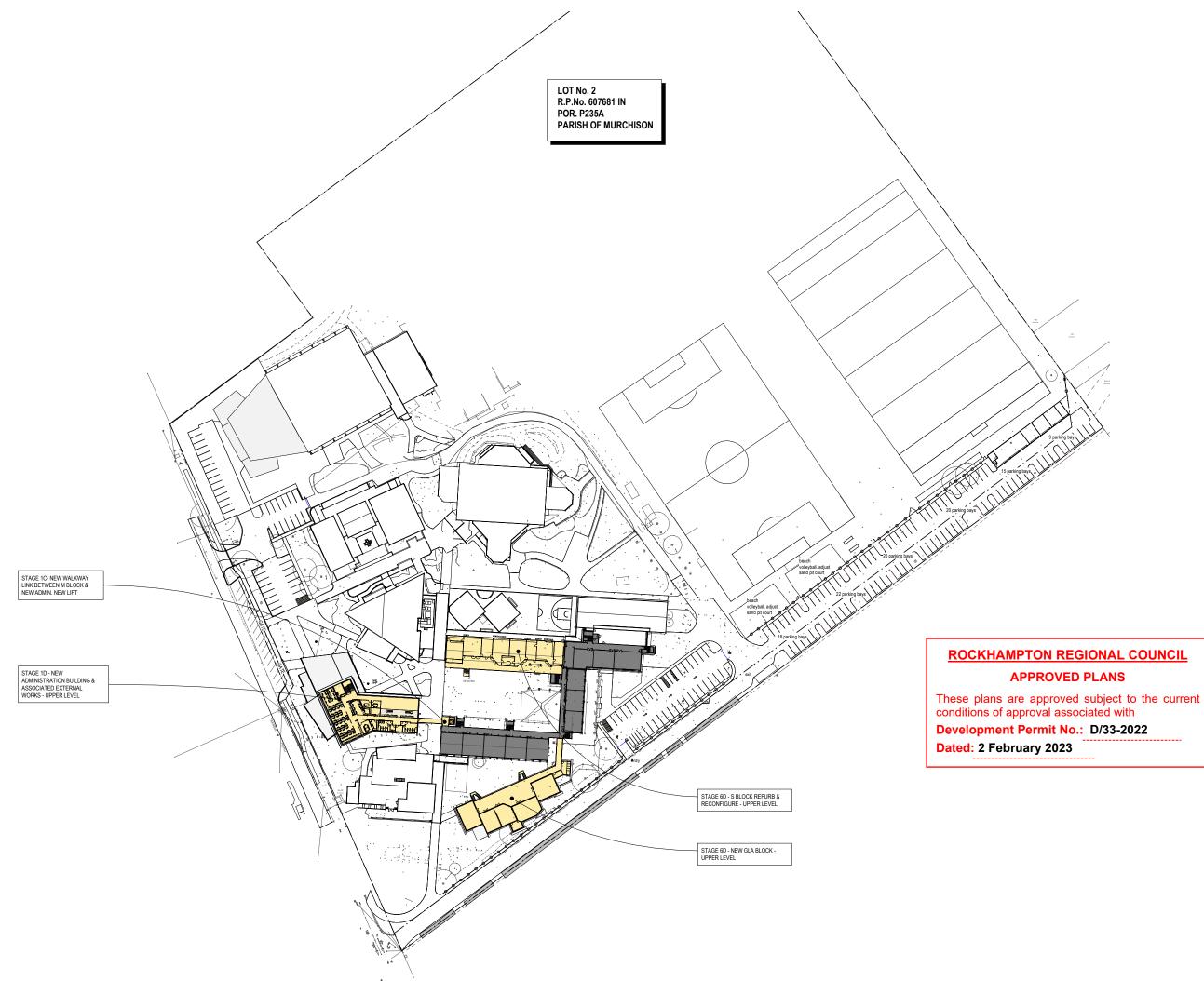

ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

EMMAUS COLLEGE, YAAMBA RD NORTH ROCKHAMPTON


PROPOSED NEW ADMINISTRATION

drawing title: EXISTING OVERALL SITE PLAN -UPPER

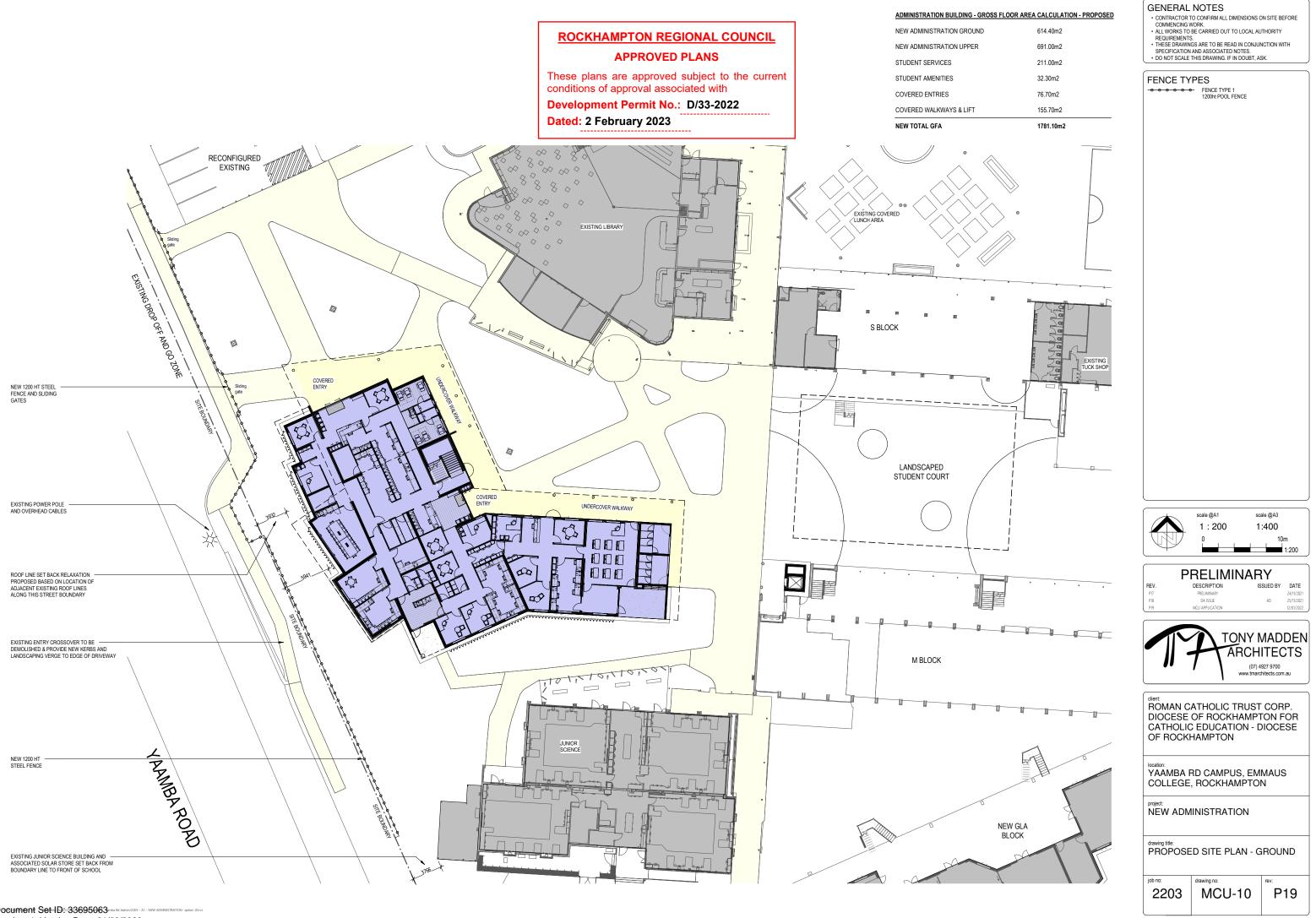
job no 2203 drawing no MCU-02

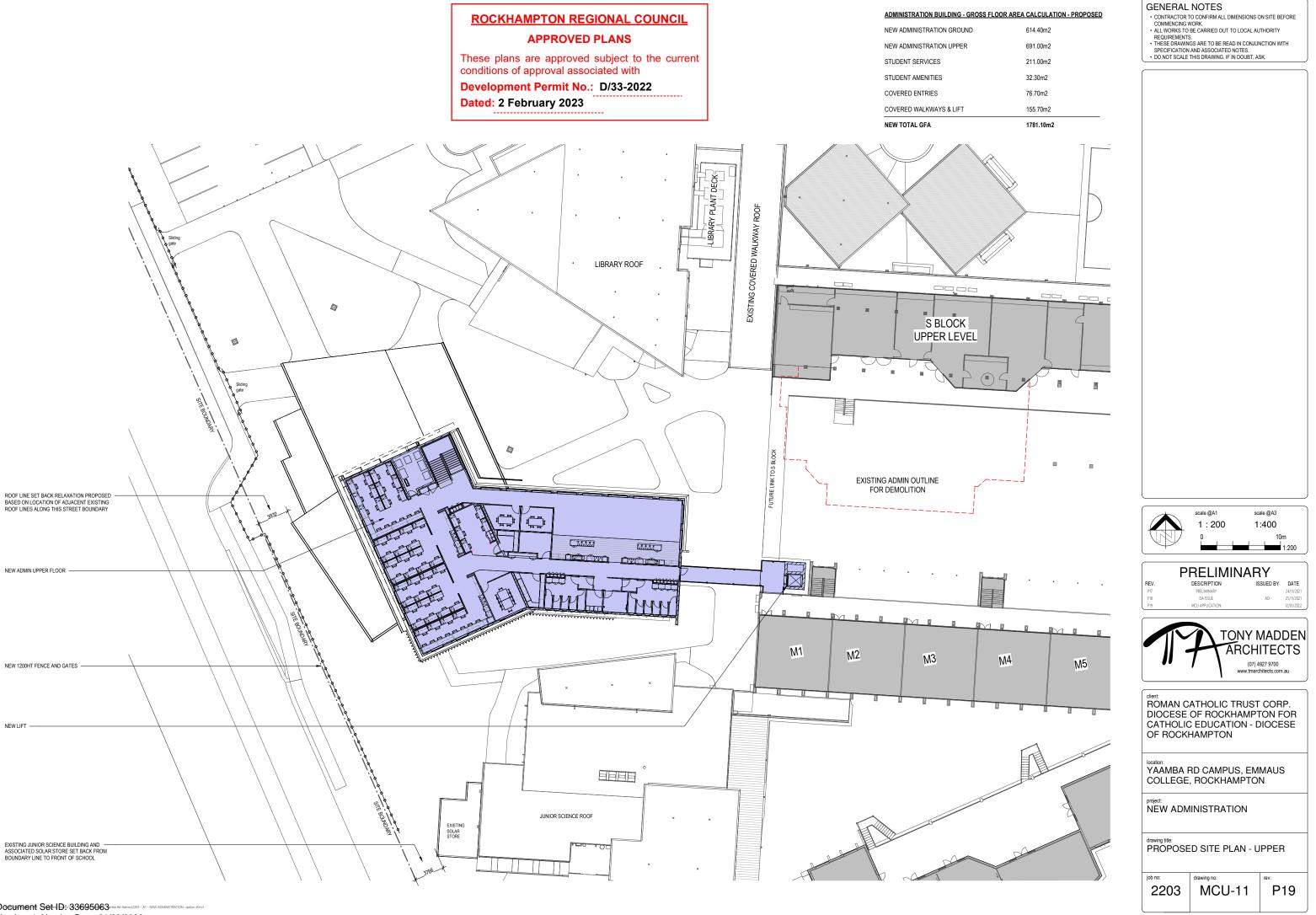
	GENERAL · CONTRACTOR T COMMENCING V	O CONFIRM ALL DIMENSIONS (ON SITE BEFORE
-	ALL WORKS TO REQUIREMENTS	BE CARRIED OUT TO LOCAL AU	
	SPECIFICATION	GS ARE TO BE READ IN CONJUI AND ASSOCIATED NOTES. THIS DRAWING. IF IN DOUBT, A:	
	SITE ARE]
	362 YAAMBA ROAD, 362 YAAMBA ROAD, TOTAL		3 678m ² 88 720m ² 92 398m ²
REGIONAL COUNCIL	SITE COVI	ERAGE	
VED PLANS	EXISTING PROPOSED		13.7% (12 746m ²) 15% (13 919m ²)
oved subject to the current associated with	GBOSS FL	OOR AREA	
No.: D/33-2022	EXISTING -BUIL	DINGS -GROUND	9 472m ²
023	EXISTING -BUIL	DINGS -UPPER FLOOR DINGS TOTAL	1 538m² 11 010m²
8	PROPOSED -BUIL PROPOSED -BUIL PROPOSED -BUIL	DINGS -UPPER FLOOR	9 521m ² 2 673m ² 12 194m ²
4	BUILDINGS TOTAL	INCREASE	1 184m²
		ANDAS & UNDERCROFTS ANDAS & UNDERCROFTS L INCREASE	2 216m² 3 821m² 1 605m²
	BUILDING		
EASEMENT LINE - EASEMENT A RP612698 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED)	EXISTING -PATH -ROA -TOTA		8 050m ² 7 089m ² 15 139m ²
WATER LINE UNDER	PROPOSED -PATH -ROA -TOTA	DS	8 273m ² 8 113m ² 16 386m ²
	LANDSCA sports field	PING AREA (inclu s)	uding
STAGE 3B - NEW MAINTENANCE SHED	EXISTING		65 824m²
	PROPOSED		63 421m ²
STAGE 5B - NEW MULTI-USE CAR PARK			
- 83 PARKING BAYS - 1 PWD PARKING BAY - NEW 1200 FENCE AND GATES]
BEACH VOLLEYBALL.		scale @A1 sc	ale @A3
ADJUST SAND PIT COURT		1 : 750	
EASEMENT LINE - EASEMENT C SP209765 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED))
WATER LINE UNDER	P	RELIMINAR DESCRIPTION IS	SSUED BY DATE
EXISTING CHAIN MESH	P20 P21 P22	INTERNAL REVIEW MCU APPLICATION MCU UPDATES	20/12/2021 12/01/2022 21/01/2022
BOUNDARY FENCE TO REMAIN	P22	MCD OPDATE2	2000/2022
STAGE 3B - NEW STAFF CARPARK, STUDENT BYCYCLE PARKING,			MADDEN
DELIVERIES AREA,SKIP BIN LOADING AREA & BUS REVERSE BAY - 36 PARKING BAYS	· // ·		ITECTS
- 4 MOTOCYCLE PARKING BAYS - 1 PWD PARKING BAY			chitects.com.au
EXISTING HIGH LANDSCAPING SHRUBS BUFFER TO REMAIN		ATHOLIC TRUST	COPP
ALONG FENCE BOUNDARY	DIOCESE	OF ROCKHAMP	FON FOR
	OF ROCK	CEDUCATION - E HAMPTON	JOCESE
	location:		
STAGE 4B - DEMOLISH AMENITIES & PART OF UNDERCROFT - M BLOCK		College, yaan Ockhampton	1BA RD
STAGE 6C - DEMOLISH 3 CLASSROOMS TO FORM UNDERCROFT - M BLOCK	project:		
		D NEW ADMINIS	STRATION
STAGE 6D - NEW GLA BLOCK	drawing title: PROPOSE	D OVERALL SIT	E PLAN -
	GROUND		
			rev:
	2203	MCU-03	P22
	·		

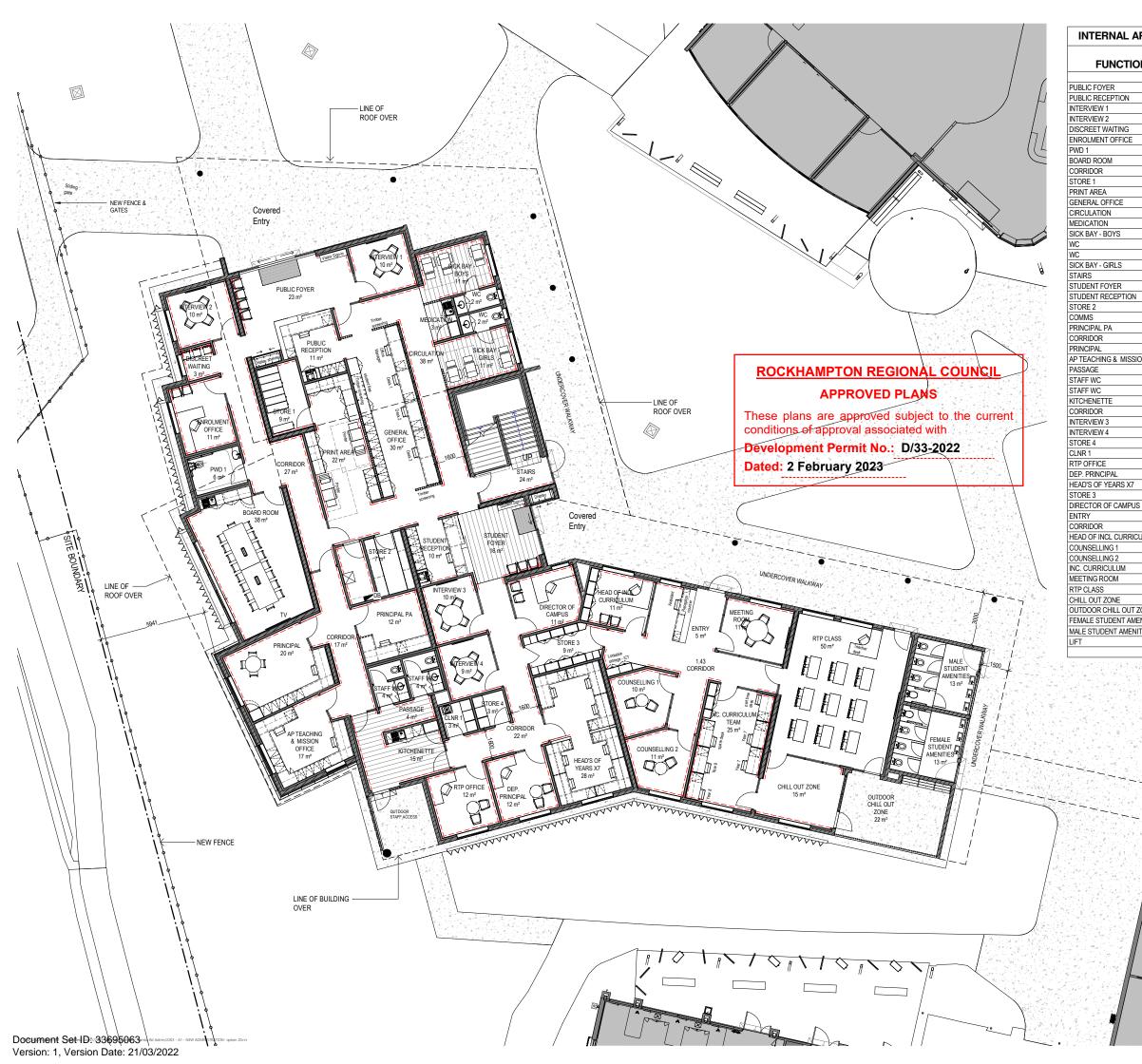
PRELIMINARY REV. P22 DESCRIPTION ISSUED BY DATE

