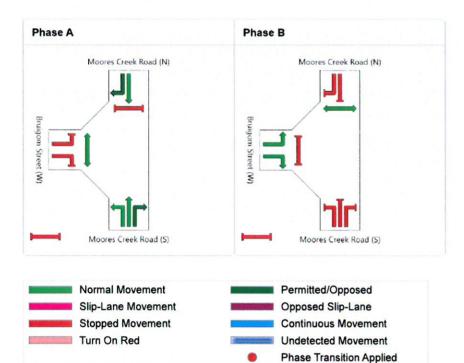
Processed: Friday, 21 March 2014 11:36:03 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

PHASING SUMMARY


Site: Moores Creek / Bruigom -2030 PM Base Case

Moores Creek Road / Bruigom Street Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B **Output Sequence: A, B**

Phase Timing Results

Phase	Α	В
Green Time (sec)	17	21
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	23	27
Phase Split	46 %	54 %

Processed: Friday, 21 March 2014 11:36:03 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

SIDRA --INTERSECTION

Site: Moores Creek / Bruigom -2030 AM With Dev

Moores Creek Road / Bruigom Street

Signals - Fixed Time Cycle Time = 50 seconds (User-Given Cycle Time)

Movem	nent Per	ormance - \	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: N	Moores Ci	eek Road (S)	THE RESERVE TO SHARE THE PARTY OF THE PARTY								
1	L	108	5.0	0.362	22.1	LOS C	4.3	31.3	0.80	0.83	38.5
2	T	353	4.0	0.362	13.8	LOS B	4.4	32.0	0.80	0.66	40.7
3	R	83	18.0	0.500	34.6	LOS C	2.1	17.0	0.97	0.79	31.1
Approac	ch	544	6.3	0.500	18.6	LOS B	4.4	32.0	0.82	0.71	38.5
North: N	Moores Cr	eek Road (N)									
8	Т	931	1.0	0.706	17.0	LOS B	10.7	75.2	0.93	0.84	38.5
9	R	59	3.0	0.183	24.7	LOS C	1.2	8.5	0.81	0.75	35.7
Approac	ch	989	1,1	0.706	17.5	LOS B	10.7	75.2	0.92	0.84	38.3
West: B	ruigom St	reet (W)									
10	L	47	0.0	0.483	19.8	LOS B	6.9	48.0	0.77	0.82	38.9
12	R	329	0.0	0.483	19.7	LOS B	6.9	48.0	0.77	0.81	38.9
Approac	ch	377	0.0	0.483	19.7	LOS B	6.9	48.0	0.77	0.81	38.9
All Vehic	cles	1911	2.4	0.706	18.3	LOS B	10.7	75.2	0.86	0.80	38.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

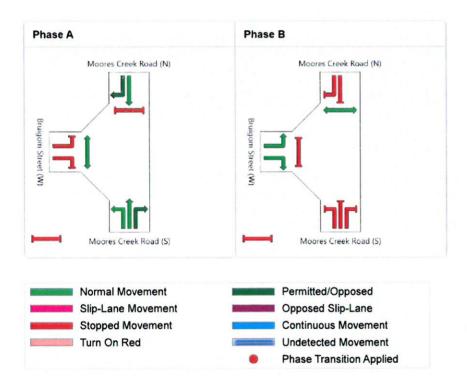
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec		ped	m		per ped
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pedestrians		106	16.9	LOS B			0.82	0.82

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:37:32 AM Copyright © 2000-2011 Akcelik a SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling \140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd


PHASING SUMMARY

Site: Moores Creek / Bruigom - 2030 AM With Dev

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

•	
A	В
17	21
4	4
2	2
23	27
46 %	54 %
	A 17 4 2 23

Processed: Friday, 21 March 2014 11:37:32 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-Bruigom Moores Creek.sip

Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE SIDRA INTERSECTION

Site: Moores Creek / Bruigom - 2030 PM With Dev

Movem	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: N	Moores C	reek Road (S)							The second	A STATE OF THE STA	
1	L	226	1.0	0.610	23.5	LOS C	8.2	58.0	0.89	0.85	37.4
2	Т	566	1.0	0.610	15.3	LOS B	8.4	59.6	0.89	0.76	39.3
3	R	25	0.0	0.072	24.8	LOS C	0.5	3.3	0.76	0.74	35.7
Approac	ch	818	1.0	0.610	17.9	LOS B	8.4	59.6	0.88	0.78	38.6
North: N	Moores Ci	reek Road (N)									
8	Т	396	2.0	0.302	13.4	LOS B	3.6	26.0	0.78	0.64	41.5
9	R	44	0.0	0.200	28.5	LOS C	1.0	6.9	0.88	0.74	33.6
Approac	ch	440	1.8	0.302	14.9	LOS B	3.6	26.0	0.79	0.65	40.6
West: B	ruigom S	treet (W)									
10	L	72	0.0	0.359	19.1	LOS B	4.7	33.4	0.72	0.80	39.4
12	R	205	2.0	0.359	19.0	LOS B	4.7	33.4	0.72	0.79	39.4
Approac	ch	277	1.5	0.359	19.1	LOS B	4.7	33.4	0.72	0.79	39.4
All Vehic	cles	1535	1.3	0.610	17.2	LOS B	8.4	59.6	0.83	0.75	39.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

National Property lies	CONTRACTOR OF THE PARTY OF THE	Demand	Average	Level of	Average Back	of Queue	Prop.	Effective Stop Rate per ped
Mov ID	Description	Flow ped/h	Delay	Service	Pedestrian ped	Distance m		
P5	Across N approach	53	19.4	LOS B	0.1	0.1	0.88	0.88
P7	Across W approach	53	14.4	LOS B	0.1	0.1	0.76	0.76
All Pede	estrians	106	16.9	LOS B			0.82	0.82

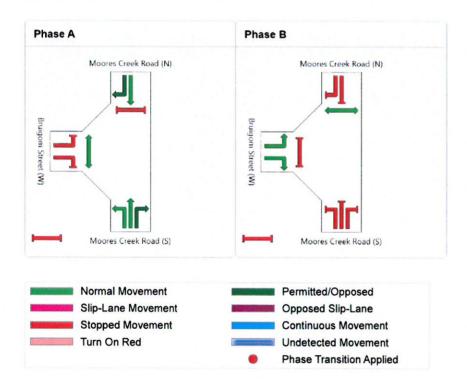
Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 21 March 2014 11:39:12 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling

\140214sid-14B1125000-Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE


PHASING SUMMARY

Site: Moores Creek / Bruigom - 2030 PM With Dev

Phase times determined by the program Sequence: Actual Phasing Input Sequence: A, B Output Sequence: A, B

Phase Timing Results

Α	В
17	21
4	4
2	2
23	27
46 %	54 %
	A 17 4 2 23

Processed: Friday, 21 March 2014 11:39:12 AM SIDRA INTERSECTION 5.1.13.2093

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\14B1100-1199\14B1125000 St Anthonys School Exp - Rockhampton\Modelling\140214sid-14B1125000-

Bruigom_Moores_Creek.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Melbourne

A Level 25, 55 Collins Street PO Box 24055 MELBOURNE VIC 3000 P +613 9851 9600 F +613 9851 9610

E melbourne@gta.com.au

Sydney

A Level 6, 15 Help Street CHATSWOOD NSW 2067 PO Box 5254 WEST CHATSWOOD NSW 1515

P +612 8448 1800

F +612 8448 1810

E sydney@gta.com.au

Brisbane

A Level 4, 283 Elizabeth Street BRISBANE QLD 4000 GPO Box 115 BRISBANE QLD 4001 P +617 3113 5000

F +617 3113 5010

E brisbane@gta.com.au

Canberra

A Unit 4, Level 1, Sparta Building, 55 Woolley Street A Level 1, 25 Sturt Street PO Box 62 DICKSON ACT 2602

P +612 6243 4826

F +612 6243 4848

E canberra@gta.com.au

Townsville

PO Box 1064 TOWNSVILLE QLD 4810

P +617 4722 2765

F +617 4722 2761

E townsville@gta.com.au

Adelaide

A Suite 4, Level 1, 136 The Parade PO Box 3421 NORWOOD SA 5067 P +618 8334 3600

F +618 8334 3610

E adelaide@gta.com.au

Gold Coast

A Level 9, Corporate Centre 2 Box 37 1 Corporate Court BUNDALL QLD 4217 P +617 5510 4800 F +617 5510 4814

E goldcoast@gta.com.au