MCU UPDATES

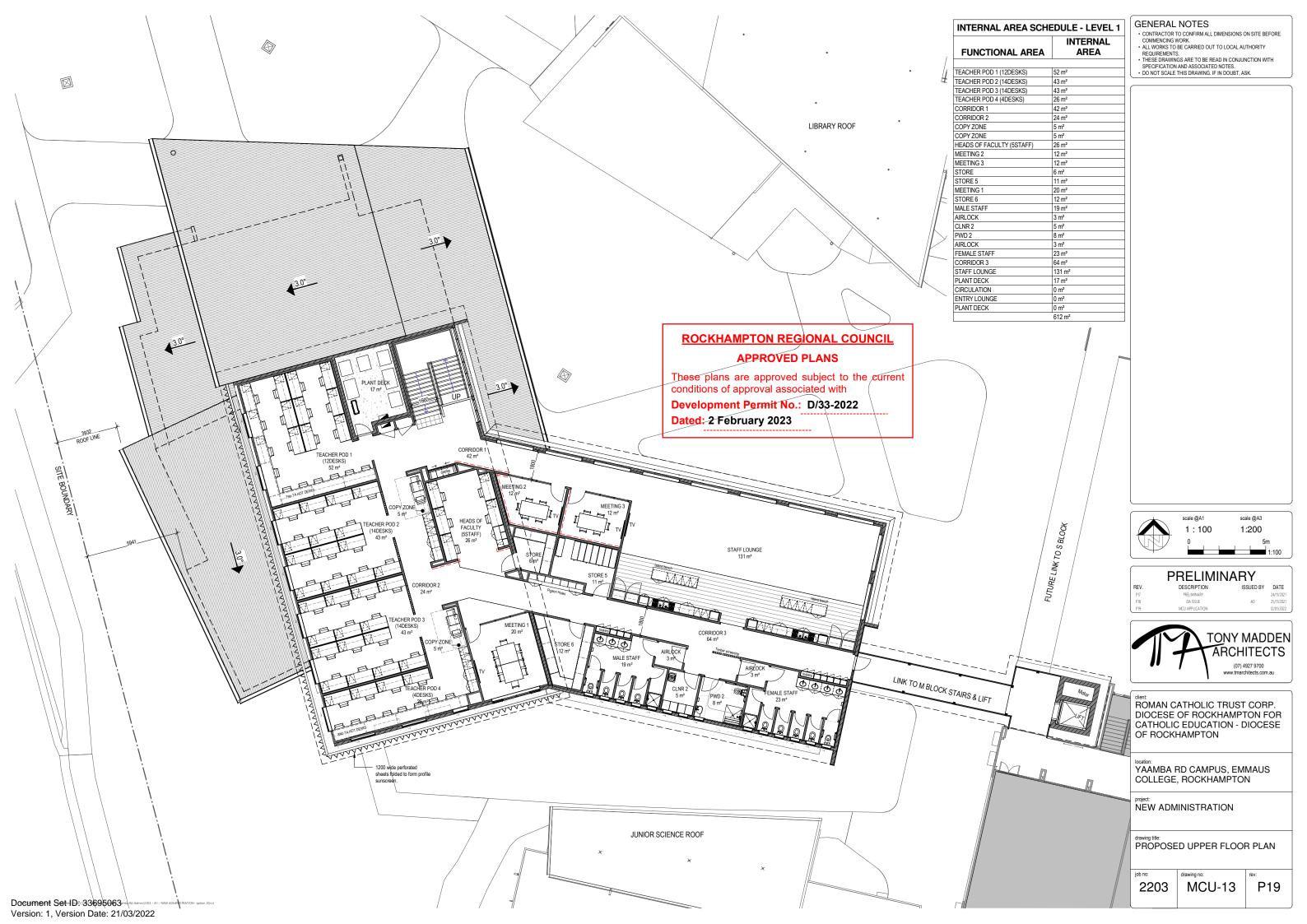
ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

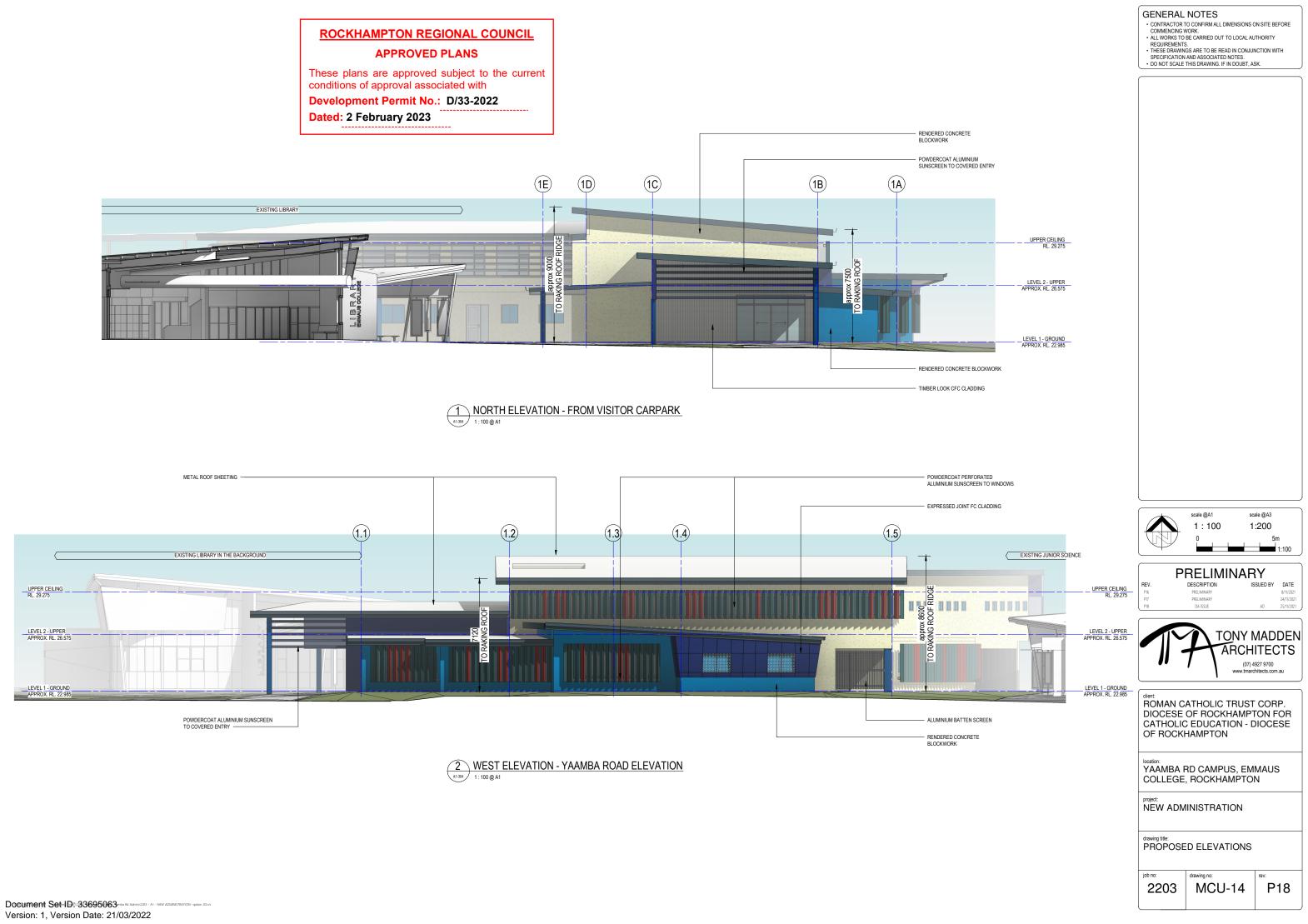

EMMAUS COLLEGE, YAAMBA RD NORTH ROCKHAMPTON

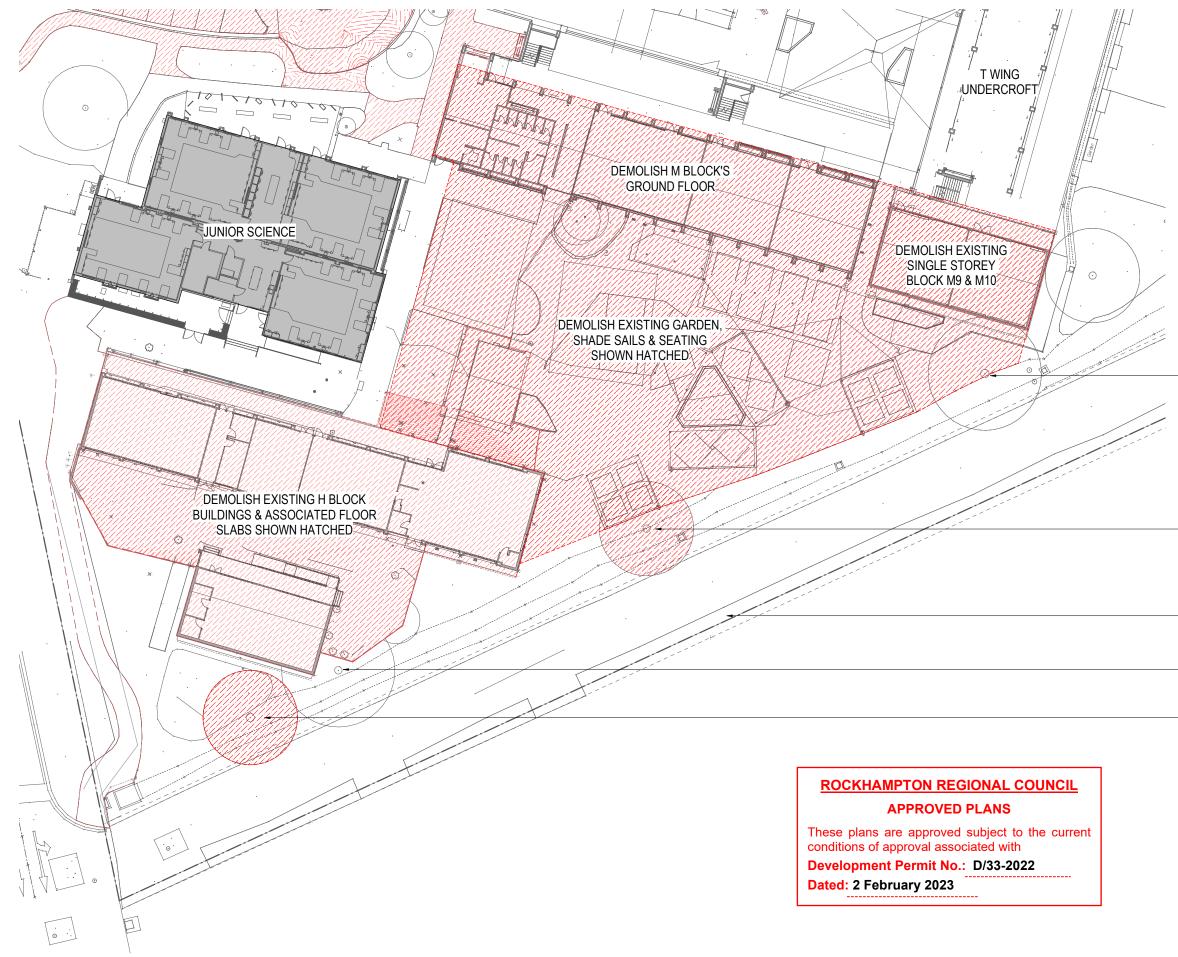

PROPOSED NEW ADMINISTRATION


drawing title: PROPOSED OVERALL SITE PLAN -UPPER

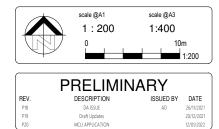
job no: 2203


drawing no MCU-04





ILA SUREDU	LE - GROUND	CONTRACTOR TO CONFIRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK. ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY
AL AREA		REQUIREMENTS. • THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH
	7.01251	SPECIFICATION AND ASSOCIATED NOTES.
	23 m ²	DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.
	11 m ²	FENCE TYPES
	10 m ²	FENCE TYPE 1 1200ht POOL FENCE
	3 m ²	120011 POOL FENCE
	11 m ² 6 m ²	
	38 m ²	
	27 m ² 9 m ²	
	22 m ²	
	30 m ²	
	38 m ² 3 m ²	
	11 m ²	
	2 m ²	
	11 m ²	
	24 m ²	
	16 m ²	
	7 m ²	
	5 m ² 12 m ²	
	12 m² 17 m²	
	20 m ²	
OFFICE	17 m ² 4 m ²	
	4 m ²	
	4 m ²	
	15 m ² 22 m ²	
	10 m ²	
	9 m ² 3 m ²	
	3 m ²	
	12 m ²	
	12 m ² 28 m ²	
	9 m ²	
	11 m ² 5 m ²	
	30 m ²	
JM	11 m ²	
	10 m ²	
EAM	25 m ²	
	11 m ² 50 m ²	
	15 m ²	scale @A1 scale @A3
NE TIES	22 m ²	1:100 1:200
IIES IS	13 m ²	0 5m 1:100
	3 m²	
·	760 m ²	PRELIMINARY
		REV. DESCRIPTION ISSUED BY DATE
		P17 PRELIMINARY 24/11/202 P18 DA ISSUE AD 25/11/202
		P19 MCU APPLICATION 12/01/202
and the Real		TONY MADDEI
		ARCHITECTS
L	_	(07) 4927 9700
	Vin	www.tmarchitects.com.au
$\gamma_{\mathcal{H}}$	A MARTINE	
	A COLOR	ROMAN CATHOLIC TRUST CORP.
- 🌜	NFT 3 m2	DIOCESE OF ROCKHAMPTON FOR
an ganta an tang sa sa		CATHOLIC EDUCATION - DIOCESE
ĥ		OF ROCKHAMPTON
þ		70-
		1
þ		location:
		YAAMBA RD CAMPUS, EMMAUS
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
	0000	YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON project: NEW ADMINISTRATION drawing title: PROPOSED GROUND FLOOR PLAN job no: drawing no:
		YAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON


GENERAL NOTES

- CONTRACTOR TO CONTRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS.
 THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES.
 DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.

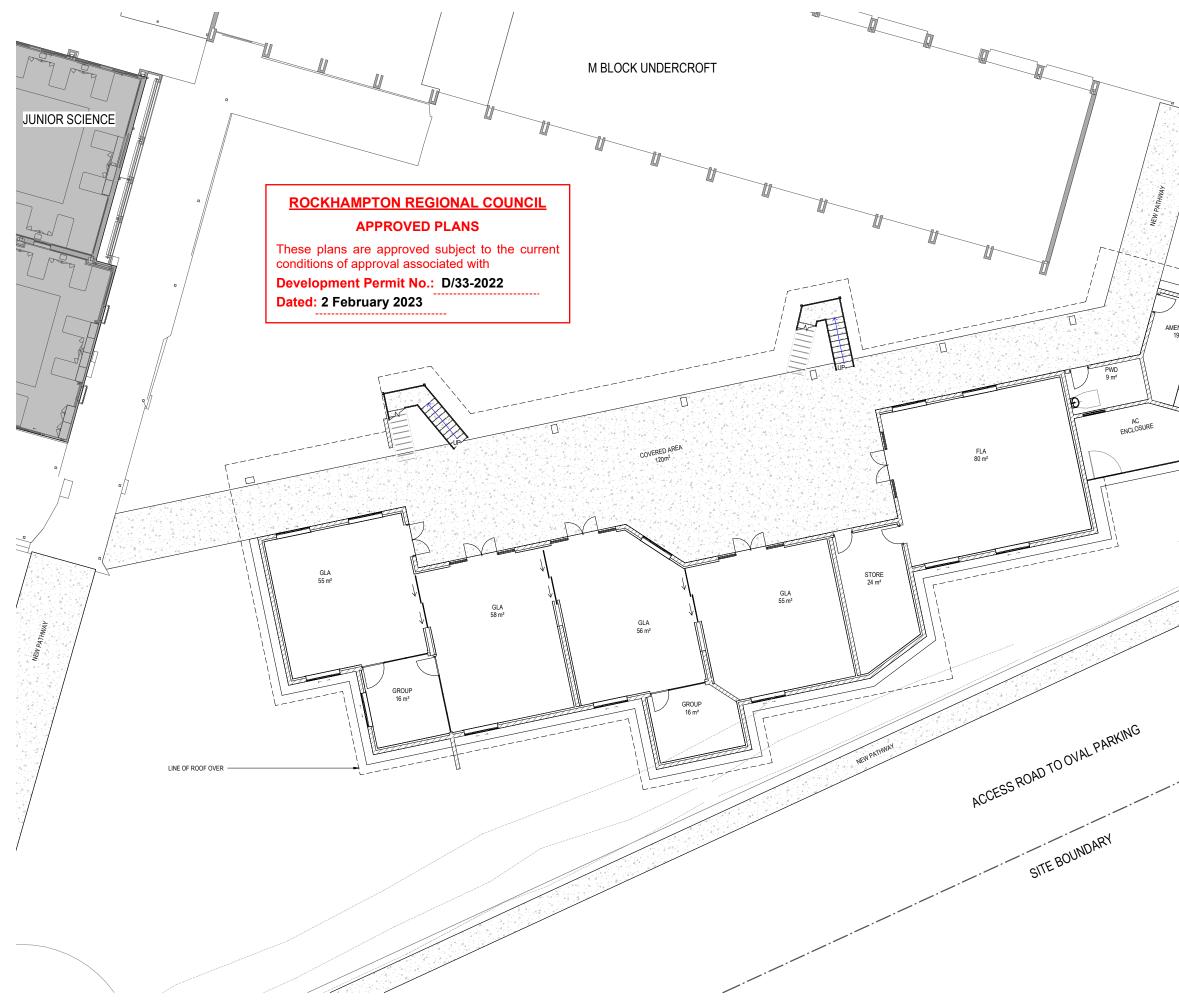
- EXISTING TREE TO REMAIN

DEMOLISH EXISTING TREE

- EXISTING HIGH LANDSCAPING BUFFER. SHRUBS TO REMAIN ALONG EXISTING FENCE BOUNDARY
- EXISTING TREE TO REMAIN
- DEMOLISH EXISTING TREE SHOWN HATCHED

Draft Update

ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

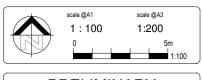

VAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON

NEW GLA BLOCK

drawing title: EXISTING PLAN

iob no:

drawing no 2203 MCU-20



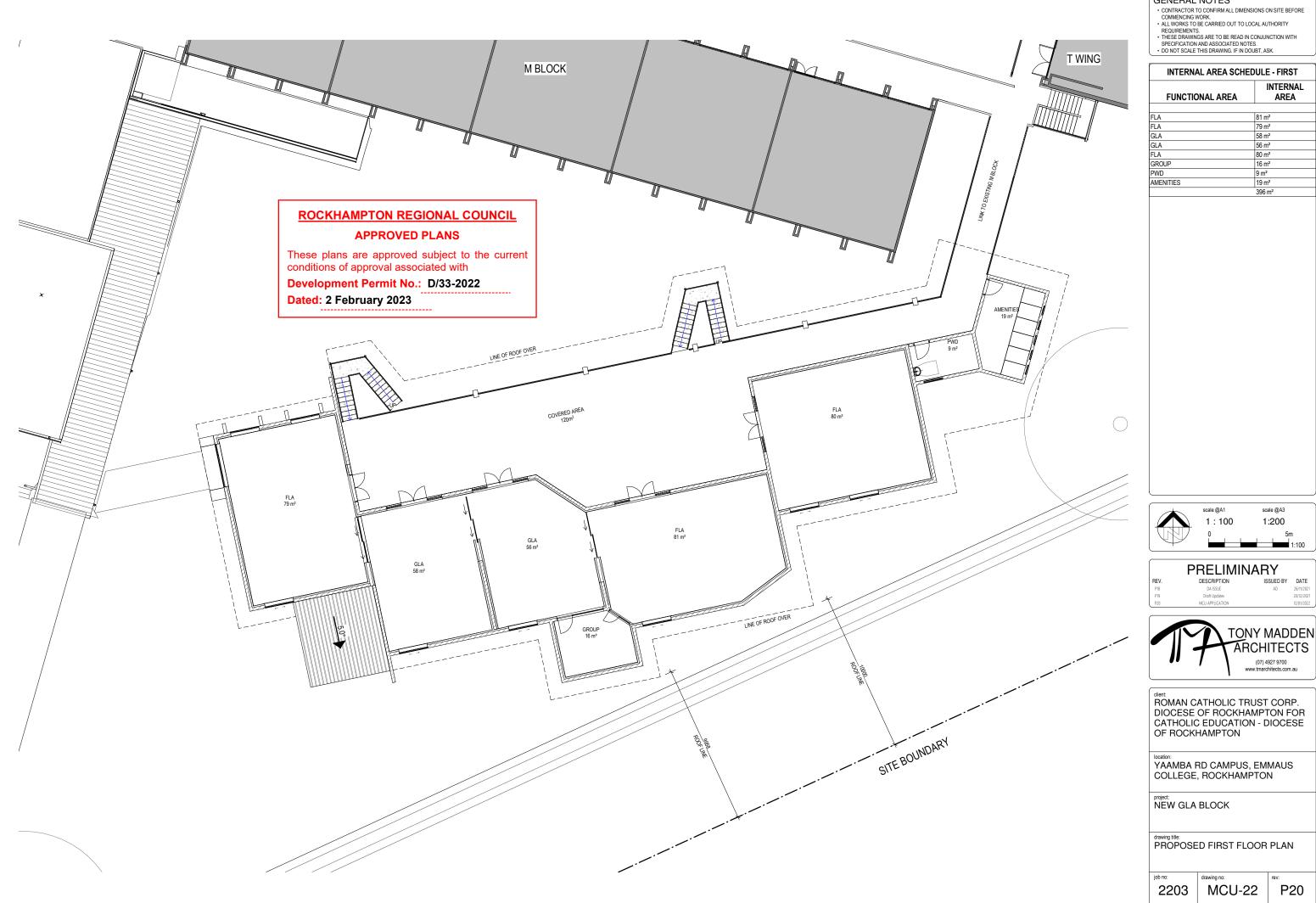
GENERAL NOTES

- OCHTRACHAEL NOTES
 OCHTRACTOR TO CONFERNALL DIMENSIONS ON SITE BEFORE
 COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY
 REQUIREMENTS.
 THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH
 SPECIFICATION AND ASSOCIATED NOTES.
 DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.

LINE OF ROOF OVER	
NITIES	
existing tree	

INTERNAL AREA SCHEDULE - GROUND		
FUNCTIONAL AREA	INTERNAL AREA	
GLA	55 m²	
GLA	55 m²	
GLA	58 m²	
GLA	56 m²	
STORE	24 m ²	
FLA	80 m ²	
GROUP	16 m ²	
GROUP	16 m ²	
PWD	9 m²	
AMENITIES	19 m ²	
	387 m ²	

Client ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

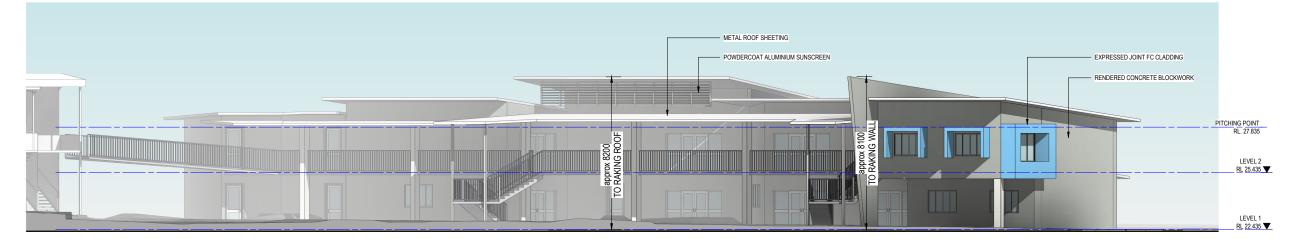

VAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON

Project: NEW GLA BLOCK

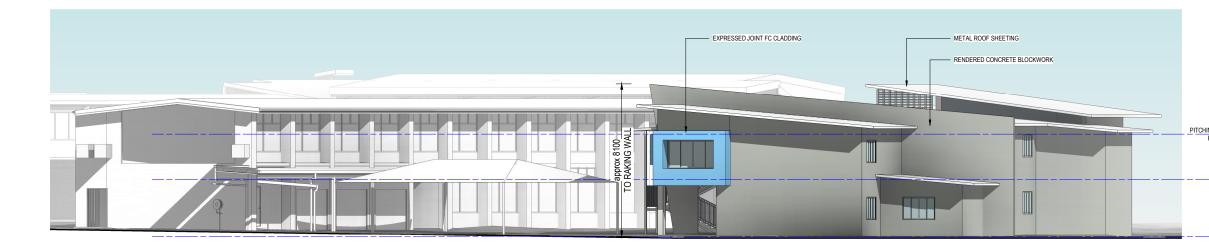
drawing title: PROPOSED GROUND FLOOR PLAN

job no:	drawir
2203	Ν

MCU-21

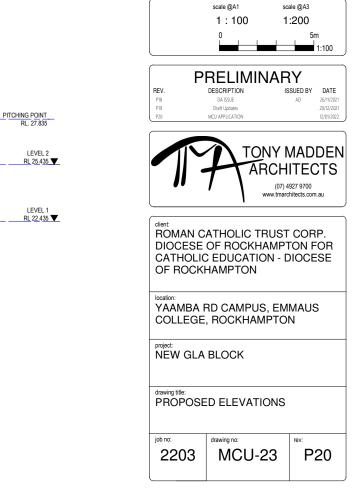


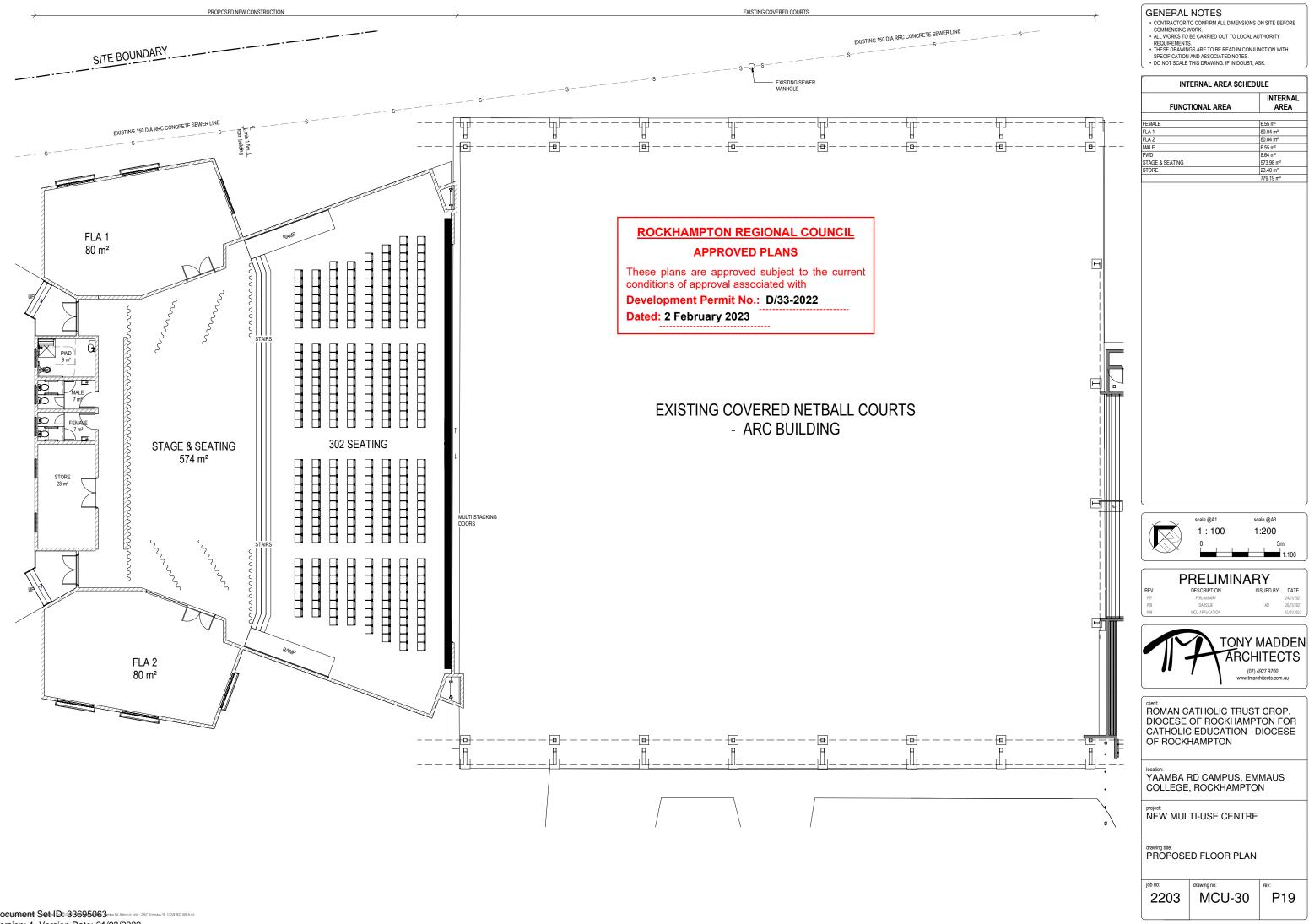
GENERAL NOTES

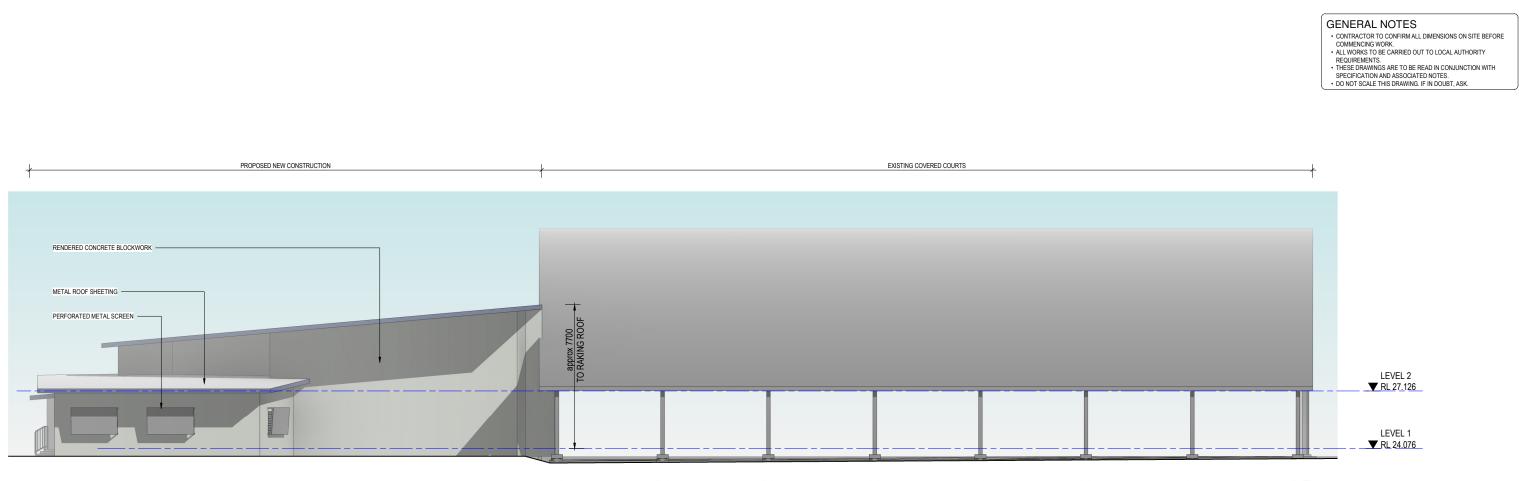

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

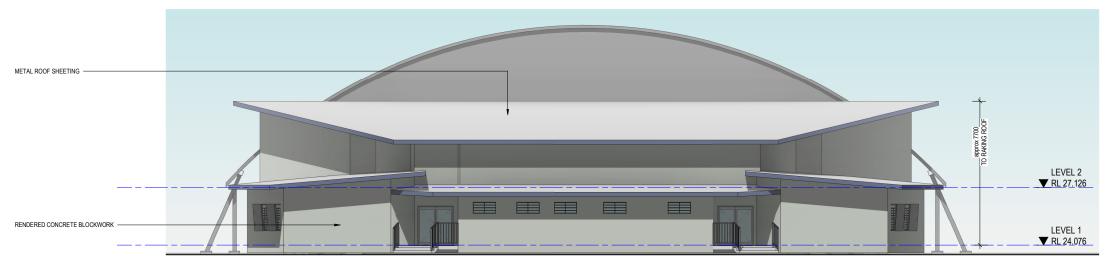
These plans are approved subject to the current conditions of approval associated with **Development Permit No.:** D/33-2022 Dated: 2 February 2023



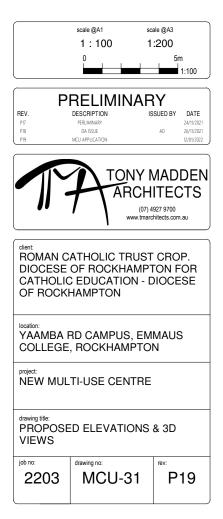




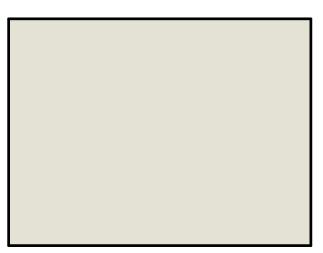
GENERAL NOTES


- OCHTRACTOR TO CONFIRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS.
 THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES.
 DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.

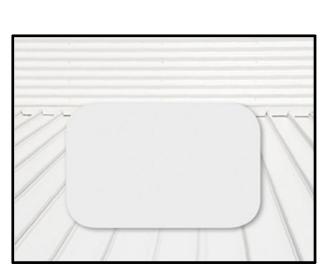
1 ELEVATION FROM INTERNAL PATH 1 : 100 @ A1

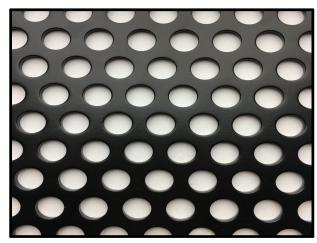


2 ELEVATION FROM YAAMBA RD 1 : 100 @ A1


ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS


These plans are approved subject to the current conditions of approval associated with **Development Permit No.:** D/33-2022 Dated: 2 February 2023



1 RENDER (COLOUR VARIES)

② METAL ROOF SHEETING

③ PERFORATED METAL

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/33-2022

Dated: 2 February 2023

GENERAL NOTES

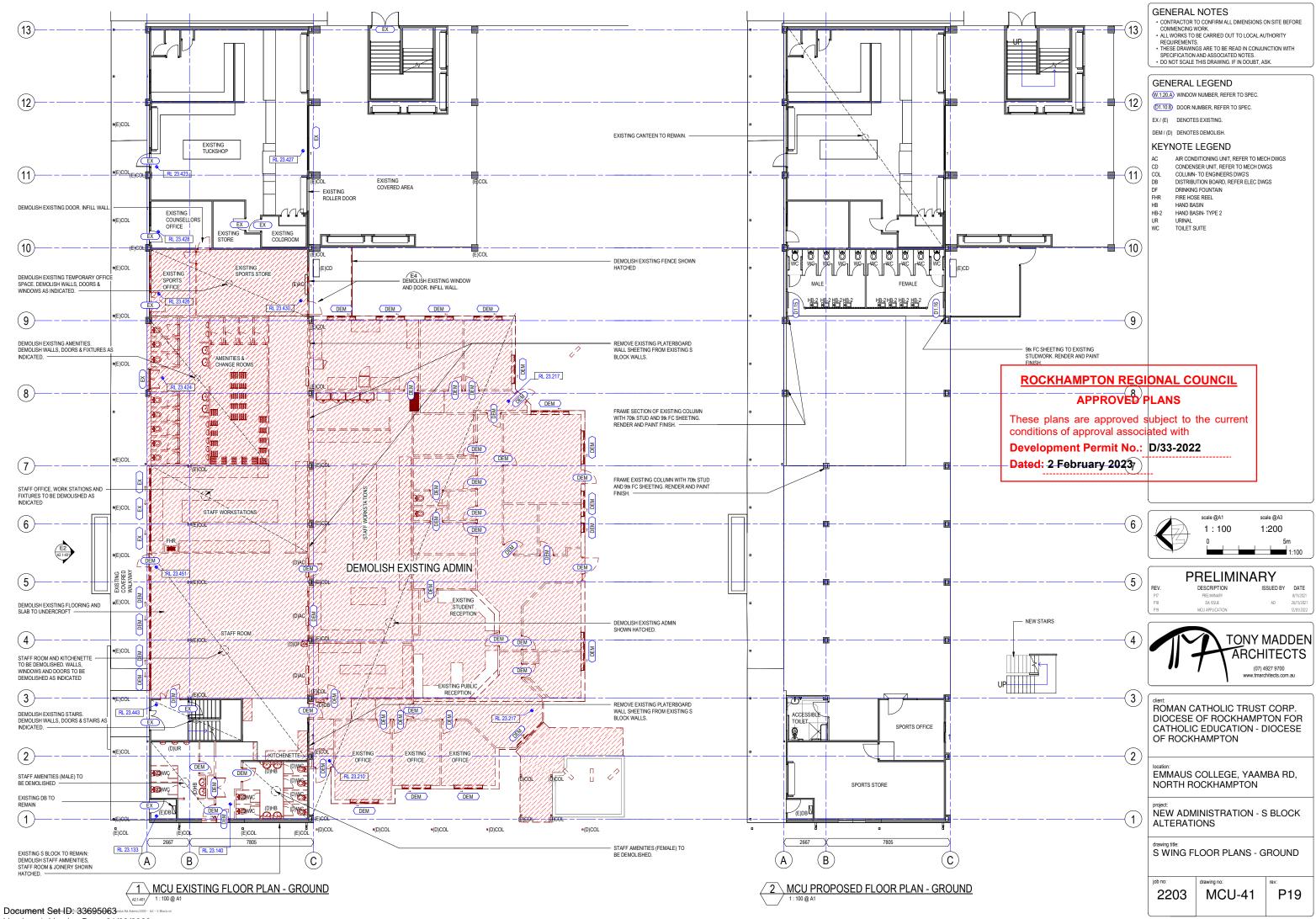
- OCHTRACTOR TO CONTRA ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS.
 THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES.
 DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.

scale @A1 scale @A3 PRELIMINARY

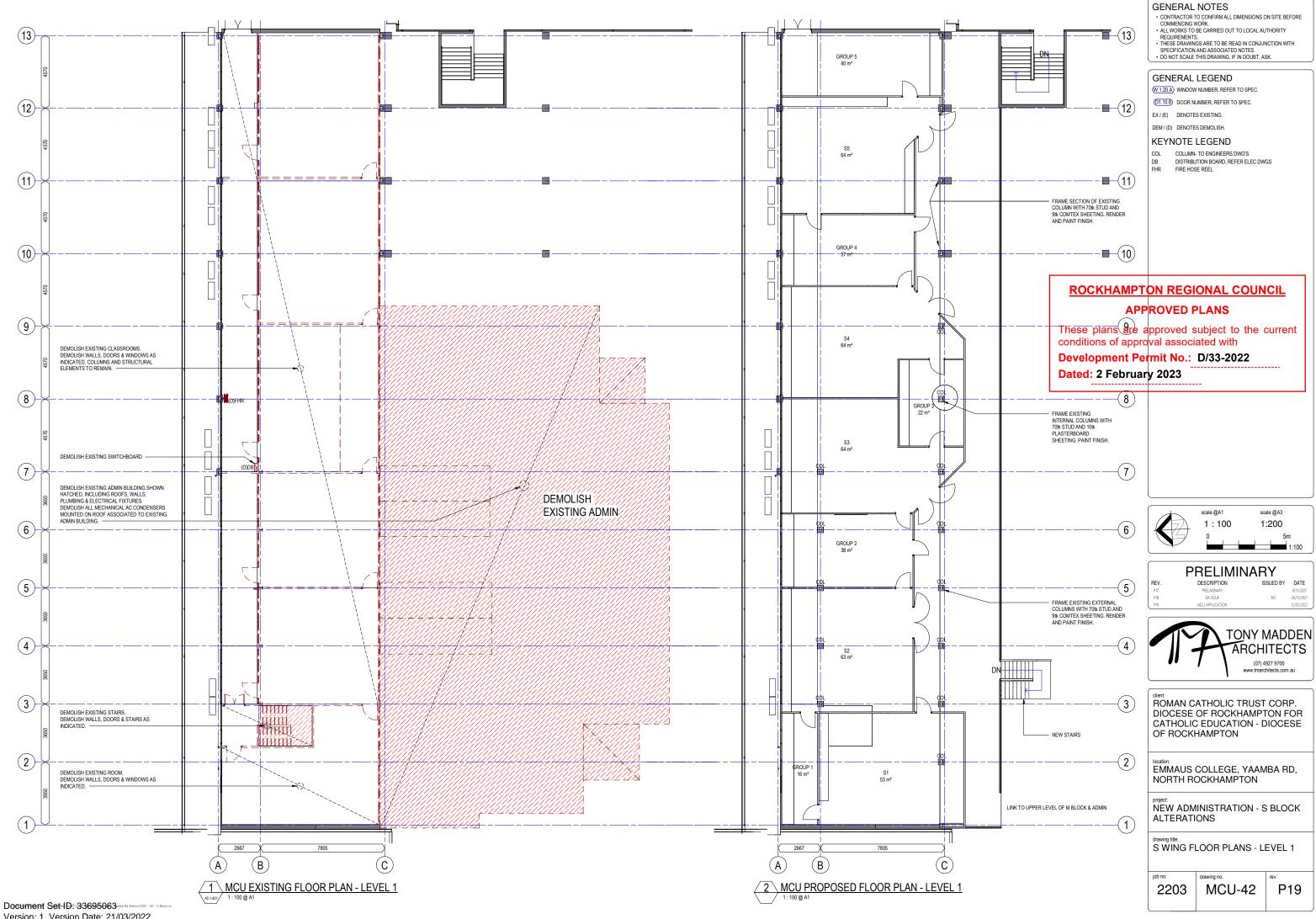
DESCRIPTION DA ISSUE MCU APPLICATION

ISSUED BY DATE AD 26/11/2021 26/11/2021 12/01/2022

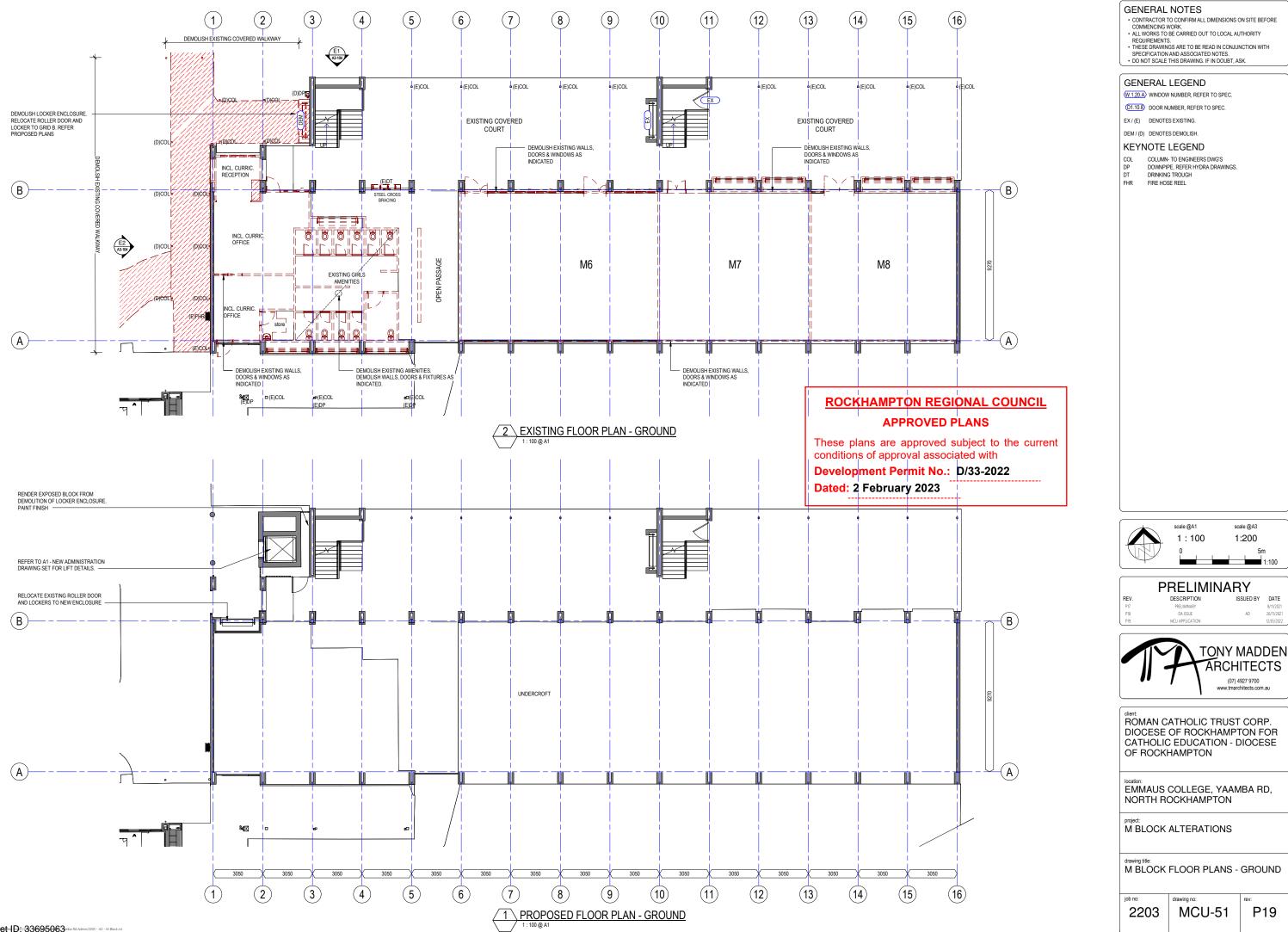
Clent: ROMAN CATHOLIC TRUST CROP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

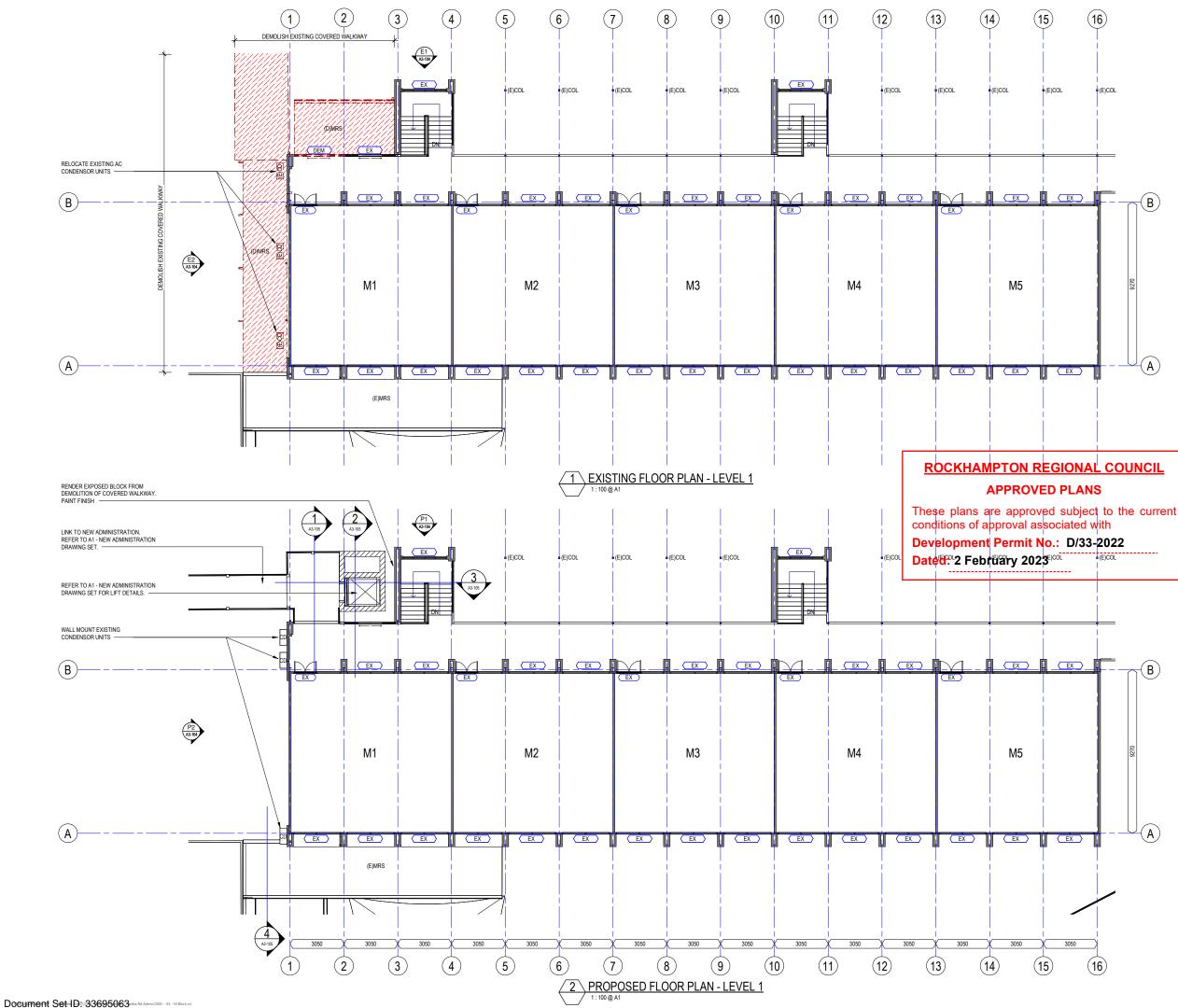

VAAMBA RD CAMPUS, EMMAUS COLLEGE, ROCKHAMPTON

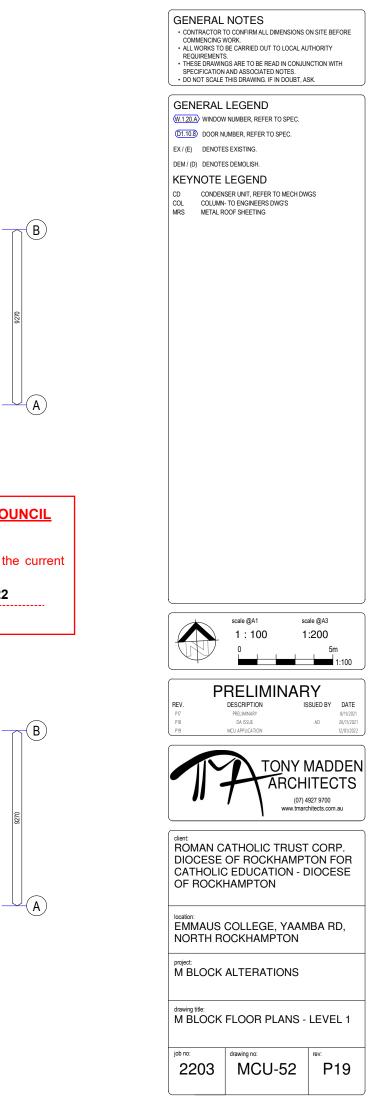
NEW MULTI-USE CENTRE

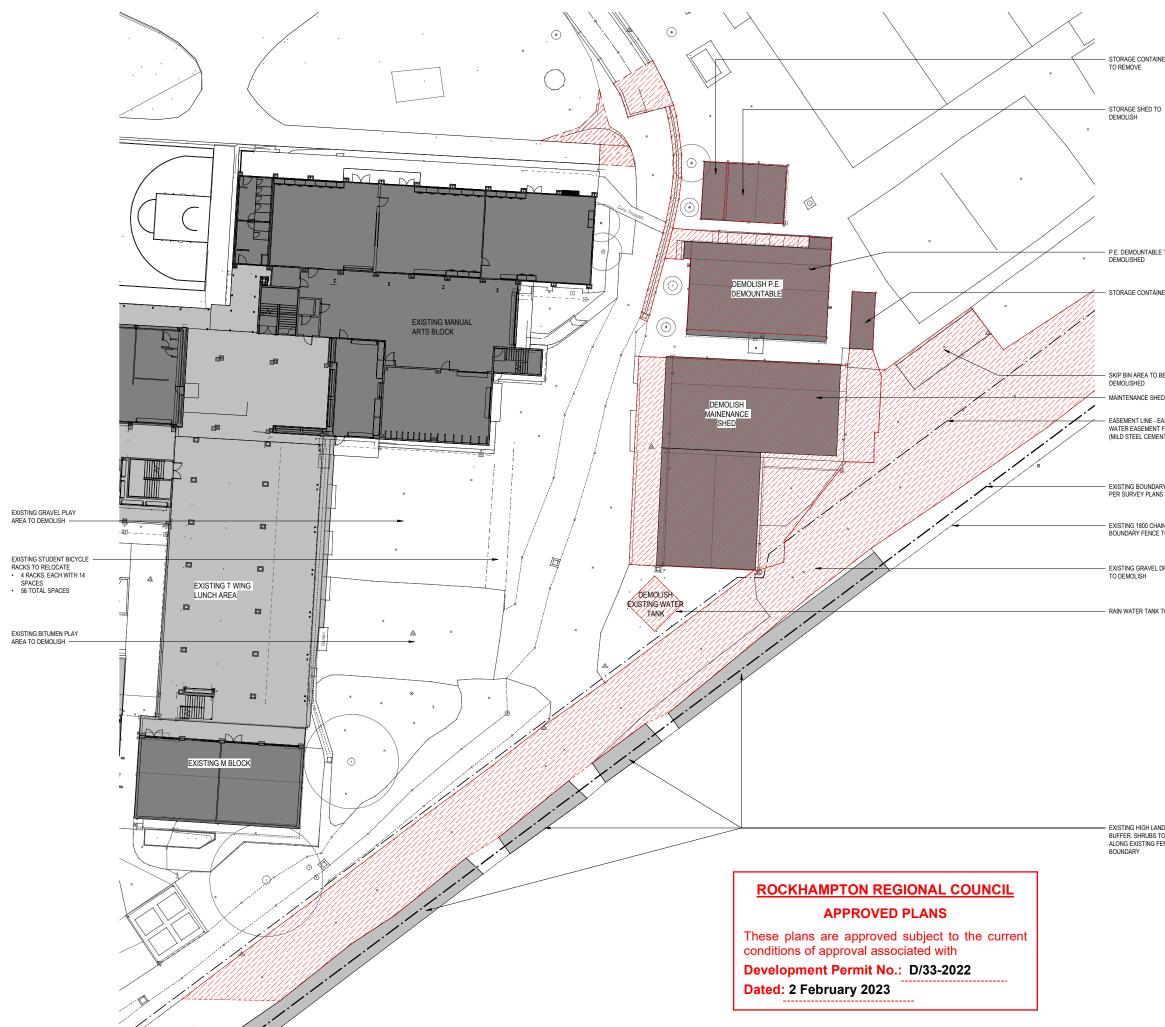

drawing title: 3D VIEW

job no:


drawing no: MCU-32 2203


Version: 1, Version Date: 21/03/2022


Version: 1, Version Date: 21/03/2022



Document Set ID://33695063 Version: 1, Version Date: 21/03/2022

Version: 1, Version Date: 21/03/2022

GENERAL NOTES CONTRACTOR TO CONFIRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS. THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES. • DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK. STORAGE CONTAINER TO REMOVE P.E. DEMOUNTABLE TO BE STORAGE CONTAINER TO REMOVE SKIP BIN AREA TO BE DEMOLISHED MAINTENANCE SHED TO BE DEMOLISHED - EASEMENT LINE - EASEMENT C SP209765 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED) WATER LINE UNDER - EXISTING BOUNDARY LINE AS PER SURVEY PLANS EXISTING 1800 CHAIN MESH BOUNDARY FENCE TO REMAIN EXISTING GRAVEL DRIVEWAY TO DEMOLISH scale @A3 scale @A1 - RAIN WATER TANK TO BE DEMOLISHED 1:200 1:400 10m 1:200 PRELIMINARY

REV

DESCRIPTION

STANTEC INTERNAL REVIEW

VCU APPLICATIO

ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR **CATHOLIC EDUCATION - DIOCESE** OF ROCKHAMPTON

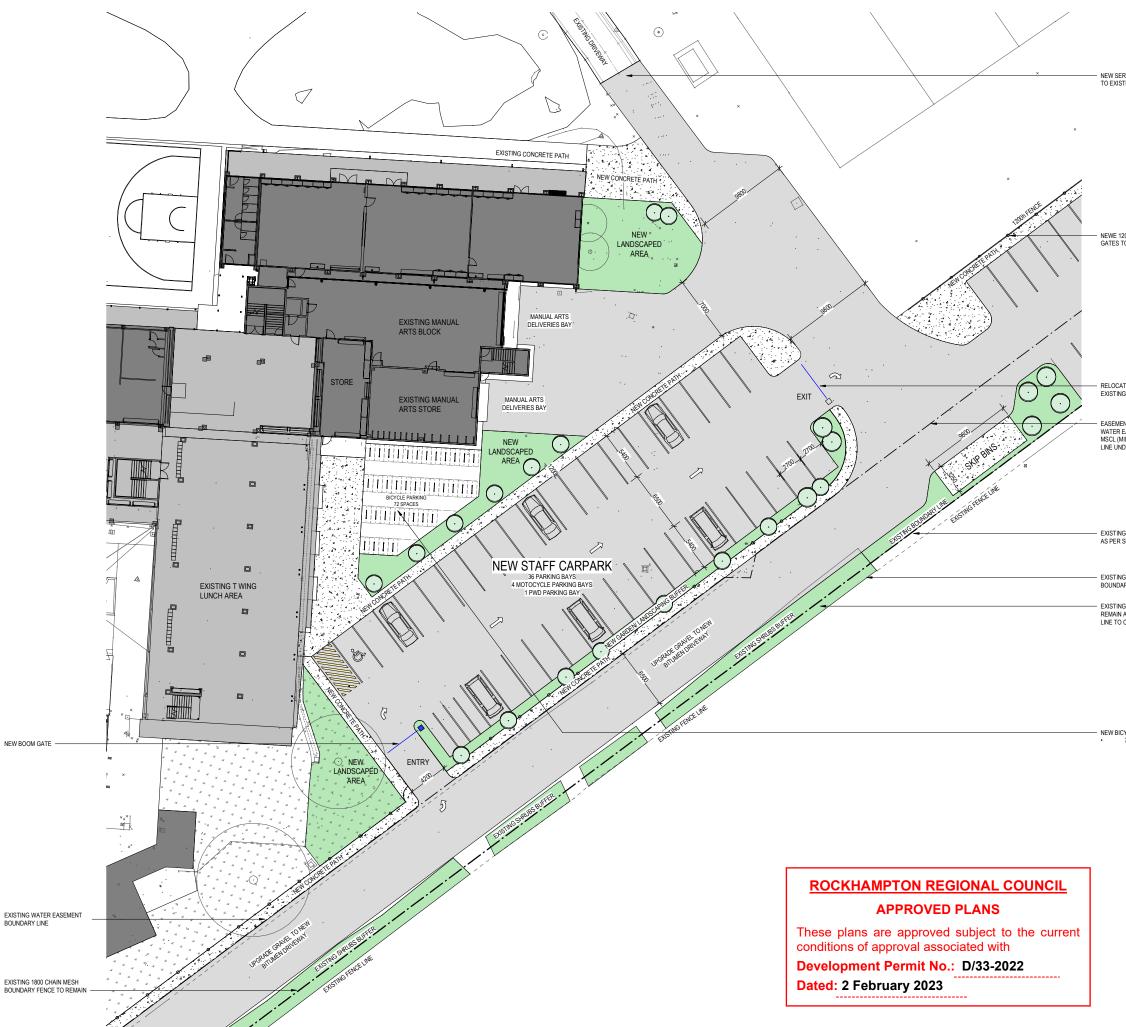
EMMAUS COLLEGE, YAAMBA RD NORTH ROCKHAMPTON

PROPOSED NEW ADMINISTRATION

drawing title: EXISTING PART SITE - STAFF CARPARK

ob no:	
2203	

drawing no: MCU-60


P21

ISSUED BY DATE

09/12/2021 20/12/2021

12/01/2022

EXISTING HIGH LANDSCAPING BUFFER. SHRUBS TO REMAIN ALONG EXISTING FENCE

GENERAL NOTES CONTRACTOR TO CONFIRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK.
 ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS. THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES. • DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK. NEW SERVICES DRIVEWAY LINKS TO EXISTING SERVICES DRIVEWAY NEWE 1200h STEEL FENCE & GATES TO OVAL RELOCATED & MODIFIED EXISTING BOOM GATE - EASEMENT LINE - EASEMENT C SP209765 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED) WATER LINE UNDER EXISTING SITE BOUNDARY LINE AS PER SURVEY PLANS EXISTING CHAIN MESH BOUNDARY FENCE TO REMAIN scale @A3 - EXISTING LANDSCAPING SHRUBS TO REMAIN AS BUFFER ALONG FENCE LINE TO CEMETERY scale @A1 1:200 1:400 10m 1:200 PRELIMINARY REV DESCRIPTION ISSUED BY DATE STANTEC INTERNAL REVIEW 09/12/2021 20/12/2021 12/01/2022 VCU APPLICATIO NEW BICYCLE PARKING
 72 SPACES TONY MADDEN ARCHITECTS (07) 4927 9700 www.tmarchitects.com.au ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON

> EMMAUS COLLEGE, YAAMBA RD NORTH ROCKHAMPTON

PROPOSED NEW ADMINISTRATION

drawing title: PROPOSED PART SITE - STAFF CARPARK

ob no:	
2203	

drawing no: MCU-61

EXISTING SPORTS FIELD

ROCKHAMPTON REGIONAL COUNCIL

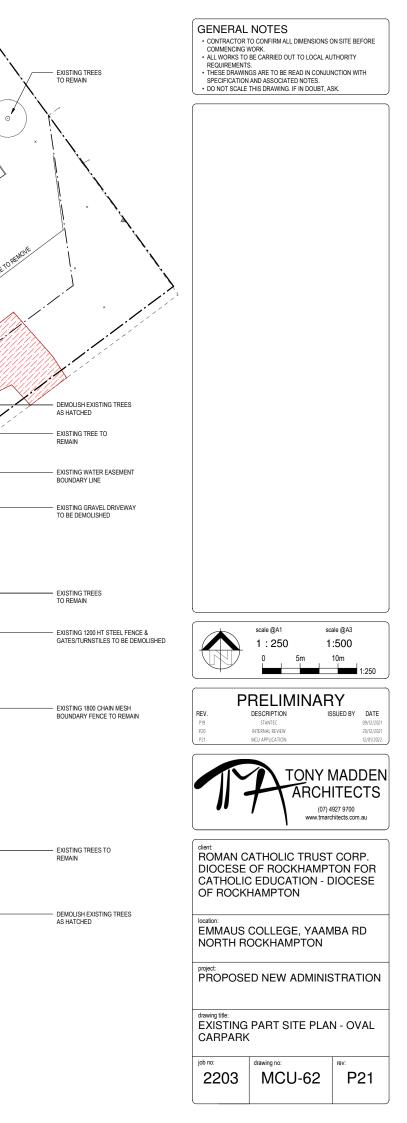
APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with **Development Permit No.:** D/33-2022 Dated: 2 February 2023

LONGJUMPPADS

0 -

MODIFY EXISTING SAND PIT TO SUIT PROPOSED AYOUT


EXISTING SPORTS FIELD

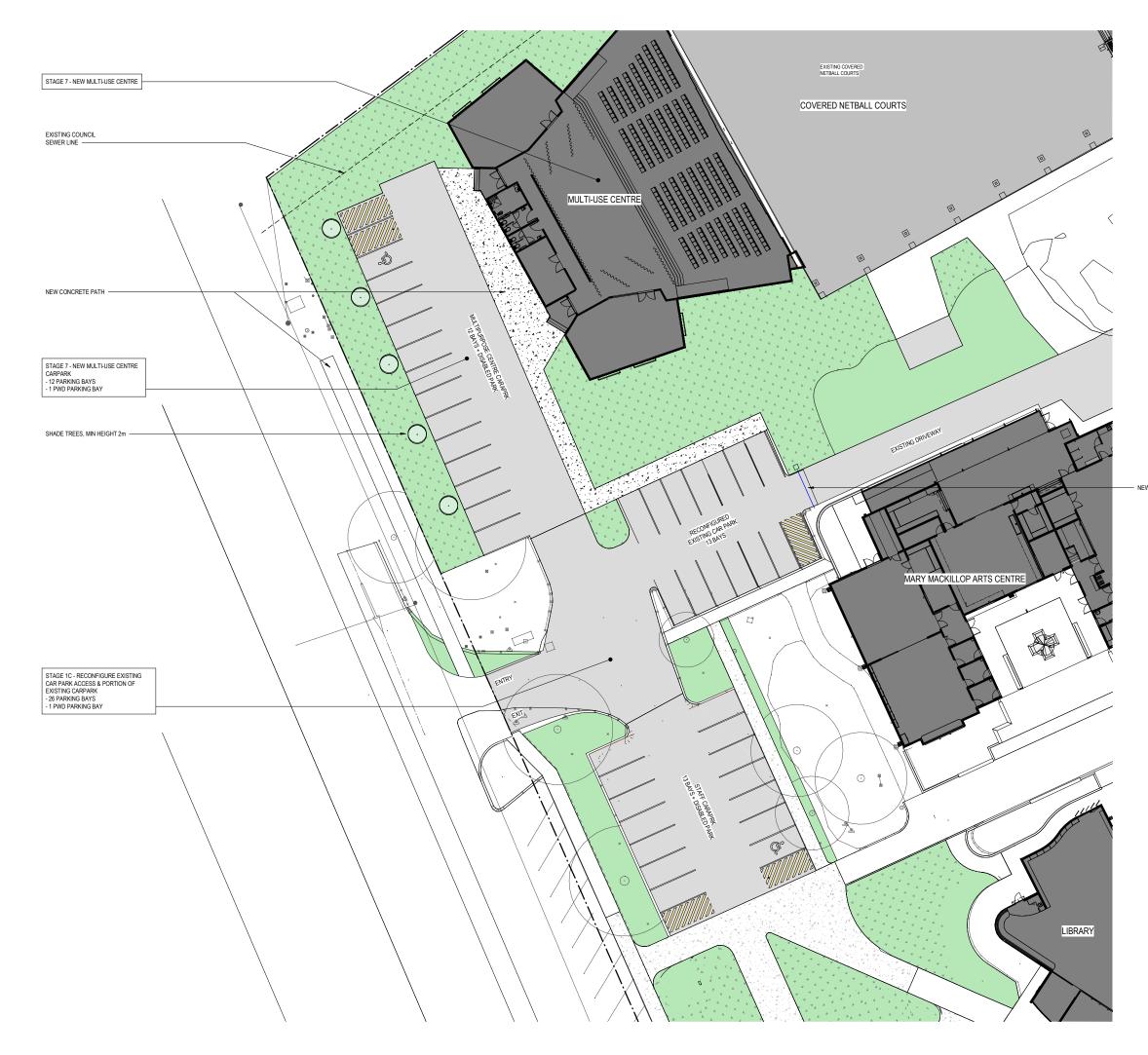
MODIFY EXISTING SAND PIT TO SUIT PROPOSED AYOUT

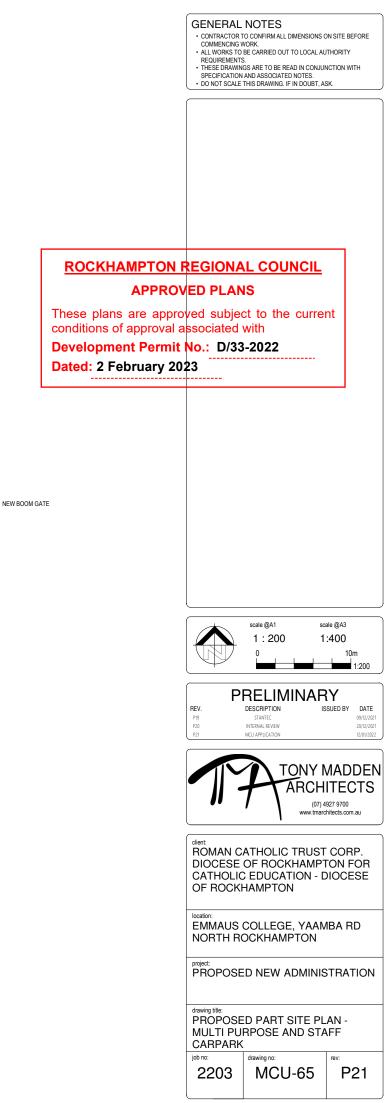
Document Set ID: 33695063 to a Admini223 - AC Version: 1, Version Date: 21/03/2022

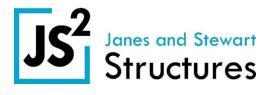
Col.

Ø

0-




Version: 1, Version Date: 21/03/2022


Document Set-ID://33695063=ta RI Admin/2023 - AD- STE RLAN Review Version: 1, Version Date: 21/03/2022

	GENERAL NOTES • CONTRACTOR TO CONFIRM ALL DIMENSIONS ON SITE BEFORE COMMENCING WORK. • ALL WORKS TO BE CARRIED OUT TO LOCAL AUTHORITY REQUIREMENTS. • THESE DRAWINGS ARE TO BE READ IN CONJUNCTION WITH SPECIFICATION AND ASSOCIATED NOTES. • DO NOT SCALE THIS DRAWING. IF IN DOUBT, ASK.
ROCKHAMPTON RE	
APPROVED	
These plans are approved conditions of approval asso	subject to the current ciated with
Dated: 2 February 2023	
	scale @A1 scale @A3 1 : 200 1:400 0 10m
	PRELIMINARY REV. DESCRIPTION ISSUED BY DATE P9 STANTEC 09/12/2021 P20 INTERNAL REVEW 20/12/2021 P21 MCU APPLICATION 12/01/2022
	TONY MADDEN ARCHITECTS (07) 4927 9700 www.tmarchitects.com.au
	Client: ROMAN CATHOLIC TRUST CORP. DIOCESE OF ROCKHAMPTON FOR CATHOLIC EDUCATION - DIOCESE OF ROCKHAMPTON
	Iocation: EMMAUS COLLEGE, YAAMBA RD NORTH ROCKHAMPTON
	drawing title: EXISTING PART SITE PLAN - MULTI PURPOSE AND STAFF CARPARK
	2203 MCU-64 P21

Stormwater Management Report

Yaamba Road Campus Redevelopment, Emmaus College

The Roman Catholic Trust Corporation Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton

Report 21195REP01

Janes and Stewart Structures Pty Ltd

ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

07 4922 1948 janes.and.stewart@jsstructures.com.au

ROCKHAMPTON REGIONAL COUNCIL APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/33-2022

Dated: 2 February 2023

Copyright and Intellectual Property associated with this report prepared by Janes and Stewart Structures Pty Ltd shall remain vested with Janes and Stewart Structures Pty Ltd.

The Client shall have a non-exclusive, royalty free license to use the contents and Intellectual Property of this report prepared by Janes and Stewart Structures Pty Ltd for purposes in conjunction with this project.

Copyright © Janes and Stewart Structures Pty Ltd 2022

Report 21195REP01

Re	vision	Date	Revision Description	Author	Checked	Approval for issue for and on behalf of Janes and Stewart Structures Pty Ltd
	1	04 March 2022	For Approval	MD	CJ	Matthew Dennis RPEQ 24862

Contents

Introduction	1
Stormwater Quantity	2
Existing System	2
Proposed System	7
Summary of Existing and Proposed Peak Flow Rates	9
Stormwater Management Plan	10
Stormwater Quality	10
Conclusion	11

Appendices

- A Existing Catchment Plan
- B Proposed Catchment Plan
- C Existing and Proposed Site Plan
- D Stormwater Management Plan
- E Stormwater Calculations

Introduction

Janes and Stewart Structures Pty Ltd has prepared this Stormwater Management Report in support of the Material Change of Use application for the redevelopment of the Yaamba Road campus of Emmaus College, located at 362 Yaamba Road, North Rockhampton. The Yaamba Road campus is situated on allotments with the real property descriptions Lot 1 on RP607187 & Lot 2 on RP607681. The redevelopment is intended to be completed over several stages and includes demolition of existing buildings to make way for new modernized facilities and improved infrastructure.

This report intends to address stormwater drainage relating to the redevelopment works including an assessment of stormwater quantity and quality measures.

An aerial photo extracted from Queensland Globe of the existing site is provided below:

Figure 1 Existing Site Aerial Photo (Extract: QLD Globe)

Ń

Stormwater Quantity

An analysis has been undertaken for the stormwater management of the development to ensure that no significant adverse impacts occur to adjacent and downstream properties and infrastructure from the proposed re-development of the Emmaus College Yaamba Road campus.

The Queensland Urban Drainage Manual 2017 (QUDM) has been utilised in order to determine the hydrology changes from the development through an analysis of the pre-development and post-development flow rates.

Existing System

The college site is part of a wider catchment discharging to Moores Creek. The catchment extends approximately 1.1kms north of the Emmaus College Yaamba Road campus to a crest in Yaamba Road adjacent the former Bunnings Warehouse site (Lot 25 on SP610513). Both a mixture of commercial and urban residential allotments are encompassed within this wider catchment including the college.

The runoff from the contributing catchment discharges to Moores Creek via a culvert crossing under Moores Creek Road. For the purposes of analyzing the stormwater strategy as part of this re-development, a point of analysis has been selected to be 60m south of the southern-most boundary of the college. This is prior to discharge to the Moores Creek Road culvert crossing and considered to be an appropriate location for analysis.

The catchment discharging to the point immediately downstream of site can be split into two distinct streams, with characteristics listed as follows:

- The main stream conveyed by half of the Yaamba Road corridor including service road adjacent to the college site.
- Existing stormwater pit and pipe infrastructure is located in several locations along Yaamba Road which divert a portion of the total main stream runoff away from the analyzed catchment.
- An existing stormwater pit and pipe system services the existing residential area to the north-east of the college and diverts runoff away from the college and discharges to Moores Creek.
- The Emmaus College Yaamba Road campus has been assigned as its own distinct catchment as a side stream contributing to the runoff discharging to Yaamba Road.

The college site currently has several pit and pipe stormwater drainage systems which connect to external infrastructure in the service lane of Yaamba Road including 2 x 1200mm diameter reinforced concrete pipes within the Yaamba Road service lane. It is intended that these connections will be maintained with northern, central and southern stormwater discharge locations currently in place along the college Yaamba Road boundary.

The following image highlights the key characteristics of the analysed catchment:

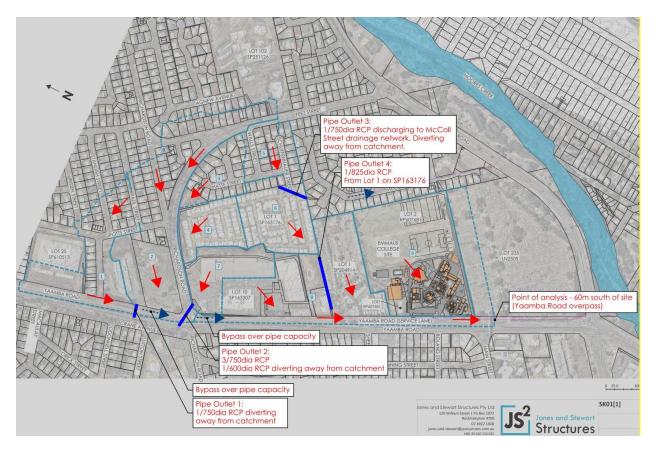


Figure 2 Existing Catchment Overview

Catchment Details

The existing catchment characteristics have been derived based on existing topography and the aerial imagery to define total and impervious areas. The existing Catchment plan included in Appendix A details the sub-catchment configuration which are combined to determine the total catchment contributing to the runoff at the point of analysis (60m south of the Emmaus College Yaamba Road campus).

The following table shows key characteristics of each catchment considered in the analysis:

Table 1 Existing Catchment Details

Catchment ID	Area (ha)	% Impervious	Discharge Location
1	5.710	70%	Yaamba Road (Pipe Outlet 1)
2	10.702	70%	Yaamba Road (Pipe Outlet 2)
3	2.477	70%	Richardson Road (Pipe Outlet 2)
4	2.606	70%	Richardson Road (Pipe Outlet 2)
5	1.744	70%	Pipe Outlet 3
6	4.789	70%	Pipe Outlet 4 (Yaamba Road)
7	3.161	70%	Yaamba Road (Pipe Outlet 2)
8	12.418	70%	Yaamba Road
9	9.250	28%	Yaamba Road
Total	52.857	62.6%	Yaamba Road
TOLAT	52.037	02.0%	(60m south of Emmaus College site)

As part of the study, the various pipe outlets which divert runoff away from the system have been considered. The bypassing flow exceeding the pipe outlet capacity has been added to the total runoff at the point of analysis. Therefore, the following flows will contribute to the point of analysis:

Table 2 Contributing Stream Catchments

Description	Stream
Pipe Outlet 1 Bypass	
Pipe Outlet 2 Bypass	Main
Pipe Outlet 3 Bypass	Stream
Catchment 6	Stream
Catchment 8	
Catchment 9	Side
Catchinent 9	Stream

Critical Time of Concentration

The critical time of concentration has been determined for each discharge location. This has been calculated by defining the longest flow path for a particular catchment and assigning this critical time to each of the contributing catchments at the point of analysis location. For the main stream, it was determined that Catchment 1 will have the longest travel time to the point of analysis.

Time of concentration has been calculated using a combination of the following methods where applicable in the accordance with the Queensland Urban Drainage Manual (QUDM) 2017:

- Friend's Equation for Overland Flow (QUDM 2017, Section 4.6.6)
- Kerb and Channel Travel Flow (QUDM 2017, Section 4.6.8)

The following table shows the critical time of concentration for each discharge location:

Table 3 Existing Critical Time of Concentration

	Critical Time of			
Discharge Location	Overland Sheet Kerb and Flow Channel Flow		Concentration (t _c) – mins	
Catchment 1 (Main Stream)	5.0	46	51	
Emmaus College Site – Catchment 9 (Side Stream)	21.0	9.0	30	

Therefore, these critical time of concentration values above will be assigned to the main stream catchments and side stream catchments respectively discharging to the point of analysis.

Design Rainfall Data

The adopted design rainfall intensities were sourced from the Bureau of Meteorology Design Rainfall Data System (2016) for the site location in North Rockhampton, Queensland. From this data, the 1 hour duration, 10 year design storm for North Rockhampton was determined. The rainfall intensities for a 63% Average Exceedance Probability (AEP) up to and including the 1% AEP were obtained for the critical time of concentrations previously determined.

The coefficient of discharge (C_{10}) for a 10% AEP design storm was assigned for each catchment using values from Table 4.5.3 of QUDM 2017 with use of the fraction impervious values and aforementioned rainfall intensity.

Using the C_{10} coefficient of discharge determined, the coefficient of discharge for the other various AEP's were calculated using the frequency factors (F_y) for each AEP from Table 4.5.2 of QUDM 2017.

The following tables shows the adopted rainfall intensities:

Table 4 Adopted Rainfall Intensities

Time of	Rainfall Intensity (I) – mm/hr						
Concentration (t _c) – mins	63%	39%	18%	10%	5%	2%	1%
30	57.8	64.4	85.6	101	116	137	154
51	41.6	46.3	61.9	73	84.1	99.5	112
60				65.7			

Peak Flow Calculations

The peak flow for each catchment based on the respective critical time of concentration has been calculated using the Rational Method as per QUDM 2017 section 4.3.

To determine the peak flow at the point of analysis 60m south of the Emmaus College Yaamba Road campus, the coincidental peak flows from the main stream and the side stream have been analysed as per the Carroll method (1990) provided under section 8.3.4 of QUDM 2017. The peak flows have been considered under two cases:

- i. Flow conditions at the peak side stream (Catchment 9 Emmaus College).
- ii. Flow conditions at the time of peak flow passing down the main stream (Yaamba Road).

The peak flow for the main stream (Q_m) and side stream (Q_s) have been calculated as well as the combined flow $(Q_{combined})$ for each of the above cases.

Bypass exiting the system has also been considered based on the overland flow capacity checks performed.

As stated in Table D05.04.1 of the Capricorn Municipal Development Guidelines (CMDG) for Stormwater Drainage Design, the design AEP for low density urban residential use is a 39% AEP for the minor system and a 1% AEP for the major system.

Based on the above considerations the following table shows the peak flows at the point of analysis for each case of the existing system. Detailed stormwater calculations are included in Appendix D of this report.

	Peak Flows (m³/s)					
Average Exceedance Probability (AEP)	Case i			Case ii		
	Q _m	Qs	Q _{combined}	Qm	Qs	Qcombined
63%	1.076	0.864	1.940	1.320	0.622	1.942
39% (Minor)	1.274	1.023	2.296	1.561	0.735	2.296
18%	1.892	1.519	3.412	2.333	1.098	3.431
10%	2.350	1.887	4.237	2.912	1.364	4.275
5%	2.835	2.275	5.110	4.187	1.650	5.837
2%	4.530	2.943	7.473	6.621	2.137	8.758
1% (Major)	6.040	3.452	9.492	8.549	2.511	11.060

Table 5 Existing Peak Flows at Point of Analysis (60m south of Emmaus College)

As can be seen in the above table, case ii presents the greater peak flows for all design storms AEP's at the point of analysis. Therefore, at the time of the peak flows passing down Yaamba Road (main stream).

Proposed System

The drainage strategy for the proposed development will not alter significantly from the existing scenario with site discharge locations maintained. Additional drainage measures to control and convey runoff are intended to be incorporated into the design to improve conveyance of on-site drainage on the college campus.

The re-development includes the demolition of existing buildings and hardstands to make way for new buildings and infrastructure including car parking facilities and internal access roads. The details of the proposed works are illustrated in detail on the architectural documents prepared by Tony Madden Architects included as part of the Material Change of Use planning application.

Catchment Details

Adjustments to the finished surface levels and new impervious paved areas are proposed with the redevelopment. A comparison of the existing and proposed impervious areas has determined that the total impervious area does not change significantly as a result of the re-development. The discharge locations are intended to remain the same as part of the re-development and the college catchment will also remain the same. The following table includes the catchment characteristics analysed in the proposed system scenario with fraction impervious values assigned based on the re-development layout. A proposed catchment plan is provided in Appendix B:

Catchment ID	Area (ha)	% Impervious	Discharge Location
1	5.710	70%	Yaamba Road (Pipe Outlet 1)
2	10.702	70%	Yaamba Road (Pipe Outlet 2)
3	2.477	70%	Richardson Road (Pipe Outlet 2)
4	2.606	70%	Richardson Road (Pipe Outlet 2)
5	1.744	70%	Pipe Outlet 3
6	4.789	70%	Pipe Outlet 4 (Yaamba Road)
7	3.161	70%	Yaamba Road (Pipe Outlet 2)
8	12.418	70%	Yaamba Road
9	9.250	30%	Yaamba Road
Total	52.857	62.9%	Yaamba Road (60m south of Emmaus College site)

Table 6 Proposed Catchment Details

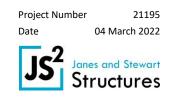
Critical Time of Concentration

The critical time of concentration for each discharge location was adopted to be the same as the existing case for the proposed system scenario, as the nature of the upper portion of the contributing catchment to the point of analysis has not changed. Therefore, the critical time of concentration values remain as stated in Table 3 of this report.

Design Rainfall Data

The design rainfall data for the proposed system scenario will remain the same as the existing system in order to adequately compare existing (pre-development) against the proposed (post-development) situation. Refer to the Design Rainfall Data section of the Existing System section for more details.

Peak Flow Calculations


The following table shows the peak flows at the point of analysis for each case of the proposed system, adopting the same principles calculated for the existing system.

Detailed stormwater calculations are included in Appendix D of this report.

			Peak Flov	ws (m³/s)	
Average Exceedance		Case	i		Case i	ii
Probability (AEP)	Qm	Qs	Qcombined	Qm	Qs	Qcombined
63%	1.076	0.870	1.946	1.320	0.626	1.946
39% (Minor)	1.274	1.030	2.303	1.561	0.740	2.301
18%	1.892	1.529	3.422	2.333	1.106	3.439
10%	2.350	1.900	4.250	2.912	1.373	4.285
5%	2.835	2.291	5.125	4.187	1.661	5.848
2%	4.530	2.963	7.494	6.621	2.152	8.773
1% (Major)	6.040	3.476	9.516	8.549	2.528	11.077

 Table 7 Proposed Peak Flows at Point of Analysis (60m south of Emmaus College)

As can be seen in the above table, similar the existing system case ii presents the greater peak flows for all design storms AEP's at the point of analysis. Therefore, at the time of the peak flows passing down Yaamba Road (main stream).

Summary of Existing and Proposed Peak Flow Rates

The peak flow rates determined for the existing system and proposed system at the point of analysis have been summarized in the following table to form a comparison.

Average Exceedance	Peak Flor	ws (m³/s)	Difference (%)
Probability (AEP)	Existing	Proposed	Difference (%)
63%	1.942	1.946	0.22
39% (Minor)	2.296	2.301	0.22
18%	3.431	3.439	0.22
10%	4.275	4.285	0.22
5%	5.837	5.848	0.19
2%	8.758	8.773	0.17
1% (Major)	11.060	11.077	0.16

 Table 8 Existing and Proposed Peak Flows Rates at Point of Analysis (60m south of Emmaus College)

As can be seen in the above table, peak flows at the point of analysis being 60m south of the Emmaus College Yaamba Road site have not altered significantly as a result of the re-development of the college campus included in this development application. The impervious area on the site has increased by 2% from the existing impervious area resulting in an insignificant change in peak flow rates for the analysed design storms. In a 1% AEP, the peak flow changes by 0.16% or 0.017m³/s which can be catered for by the existing infrastructure in Yaamba Road including the 2 x 1200mm diameter reinforced concrete stormwater pipes and overland surface flow capacity.

Therefore based on this analysis, no stormwater quantity mitigation measures will be required to accommodate the development works as the peak flows from the site do not coincide with the peak flows from the total contributing catchment at the outlet to Yaamba Road, analysed 60m south of the Emmaus College site.

Stormwater Management Plan

As discussed in the Proposed System section, the overall drainage strategy for the Emmaus College redevelopment will be similar to the existing scenario with site discharge locations maintained. The proposed works will include upgrading selected on-site stormwater management systems to suit the re-developed layout and generally improve drainage.

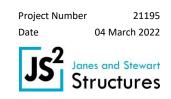
As part of the proposal, new internal stormwater pit and pipe networks will be incorporated into the design. This includes a new pit and pipe network at the southern end of the college which is intended to convey the majority of the runoff from the college grassed fields and new car park and access road works along the southern boundary, to connect to existing pipe infrastructure in the Yaamba Road service lane. The inclusion of this new stormwater will further increase the underground drainage capacity for the college.

A site based stormwater management plan showing a preliminary pit and pipe drainage layout is included in Appendix D. This layout is subject to further detailed analysis and could be subject to change as the project advances in design.

Stormwater Quality

The stormwater quality assessment for the development has been based on the requirements listed in the State Planning Policy – July 2017 under the Water Quality section.

Further to the review provided in the town planning report, the proposed re-development of the Yaamba Road Emmaus College campus does not significantly alter the impervious area from the existing site arrangement as outlined in the Stormwater Quantity section of this report. It is anticipated that the change in the quality of stormwater discharging from the site will be insignificant with the increase in impervious area from the re-development being approximately 2%. Therefore, it is proposed that no specific stormwater quality treatment devices are required with the re-development based on the minimal change to the impervious area on the site and considering the triggers of the State Planning Policy.


Conclusion

There appears to be no insurmountable difficulties in relation to the stormwater management proposal for the re-development of the Emmaus College Yaamba Road campus located at 362 Yaamba Road, North Rockhampton.

Stormwater Quantity and Quality for the development has been assessed with the following conclusions determined:

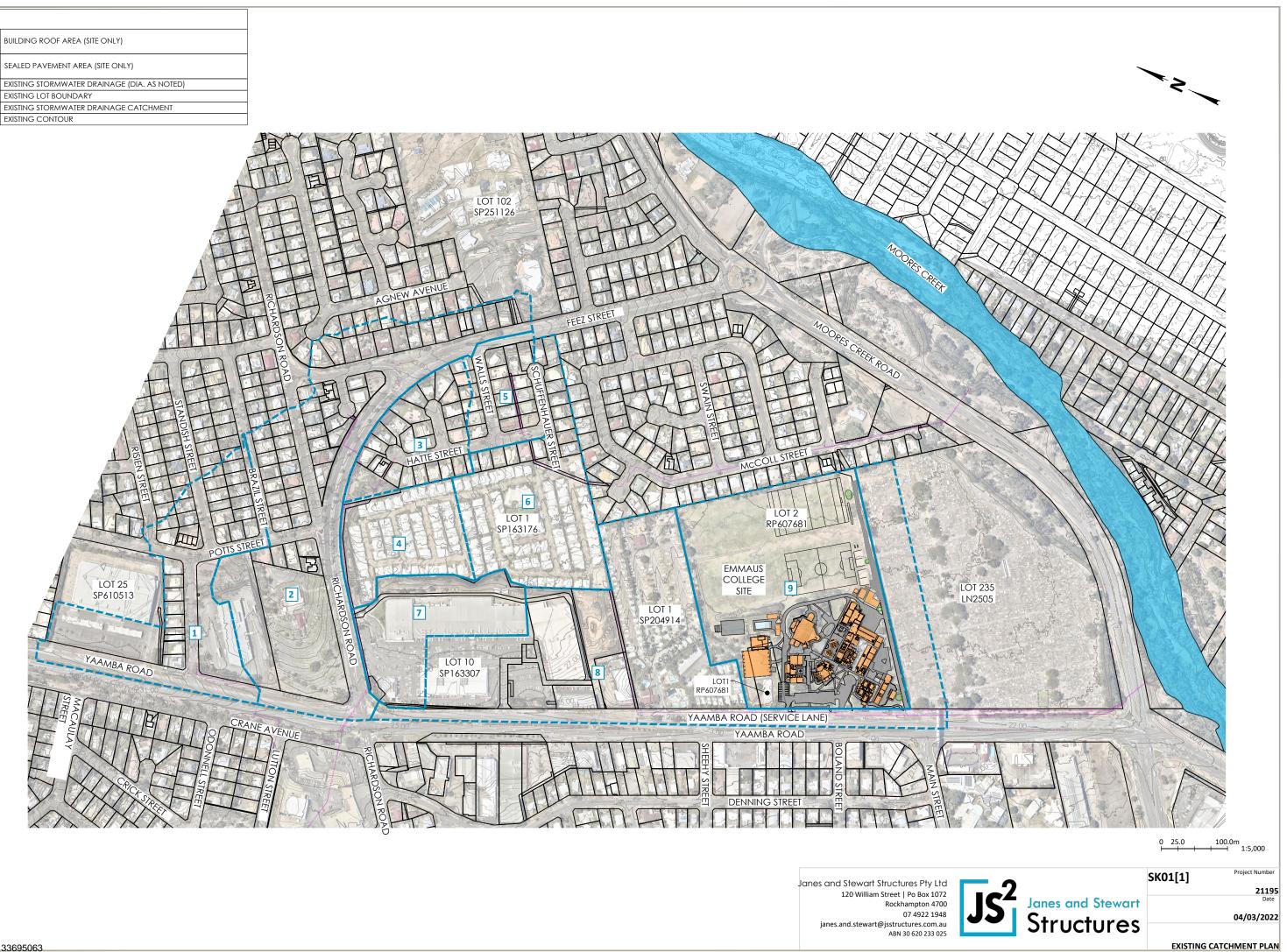
- A comparison between the existing and proposed peak flow rates was undertaken immediately downstream of the Emmaus College Yaamba Road college site. The peak flows do not change significantly at this location in all modelled design storms as a result of the development and therefore no drainage mitigation measures are required.
- The stormwater for the site will be managed through the use of upgraded internal pit and pipe drainage systems and overland flow capacity via car parks and access road hardstands. These upgrades will further improve the underground drainage capacity for the college.
- Stormwater quality has been reviewed and given the minimal change in impervious area on the site based on the re-development, no specific treatment measures are required with the development.

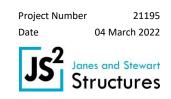
If you should have any questions regarding this report, please do not hesitate to contact the office of Janes and Stewart Structures Pty Ltd (07) 4922 1948.

Appendix A

Existing Catchment Plan

Yaamba Road Campus Redevelopment, Emmaus College The RCTC Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton


Report 21195REP01


Janes and Stewart Structures Pty Ltd

ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

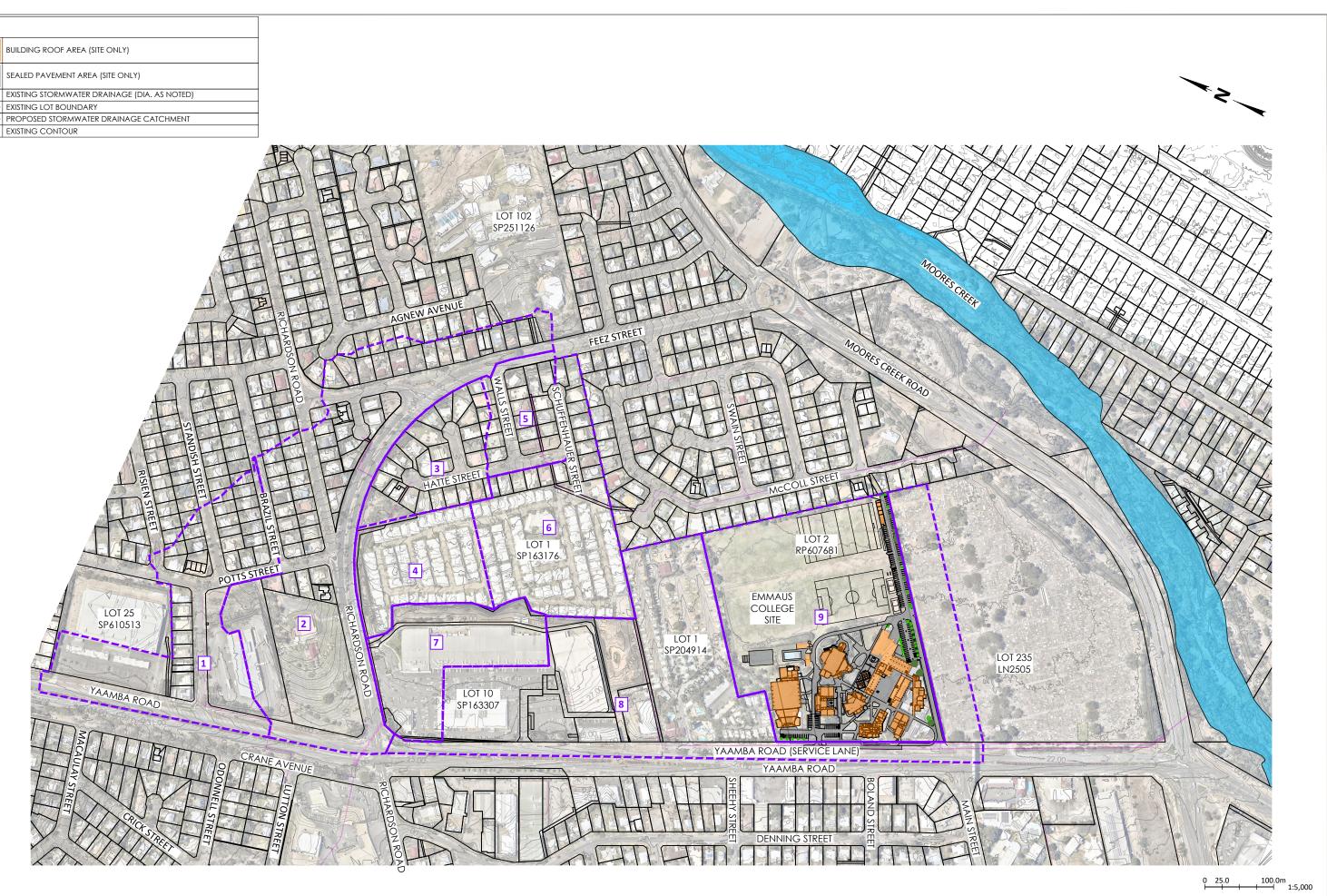
07 4922 1948 janes.and.stewart@jsstructures.com.au

LEGEND	
	BUILDING ROOF AREA (SITE ONLY)
	SEALED PAVEMENT AREA (SITE ONLY)
	EXISTING STORMWATER DRAINAGE (DIA. AS NOTED)
	EXISTING LOT BOUNDARY
	EXISTING STORMWATER DRAINAGE CATCHMENT
10.00	EXISTING CONTOUR

Appendix B

Proposed Catchment Plan

Yaamba Road Campus Redevelopment, Emmaus College The RCTC Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton


Report 21195REP01

Janes and Stewart Structures Pty Ltd

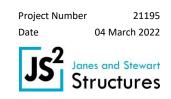
ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

07 4922 1948 janes.and.stewart@jsstructures.com.au

LEGEND	
	BUILDING ROOF AREA (SITE ONLY)
	SEALED PAVEMENT AREA (SITE ONLY)
	EXISTING STORMWATER DRAINAGE (DIA. AS NOTED)
	EXISTING LOT BOUNDARY
	PROPOSED STORMWATER DRAINAGE CATCHMENT
	EXISTING CONTOUR

Janes and Stewart Structures Pty Ltd 120 William Street | Po Box 1072 Rockhampton 4700 07 4922 1948 janes.and.stewart@jsstructures.com.au ABN 30 620 233 025

JS²


04/03/2022

Project Number

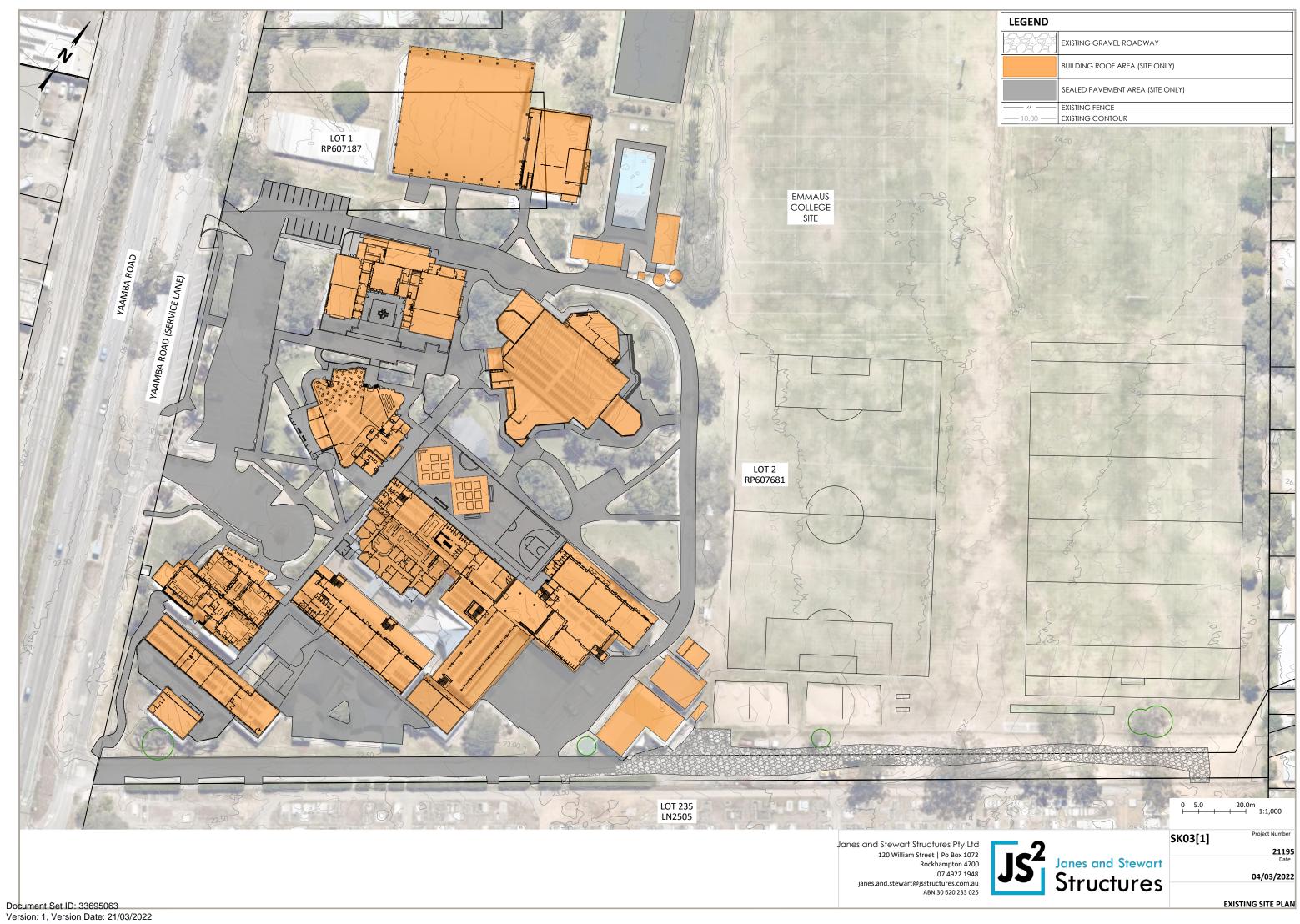
21195 Date

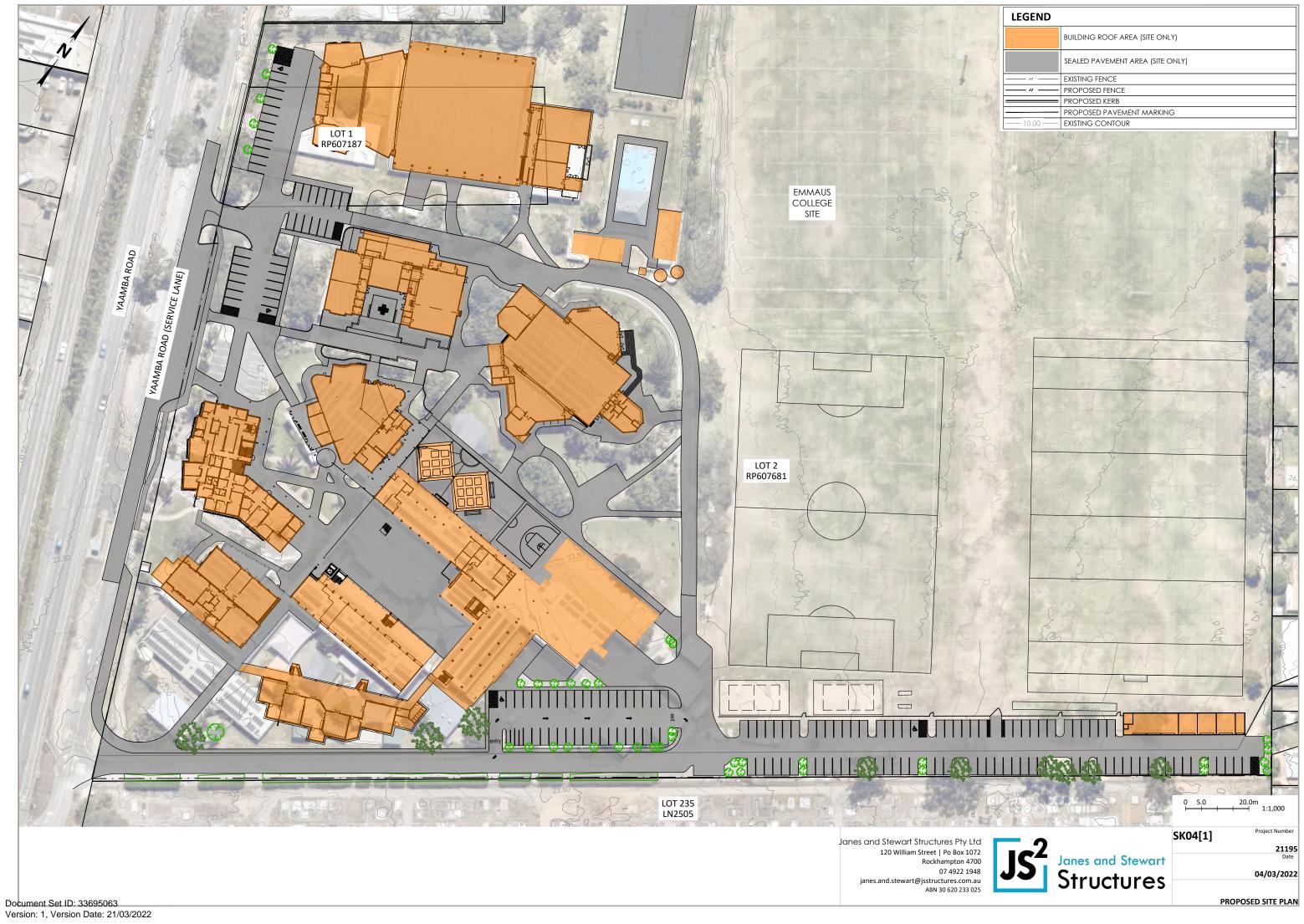
SK02[1]

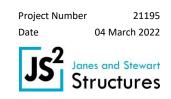
Janes and Stewart Structures

Appendix C

Existing and Proposed Site Plans


Yaamba Road Campus Redevelopment, Emmaus College The RCTC Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton


Report 21195REP01

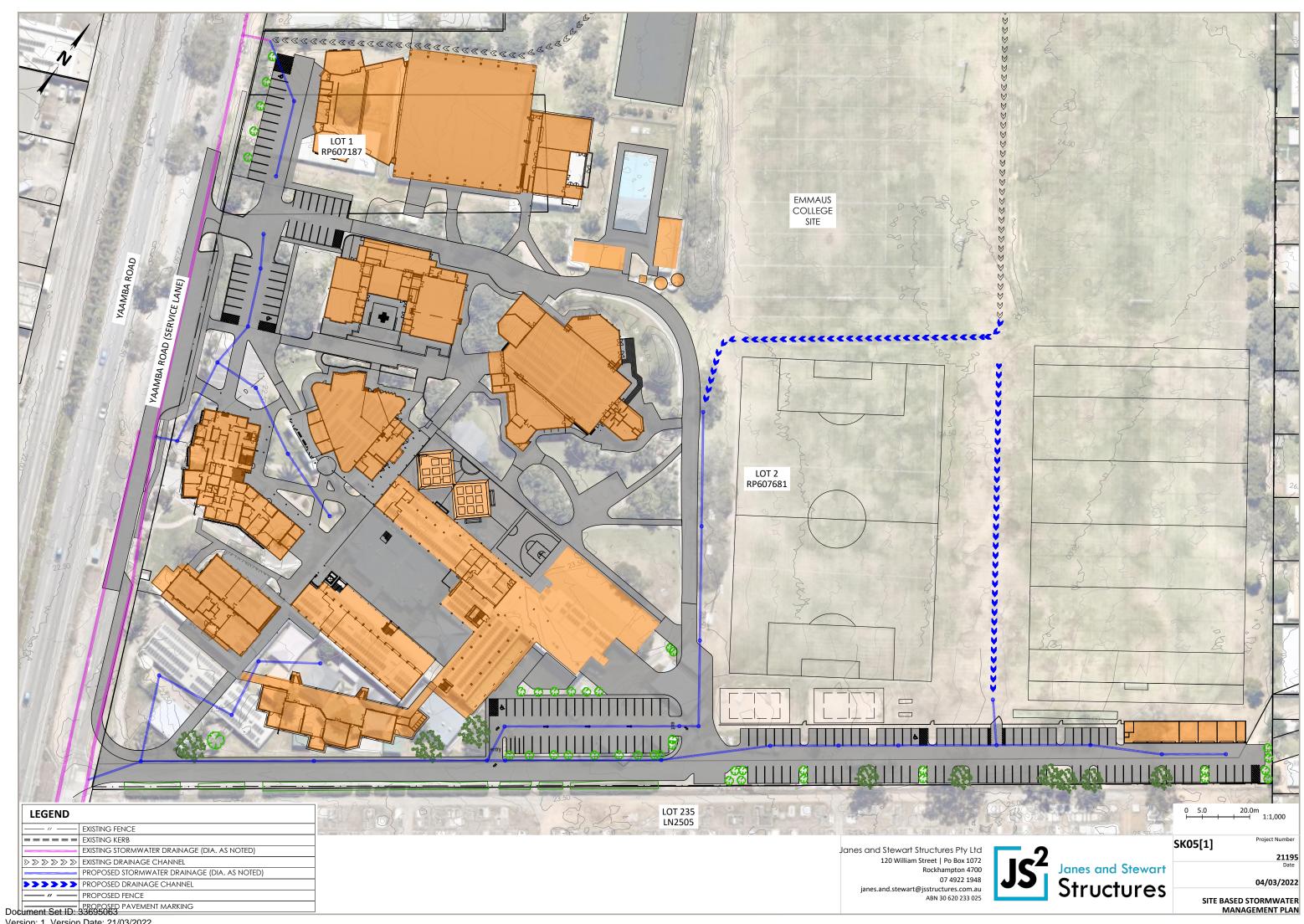

Janes and Stewart Structures Pty Ltd

ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

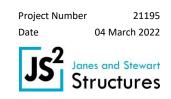
07 4922 1948 janes.and.stewart@jsstructures.com.au

Appendix D

Stormwater Management Plan


Yaamba Road Campus Redevelopment, Emmaus College The RCTC Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton

Report 21195REP01


Janes and Stewart Structures Pty Ltd

ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

07 4922 1948 janes.and.stewart@jsstructures.com.au

Version: 1, Version Date: 21/03/2022

Appendix E

Stormwater Calculations

Yaamba Road Campus Redevelopment, Emmaus College The RCTC Diocese of Rockhampton for Catholic Education – Diocese of Rockhampton

Report 21195REP01

Janes and Stewart Structures Pty Ltd

ABN: 30 620 233 025 120 William Street PO Box 1072 Rockhampton QLD 4700

07 4922 1948 janes.and.stewart@jsstructures.com.au

Existing Runoff

Time of Concentration (to Point of Analysis)

JS²

Bunnings Carpark pipe flow runoff	5.0 mins	
Kerb and Channel Flow (QUDM)		
Length of Gutter Flow (L)	531.0	
Slope of Gutter (S)	1.5	$t = 0.025 L / S^{0.5}$ (minutes)
Time of Gutter Flow (t)	10.8 mins	i = 0.025 L / S (minutes)
Kerb and Channel Flow (QUDM)		
Length of Gutter Flow (L)	838.0	
Slope of Gutter (S)	0.4	$t = 0.025 L / S^{0.5}$ (minutes)
Time of Gutter Flow (t)	35.4 mins	l = 0.025 L/S (minutes)
Time of Concentration (t) to Point of		
Analysis	51.3 mins	

Friend's Equation (QUDM)			
Description	Value	Unit	
Overland Sheet Flow Path Length (L)	271	m	
Horton's Surface Roughness Factor (n)	0.03		$t = (107n L^{0.333})/S^{0.2}$
Upstream RL	26.100	m	
Downstream RL	23.700	m	
Slope of Surface (S)	0.9	%	
Overland Flow Time (t)	21.2	mins	
Kerb and Channel Flow (QUDM)		_	
Length of Gutter Flow (L)	271.0		
Slope of Gutter (S)	0.6		<i>t</i> = 0.025 <i>L</i> / S ^{0.5} (minutes)
Time of Gutter Flow (t)	8.8	mins	i = 0.023 E / 3 (minutes)
Time of Concentration (t) at Point of		1	
Analysis	30.1	mins	

Runoff Calculation downstream of Emmaus College, Yaamba Road: Case i Using Coincident Flooding Method: Carroll (1990) QUDM BN8.3.4

Case i - Rainfall Intensity Corresponding to Time of Concentration for Side Drain

Main Drain Time of Concentration (t_{cm})
Side Drain Time of Concentration (t_{cs})

EX Catchment 9 (Qs)							
TO	C 30	mins			Area =	9.25	На
Rainfall Intensity Table							
Return period	1	2	5	10	20	50	100
3	0 57.8	64.4	85.6	101	116	137	154
Total Catchment Area Q	92500 = F*C*I*A	m²					
	F	С	I	Α	Q	Fy	
	factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁	0.00278	0.582	57.80	9.25	0.864	0.80	
Q2 - Minor	0.00278	0.618	64.40	9.25	1.023	0.85	
Q 5	0.00278	0.691	85.60	9.25	1.519	0.95	
Q10	0.00278	0.727	101.00	9.25	1.887	1.00	
Q20	0.00278	0.763	116.00	9.25	2.275	1.05	
Q50	0.00278	0.836	137.00	9.25	2.943	1.15	
Q100 - Major	0.00278	0.872	154.00	9.25	3.452	1.20	
C10 value			0.727				_
fi value	27.00	%	=	0.27	fi		

mins

mins

51.3 30.1

	TOC	30	mins	1		Area =	5.71	На
				1		/ 104 -	5.71	
Rainfall Intensity Table	2							
Return period		1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		57100	m²					
	Q=	F*C*I*A	-					_
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	5.71	0.357	0.80	
Q2 - Minor		0.00278	0.706	64.40	5.71	0.423	0.85	
Q 5		0.00278	0.789	85.60	5.71	0.628	0.95	
Q10		0.00278	0.830	101.00	5.71	0.780	1.00	
Q20		0.00278	0.872	116.00	5.71	0.941	1.05	
Q50		0.00278	0.955	137.00	5.71	1.217	1.15	
Q100 - Major		0.00278	0.996	154.00	5.71	1.427	1.20	
C10								
L10 value				0.83				
fi value)	70.00	%	0.83	0.7	fi		
fi value) TOC	70.00	% mins		0.7	fi Area =	10.702	На
fi value EX Catchment 2 (Qm)	тос				0.7		10.702	На
i value EX Catchment 2 (Qm) Rainfall Intensity Table	тос				0.7		10.702 50	Ha 100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table	тос	30	mins			Area =		
i value EX Catchment 2 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 107020	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 107020 F*C*I*A	mins 2 64.4 m ²	= 5 85.6	10 101	Area = 20 116	50 137	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 10.702	Area = 20 116 Q m ³ /sec 0.669	50 137 Fy factor 0.80	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F*C*I*A factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 101 A 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177	50 137 Fy factor 0.80 0.85 0.95	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	30 107020 F*C*I*A Factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00	10 101 A ha 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462	50 137 Fy factor 0.80 0.85 0.95 1.00	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00 116.00	10 101 A 10.702 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462 1.763	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value	TOC	30 107020 F*C*1*A Factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 85.6 101.00 116.00 137.00	10 101 A 10.702 10.702 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462 1.763 2.280	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins	1		Aree	2.477	На
	IUC	30	111115			Area =	2.477	Па
Rainfall Intensity Table	د							
Return period	-	1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		24770	m²					
	Q=	F*C*I*A						_
		F	C	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q 1		0.00278	0.664	57.80	2.477	0.155	0.80	
Q2 - Minor		0.00278	0.706	64.40	2.477	0.183	0.85	1
Q 5		0.00278	0.789	85.60	2.477	0.272	0.95	4
Q10		0.00278	0.830	101.00	2.477	0.338	1.00	1
Q20		0.00278	0.872	116.00	2.477	0.408	1.05	4
Q50		0.00278	0.955	137.00	2.477	0.528	1.15	
Q100 - Major		0.00278	0.996	154.00	2.477	0.619	1.20	
				0.83				_
fi value)	70.00	%	0.83	0.7	fi		
fi value) TOC	70.00 30	% mins		0.7	fi Area =	2.606	На
ïi value EX Catchment 4 (Qm)	тос				0.7		2.606	На
i value EX Catchment 4 (Qm) Rainfall Intensity Table	тос				0.7		2.606 50	Ha 100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table	тос	30	mins	=		Area =		
i value EX Catchment 4 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 26060	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 26060 F*C*I*A	mins 2 64.4 m ²	=	10 101	Area = 20 116	50 137	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	30 1 57.8 26060 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 26060 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 2.606	Area = 20 116 Q m³/sec 0.163	50 137 Fy factor 0.80	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 1 01 A ha 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q5 Q10 Q20	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q10 Q20 Q20 Q50	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 101.00 116.00 137.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429 0.555	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 85.6 101.00 116.00 137.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429 0.555 0.651	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins			Area =	1.744	На
	100	50	111113			Alea =	1./44	IIa
Rainfall Intensity Table	9							
Return period		1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		17440	m²					
	Q=	F*C*I*A						-
		F	C	l í	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	1.744	0.109	0.80	
Q2 - Minor		0.00278	0.706	64.40	1.744	0.129	0.85	-
Q5		0.00278	0.789	85.60	1.744	0.192	0.95	_
Q10		0.00278	0.830	101.00	1.744	0.238	1.00	_
Q20		0.00278	0.872	116.00	1.744	0.287	1.05	-
Q50		0.00278	0.955	137.00	1.744	0.372	1.15	_
Q100 - Major		0.00278	0.996	154.00	1.744	0.436	1.20	
	1	70.00	07	0.83	0.7	c:		
fi value)	70.00	%	0.83	0.7	fi		
ï value	тос	70.00	% mins		0.7	fi Area =	4.789	На
ï value EX Catchment 6 (Qm)	тос				0.7		4.789	На
i value EX Catchment 6 (Qm) Rainfall Intensity Table	тос	30	mins			Area =		
i value EX Catchment 6 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table	тос	30	mins			Area =		
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 47890	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 47890 F*C*I*A	mins 2 64.4 m ²	=	10 101	Area = 20 116	50 137	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 47890 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 47890 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 2 30	30 1 57.8 47890 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 4.789	Area = 20 116 Q m ³ /sec 0.299	50 137 Fy factor 0.80	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5	TOC 2 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 1 01 A 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC 2 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527	50 137 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q20 Q50	TOC 2 30	30 1 57.8 47890 F*C*1*A F C*1*A 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 101.00	10 101 A ha 4.789 4.789 4.789 4.789	Area = 20 116 Main and a second 0.299 0.355 0.527 0.654	50 137 Fy factor 0.80 0.85 0.95 1.00	100
fi value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC 2 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 4.789 4.789 4.789 4.789 4.789	Area = 20 116 Q m³/sec 0.299 0.355 0.527 0.654 0.789	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major C10 value	TOC 2 30	30 1 57.8 47890 F*C*1*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 85.6 101.00 116.00 137.00	10 101 A 4.789 4.789 4.789 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527 0.654 0.789 1.020	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins			Area =	3.161	На
	100	50	111113			Alea =	5.101	IId
Rainfall Intensity Table	2							
Return period		1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		31610	m²					
	Q=	F*C*I*A						-
		F	C	l í	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	3.161	0.198	0.80	
Q2 - Minor		0.00278	0.706	64.40	3.161	0.234	0.85	_
Q5		0.00278	0.789	85.60	3.161	0.348	0.95	_
Q10		0.00278	0.830	101.00	3.161	0.432	1.00	_
Q20		0.00278	0.872	116.00	3.161	0.521	1.05	_
Q50		0.00278	0.955	137.00	3.161	0.674	1.15	_
2100 - Major		0.00278	0.996	154.00	3.161	0.790	1.20	
i value)	70.00	%	0.83	0.7	fi		
ï value	·				0.7			
i value) TOC	70.00 30	% mins		0.7	fi Area =	12.418	На
i value EX Catchment 8 (Qm)	тос				0.7		12.418	На
i value EX Catchment 8 (Qm) Rainfall Intensity Table	тос				0.7		12.418 50	Ha 100
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	тос	30	mins	=		Area =		
i value EX Catchment 8 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 124180	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 124180 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	30 1 57.8 124180 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 12.418	Area = 20 116 Q m ³ /sec 0.777	50 137 Fy factor 0.80	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 124180 F*C*I*A F*C*I*A factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 101 A 12.418 12.418	Area = 20 116 Q m ³ /sec 0.777 0.919	50 137 Fy factor 0.80 0.85	100
ii value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5	TOC	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A ha 12.418 12.418 12.418	Area = 20 116 Q m ³ /sec 0.777 0.919 1.366	50 137 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	30 1 57.8 124180 F*C*I*A F*C*I*A 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00	10 101 A ha 12.418 12.418 12.418 12.418	Area = 20 116 M ³ /sec 0.777 0.919 1.366 1.696	50 137 Fy factor 0.80 0.85 0.95 1.00	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q5 Q10 Q20	TOC	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 12.418 12.418 12.418 12.418 12.418	Area = 20 116 Q m³/sec 0.777 0.919 1.366 1.696 2.046	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q20 Q50	TOC	30 1 57.8 124180 F*C*1*A F*C*1*A 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 101.00 137.00	10 101 A 12.418 12.418 12.418 12.418 12.418 12.418	Area = 20 116 M ³ /sec 0.777 0.919 1.366 1.696 2.046 2.646	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
C10 value fi value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major C10 value	TOC	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 12.418 12.418 12.418 12.418 12.418	Area = 20 116 Q m³/sec 0.777 0.919 1.366 1.696 2.046	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100

Dine Outlet 1 Dynass (Om)					
Pipe Outlet 1 Bypass (Qm)					
Contributing Catchment	1	24			
Pipe Capacity @ 1%	1.25	m³/s			
1 x 750 dia RCP					
		_			1
				Q	
				m³/sec	
Q ₁				0.000	
Q2 - Minor				0.000	
Q5				0.000	
Q10				0.000	
Q20				0.000	
Q50				0.000	
Q100 - Major				0.177	
					I
Pipe Outlet 2 Bypass (Qm)					
			D		
Contributing Catchment			ьypass		
Pipe Capacity @ 0.5%	3.173	m³/s			
1 x 600 3 x 750 dia RCP					
		_			
				Q	
				m³/sec	
Q ₁				0.000	
Q2 - Minor				0.000	
Q5				0.000	
Q10				0.000	
Q20				0.000	
Q50				0.864	
Q100 - Major				1.739	
				1.755	
Pipe Outlet 3 Bypass (Qm)					
Contributing Catchment	5				
Pipe Capacity @ 2.6%	2	m³/s			
1 x 750 dia RCP					
					 1
				Q	
				m³/sec	
Q ₁				0.000	
Q2 - Minor				0.000	
Q5		1		0.000	
Q10				0.000	
Q20	L			0.000	
Q50		+		0.000	
Q100 - Major					
				0.000	

Runoff Calculation downstream of Emmaus College, Yaamba Road: Case ii Using Coincident Flooding Method: Carroll (1990) QUDM BN8.3.4

Case ii - Rainfall Intensity Corresponding to Time of Concentration for Main Drain

Main Drain Time of Concentration (t_{cm})	51.3	mins
Side Drain Time of Concentration (t_{cs})	30.1	mins

EX Catchment 9 (Qs)							
TO	C 51	mins			Area =	9.25	На
Rainfall Intensity Table							
Return period	1	2	5	10	20	50	100
5	1 41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area	92500	m²					
Q	= F*C*I*A	-					_
	F	С	I	Α	Q	Fy	
	factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁	0.00278	0.582	41.60	9.25	0.622	0.80	
Q2 - Minor	0.00278	0.618	46.30	9.25	0.735	0.85	1
Q5	0.00278	0.691	61.90	9.25	1.098	0.95	1
Q10	0.00278	0.727	73.00	9.25	1.364	1.00	
Q20	0.00278	0.763	84.10	9.25	1.650	1.05	
Q50	0.00278	0.836	99.50	9.25	2.137	1.15	1
Q100 - Major	0.00278	0.872	112.00	9.25	2.511	1.20	
C10 value	-		0.727			-	
fi value	27.00	%	=	0.27	fi		

	тос	51	mins	1		Arco	F 71	На
	IUC	51	mins	l		Area =	5.71	На
Rainfall Intensity Table								
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		57100	m²					
	Q=	F*C*I*A	•					
		F	С	Ι	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	5.71	0.438	0.80	
Q2 - Minor		0.00278	0.706	46.30	5.71	0.518	0.85]
Q5		0.00278	0.789	61.90	5.71	0.774	0.95	
Q10		0.00278	0.830	73.00	5.71	0.961	1.00	
Q20		0.00278	0.872	84.10	5.71	1.163	1.05	
Q50		0.00278	0.955	99.50	5.71	1.506	1.15	
Q100 - Major		0.00278	0.996	112.00	5.71	1.769	1.20	
C10 value				0.83				
fi value)	70.00	%	0.83	0.7	fi		
fi value	ТОС	70.00	% mins		0.7	fi Area =	10.702	На
fi value EX Catchment 2 (Qm)	тос				0.7		10.702	На
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	тос				0.7		10.702 50	Ha 100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	тос	51	mins			Area =		
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	TOC	51	mins 2	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6 107020	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	51 1 41.6 107020 F*C*I*A	mins 2 46.3 m ²	= 5 61.9	10 73	Area = 20 84.1	50 99.5	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	51 1 41.6 107020 F*C*I*A F	mins 2 46.3 m ² C	= 5 61.9	10 73	Area = 20 84.1 Q	50 99.5 Fy	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	51 1 41.6 107020 F*C*I*A F factor	mins 2 46.3 m ² C co eff	= 5 61.9 I mm/hr	10 73 A ha	Area = 20 84.1 Q m ³ /sec	50 99.5 Fy factor	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor Q5	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 10.702 10.702 10.702	Area = 20 84.1 M ³ /sec 0.821 0.971 1.451	50 99.5 Fy factor 0.80 0.85 0.95	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 10.702 10.702	Area = 20 84.1 Q m ³ /sec 0.821 0.971	50 99.5 Fy factor 0.80 0.85	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A 10.702 10.702 10.702 10.702	Area = 20 84.1 Q m³/sec 0.821 0.971 1.451 1.801 2.179	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 61.9 1 mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 10.702 10.702 10.702 10.702 10.702	Area = 20 84.1 M ³ /sec 0.821 0.971 1.451 1.801 2.179 2.823	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 61.9 61.9 41.60 46.30 61.90 73.00 84.10 99.50 112.00	10 73 A 10.702 10.702 10.702 10.702	Area = 20 84.1 Q m³/sec 0.821 0.971 1.451 1.801 2.179	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 61.9 1 mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 10.702 10.702 10.702 10.702 10.702	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

		_		1				
	тос	51	mins			Area =	2.477	На
Rainfall Intensity Table	2							
Return period	-	1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		24770	m²					
	Q=	F*C*I*A	-					_
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q 1		0.00278	0.664	41.60	2.477	0.190	0.80	
Q2 - Minor		0.00278	0.706	46.30	2.477	0.225	0.85	
Q5		0.00278	0.789	61.90	2.477	0.336	0.95	
Q10		0.00278	0.830	73.00	2.477	0.417	1.00	
Q20		0.00278	0.872	84.10	2.477	0.504	1.05	
Q50		0.00278	0.955	99.50	2.477	0.653	1.15	
Q100 - Major		0.00278	0.996	112.00	2.477	0.768	1.20	
C10 value			_	0.83				
fi value)	70.00	%	0.83	0.7	fi		
fi value) ТОС	70.00	% mins		0.7	fi Area =	2.606	На
fi value EX Catchment 4 (Qm)	тос				0.7		2.606	На
i value EX Catchment 4 (Qm) Rainfall Intensity Table	тос				0.7		2.606 50	Ha 100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table	тос	51	mins	=		Area =		
i value EX Catchment 4 (Qm) Rainfall Intensity Table	TOC	51	mins 2	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6 26060	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6 26060	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6 26060 F*C*I*A	mins 2 46.3 m ² C co eff	=	10 73 A ha	Area = 20 84.1	50 99.5	100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	51 1 41.6 26060 F*C*I*A F	mins 2 46.3 m ² C	= 5 61.9	10 73 A	Area = 20 84.1 Q	50 99.5 Fy	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	51 1 41.6 26060 F*C*I*A F factor	mins 2 46.3 m ² C co eff	= 5 61.9 I mm/hr	10 73 A ha	Area = 20 84.1 Q m³/sec	50 99.5 Fy factor	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278	mins 2 46.3 m ² C co eff 0.664	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 2.606	Area = 20 84.1 Q m ³ /sec 0.200	50 99.5 Fy factor 0.80	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706	= 5 61.9 I mm/hr 41.60 46.30	10 73 A ha 2.606 2.606	Area = 20 84.1 Q m ³ /sec 0.200 0.236	50 99.5 Fy factor 0.80 0.85	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5 Q10 Q20	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 2.606 2.606 2.606	Area = 20 84.1 Q m ³ /sec 0.200 0.236 0.353	50 99.5 Fy factor 0.80 0.85 0.95	100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 2.606 2.606 2.606	Area = 20 84.1 M ³ /sec 0.200 0.236 0.353 0.439	50 99.5 Fy factor 0.80 0.85 0.95 1.00	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q10 Q20 Q20	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439 0.531	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC	51 1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A 10 2.606 2.606 2.606 2.606 2.606 2.606	Area = 20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439 0.531 0.687 0.808	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

				_				
	TOC	51	mins			Area =	1.744	На
Rainfall Intensity Table								
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		17440	m²					
	Q=	F*C*I*A						_
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	1.744	0.134	0.80	
Q2 - Minor		0.00278	0.706	46.30	1.744	0.158	0.85	
Q5		0.00278	0.789	61.90	1.744	0.236	0.95	1
Q10		0.00278	0.830	73.00	1.744	0.294	1.00	
Q20		0.00278	0.872	84.10	1.744	0.355	1.05	
Q50		0.00278	0.955	99.50	1.744	0.460	1.15	
Q100 - Major		0.00278	0.996	112.00	1.744	0.540	1.20	
C10 value				0.02				_
				0.83				
fi value		70.00	%	=	0.7	fi		
fi value	тос	70.00 51	% mins		0.7	fi Area =	4.789	На
ïi value EX Catchment 6 (Qm)	тос				0.7		4.789	На
ii value EX Catchment 6 (Qm) Rainfall Intensity Table	тос				0.7		4.789 50	Ha 100
fi value EX Catchment 6 (Qm) Rainfall Intensity Table	тос	51	mins	=		Area =		
i value EX Catchment 6 (Qm) Rainfall Intensity Table	TOC	51 1 41.6	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A	mins 2 46.3 m ²	=	10	Area = 20 84.1	50 99.5	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A F	mins 2 46.3 m ² C	= 5 61.9	10 73 A	Area = 20 84.1 Q	50 99.5 Fy	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A F factor	mins 2 46.3 m ² C co eff	= 5 61.9 I mm/hr	10 73 A ha	Area = 20 84.1 Q m ³ /sec	50 99.5 Fy factor	100
ii value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278	mins 2 46.3 m ² C co eff 0.664	= 5 61.9 I mm/hr 41.60	10 73 A ha 4.789	Area = 20 84.1 Q m ³ /sec 0.367	50 99.5 Fy factor 0.80	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706	= 5 61.9 I mm/hr 41.60 46.30	10 73 A ha 4.789 4.789	Area = 20 84.1 Q m ³ /sec 0.367 0.435	50 99.5 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 4.789	Area = 20 84.1 Q m ³ /sec 0.367 0.435 0.649	50 99.5 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C 0.664 0.706 0.789 0.830	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 4.789 4.789	Area = 20 84.1 M ³ /sec 0.367 0.435 0.649 0.806	50 99.5 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A ha 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1 Q m³/sec 0.367 0.435 0.649 0.806 0.975	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q10 Q20 Q20	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 4.789 4.789 4.789 4.789	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A ha 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1 Q m³/sec 0.367 0.435 0.649 0.806 0.975	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
fi value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 4.789 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

EX Catchment 7 (Qm)								
	тос	51	mins			Area =	3.161	На
Rainfall Intensity Table	2							
Return period	-	1	2	5	10	20	50	100
•	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		31610	m²					
	Q=	F*C*I*A						-
		F	С	I	Α	Q	Fy	
-		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	3.161	0.243	0.80	_
Q2 - Minor		0.00278	0.706	46.30	3.161	0.287	0.85	4
Q5		0.00278	0.789	61.90	3.161	0.429	0.95	4
Q10		0.00278	0.830	73.00	3.161	0.532	1.00	4
Q20		0.00278	0.872	84.10	3.161	0.644	1.05	_
Q50		0.00278	0.955	99.50	3.161	0.834	1.15	_
Q100 - Major		0.00278	0.996	112.00	3.161	0.979	1.20	
							-	
				0.83				_
C10 value fi value EX Catchment 8 (Qm)	70.00			0.7			
fi value) TOC			0.83	0.7		12.418	Ha
fi value EX Catchment 8 (Qm	ТОС	70.00	%	0.83	0.7	fi		На
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	ТОС	70.00	%	0.83	0.7	fi		Ha 100
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	ТОС	70.00 51	% mins	0.83		fi Area =	12.418	
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	TOC	70.00 51 1	% mins 2	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6 124180	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6 124180	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area	TOC	70.00 51 1 41.6 124180 F*C*I*A	% mins 2 46.3 m ²	0.83 = 5	10 73	fi Area = 20 84.1	12.418 50 99.5	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area	TOC	70.00 51 1 41.6 124180 F*C*I*A F	% mins 2 46.3 m ² C	0.83 = 5 61.9	10 73 A	fi Area = 20 84.1	12.418 50 99.5	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	70.00 51 41.6 124180 F*C*I*A F factor	% mins 2 46.3 m ² C co eff	0.83 = 5 61.9 I mm/hr	10 73 A ha	fi Area = 20 84.1 Q m³/sec	12.418 50 99.5 Fy factor	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor Q5	TOC	70.00 51 1 41.6 124180 F*C*I*A F factor 0.00278	% mins 2 46.3 m ² C co eff 0.664	0.83 = 5 61.9 I mm/hr 41.60	10 73 A ha 12.418	fi Area = 20 84.1 Q m³/sec 0.953	12.418 50 99.5 Fy factor 0.80	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706	0.83 = 5 61.9 I mm/hr 41.60 46.30	10 73 A 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127	12.418 50 99.5 Fy factor 0.80 0.85	100
ii value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 12.418 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127 1.684	12.418 50 99.5 Fy factor 0.80 0.85 0.95	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	70.00 51 1 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127 1.684 2.090	12.418 50 99.5 Fy factor 0.80 0.85 0.95 1.00	100
ii value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.830 0.872	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A 12.418 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127 1.684 2.090 2.528	12.418 50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
fi value	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 12.418 12.418 12.418 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m ³ /sec 0.953 1.127 1.684 2.090 2.528 3.276 3.848	12.418 50 99.5 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

Dine Outlet 1 Dynass (Om)	\ \						
Pipe Outlet 1 Bypass (Qm)							
Contributing Catchment	1	2/					
Pipe Capacity @ 1%	1.25	m³/s					
1 x 750 dia RCP							
		_					
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10					0.000		
Q20					0.000		
Q50					0.256		
Q100 - Major					0.519		
		1	1	1	0.010	1	
Pipe Outlet 2 Bypass (Qm)							
		ina Quilat 1	Dunaaa				
Contributing Catchment		-	Буразб				
Pipe Capacity @ 0.5%	3.173	m³/s					
1 x 600 3 x 750 dia RCP							
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10					0.016		
Q20					0.684		
Q50					2.082		
Q100 - Major					3.217		
-							
Pipe Outlet 3 Bypass (Qm)	\						
Contributing Catchment	5						
Pipe Capacity @ 2.6%	2	m³/s					
1 x 750 dia RCP							
					_		
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10			İ		0.000		
Q20					0.000		
Q50					0.000		
Q100 - Major					0.000		
					0.000		

Runoff Calculation downstream of Emmaus College, Yaamba Road: Case i Using Coincident Flooding Method: Carroll (1990) QUDM BN8.3.4

Case i - Rainfall Intensity Corresponding to Time of Concentration for Side Drain

Main Drain Time of Concentration (t_{cm})
Side Drain Time of Concentration (t_{cs})

EX Catchment 9 (Qs)							
ТО	C 30	mins			Area =	9.25	На
Rainfall Intensity Table							
Return period	1	2	5	10	20	50	100
3	0 57.8	64.4	85.6	101	116	137	154
Total Catchment Area	92500	m²					
Q	= F*C*I*A						
	F	С	I	А	Q	Fy	
	factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁	0.00278	0.586	57.80	9.25	0.870	0.80	
Q2 - Minor	0.00278	0.622	64.40	9.25	1.030	0.85	
Q 5	0.00278	0.695	85.60	9.25	1.529	0.95	
Q10	0.00278	0.732	101.00	9.25	1.900	1.00	
Q20	0.00278	0.769	116.00	9.25	2.291	1.05	
Q50	0.00278	0.842	137.00	9.25	2.963	1.15	
Q100 - Major	0.00278	0.878	154.00	9.25	3.476	1.20	
C10 value			0.732		-	-	•
fi value	29.00	%	=	0.29	fi		

mins

mins

51.3 30.1

	TOC	30	mins	1		Area =	5.71	На
				1		/ 104 -	5.71	
Rainfall Intensity Table	2							
Return period		1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		57100	m²					
	Q=	F*C*I*A	-					_
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	5.71	0.357	0.80	
Q2 - Minor		0.00278	0.706	64.40	5.71	0.423	0.85	
Q 5		0.00278	0.789	85.60	5.71	0.628	0.95	
Q10		0.00278	0.830	101.00	5.71	0.780	1.00	
Q20		0.00278	0.872	116.00	5.71	0.941	1.05	
Q50		0.00278	0.955	137.00	5.71	1.217	1.15	
Q100 - Major		0.00278	0.996	154.00	5.71	1.427	1.20	
C10								
L10 value				0.83				
fi value)	70.00	%	0.83	0.7	fi		
fi value) TOC	70.00	% mins		0.7	fi Area =	10.702	На
fi value EX Catchment 2 (Qm)	тос				0.7		10.702	На
i value EX Catchment 2 (Qm) Rainfall Intensity Table	тос				0.7		10.702 50	Ha 100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table	тос	30	mins			Area =		
i value EX Catchment 2 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 107020	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 107020 F*C*I*A	mins 2 64.4 m ²	= 5 85.6	10 101	Area = 20 116	50 137	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 10.702	Area = 20 116 Q m ³ /sec 0.669	50 137 Fy factor 0.80	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 107020 F*C*I*A F*C*I*A factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 101 A 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177	50 137 Fy factor 0.80 0.85 0.95	100
ii value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	30 107020 F*C*I*A Factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00	10 101 A ha 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462	50 137 Fy factor 0.80 0.85 0.95 1.00	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	TOC	30 1 57.8 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00 116.00	10 101 A 10.702 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462 1.763	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value	TOC	30 107020 F*C*1*A Factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 85.6 101.00 116.00 137.00	10 101 A 10.702 10.702 10.702 10.702 10.702	Area = 20 116 Q m ³ /sec 0.669 0.792 1.177 1.462 1.763 2.280	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins	1		Aree	2.477	На
	IUC	30	111115			Area =	2.477	Па
Rainfall Intensity Table	د							
Return period	-	1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		24770	m²					
	Q=	F*C*I*A						_
		F	C	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q 1		0.00278	0.664	57.80	2.477	0.155	0.80	
Q2 - Minor		0.00278	0.706	64.40	2.477	0.183	0.85	1
Q 5		0.00278	0.789	85.60	2.477	0.272	0.95	4
Q10		0.00278	0.830	101.00	2.477	0.338	1.00	4
Q20		0.00278	0.872	116.00	2.477	0.408	1.05	4
Q50		0.00278	0.955	137.00	2.477	0.528	1.15	
Q100 - Major		0.00278	0.996	154.00	2.477	0.619	1.20	
				0.83				_
fi value)	70.00	%	0.83	0.7	fi		
fi value) TOC	70.00 30	% mins		0.7	fi Area =	2.606	На
ïi value EX Catchment 4 (Qm)	тос				0.7		2.606	На
i value EX Catchment 4 (Qm) Rainfall Intensity Table	тос				0.7		2.606 50	Ha 100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table	тос	30	mins	=		Area =		
i value EX Catchment 4 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 26060	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period	TOC	30 1 57.8 26060 F*C*I*A	mins 2 64.4 m ²	=	10 101	Area = 20 116	50 137	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	30 1 57.8 26060 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC	30 1 57.8 26060 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 2.606	Area = 20 116 Q m³/sec 0.163	50 137 Fy factor 0.80	100
ii value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 1 01 A ha 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q5 Q10 Q20	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 I mm/hr 57.80 64.40 85.60 101.00 116.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q10 Q20 Q20 Q50	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 101.00 116.00 137.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429 0.555	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 I mm/hr 57.80 64.40 85.60 101.00 116.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 4 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC	30 1 57.8 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 85.6 101.00 116.00 137.00	10 101 A ha 2.606 2.606 2.606 2.606 2.606	Area = 20 116 M ³ /sec 0.163 0.193 0.287 0.356 0.429 0.555 0.651	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins			Area =	1.744	На
	100	50	111113			Alea =	1./44	IIa
Rainfall Intensity Table	!							
, Return period		1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
otal Catchment Area	l	17440	m²					
	Q=	F*C*I*A						-
		F	С	l	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	1.744	0.109	0.80	
Q2 - Minor		0.00278	0.706	64.40	1.744	0.129	0.85	4
25		0.00278	0.789	85.60	1.744	0.192	0.95	4
Q10		0.00278	0.830	101.00	1.744	0.238	1.00	
Q20		0.00278	0.872	116.00	1.744	0.287	1.05	
Q50		0.00278	0.955	137.00	1.744	0.372	1.15	-
Q100 - Major		0.00278	0.996	154.00	1.744	0.436	1.20	
								_
			1	0.83				_
fi value		70.00	%	0.83 =	0.7	fi		
ï value	тос	70.00	% mins		0.7	fi Area =	4.789	На
ï value EX Catchment 6 (Qm)	тос				0.7		4.789	На
i value EX Catchment 6 (Qm) Rainfall Intensity Table	тос				0.7		4.789 50	Ha 100
i value EX Catchment 6 (Qm) Rainfall Intensity Table	тос	30	mins	=		Area =		
i value EX Catchment 6 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 30	30 1 57.8 47890	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 30	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 30	30 1 57.8 47890	mins 2 64.4 m ² C	=	10	Area = 20 116 Q	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 30	30 1 57.8 47890 F*C*I*A	mins 2 64.4 m ²	=	10 101	Area = 20 116	50 137	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 30	30 1 57.8 47890 F*C*I*A F	mins 2 64.4 m ² C	= 5 85.6	10 101 A	Area = 20 116 Q	50 137 Fy	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 30	30 1 57.8 47890 F*C*I*A F*C*I*A factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec 0.299 0.355	50 137 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527	50 137 Fy factor 0.80	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC 30	30 1 57.8 47890 F*C*1*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 101.00	10 101 A ha 4.789 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527 0.654	50 137 Fy factor 0.80 0.85 0.95 1.00	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20	TOC 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 101.00 116.00	10 101 A 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527	50 137 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q20 Q50	TOC 30	30 1 57.8 47890 F*C*1*A F*C*1*A 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 85.6 101.00 116.00 137.00	10 101 A 4.789 4.789 4.789 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527 0.654 0.789 1.020	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
ii value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major	TOC 30	30 1 57.8 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 4.789 4.789 4.789 4.789 4.789	Area = 20 116 Q m³/sec 0.299 0.355 0.527 0.654 0.789	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC 30	30 1 57.8 47890 F*C*1*A F*C*1*A 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 85.6 85.6 101.00 116.00 137.00	10 101 A 4.789 4.789 4.789 4.789 4.789 4.789	Area = 20 116 Q m ³ /sec 0.299 0.355 0.527 0.654 0.789 1.020 1.197	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

	тос	30	mins			Area =	3.161	На
	100	50	111113			Alea =	5.101	IId
Rainfall Intensity Table	2							
Return period	-	1	2	5	10	20	50	100
	30	57.8	64.4	85.6	101	116	137	154
Total Catchment Area		31610	m²					
	Q=	F*C*I*A						-
		F	C	l í	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	57.80	3.161	0.198	0.80	
Q2 - Minor		0.00278	0.706	64.40	3.161	0.234	0.85	_
Q5		0.00278	0.789	85.60	3.161	0.348	0.95	_
Q10		0.00278	0.830	101.00	3.161	0.432	1.00	_
Q20		0.00278	0.872	116.00	3.161	0.521	1.05	_
Q50		0.00278	0.955	137.00	3.161	0.674	1.15	_
Q100 - Major		0.00278	0.996	154.00	3.161	0.790	1.20	
i value)	70.00	%	0.83	0.7	fi		
ï value					0.7			
i value	ТОС	70.00	% mins		0.7	fi Area =	12.418	На
i value EX Catchment 8 (Qm)	тос				0.7		12.418	На
i value EX Catchment 8 (Qm) Rainfall Intensity Table	тос				0.7		<u>12.418</u> 50	Ha 100
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	тос	30	mins	=		Area =		
i value EX Catchment 8 (Qm) Rainfall Intensity Table	TOC	30 1	mins 2	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC	30 1	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 124180	mins 2 64.4	=	10	Area = 20	50	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period	TOC 2 30	30 1 57.8 124180 F*C*I*A F factor	mins 2 64.4 m ² C co eff	= 5 85.6 I mm/hr	10 101 A ha	Area = 20 116 Q m ³ /sec	50 137 Fy factor	100
ii value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC 2 30	30 1 57.8 124180 F*C*I*A F factor 0.00278	mins 2 64.4 m ² C co eff 0.664	= 5 85.6 I mm/hr 57.80	10 101 A ha 12.418	Area = 20 116 Q m³/sec 0.777	50 137 Fy factor 0.80	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 2 30	30 1 57.8 124180 F*C*I*A F*C*I*A factor 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706	= 5 85.6 I mm/hr 57.80 64.40	10 101 A 12.418 12.418	Area = 20 116 Q m ³ /sec 0.777 0.919	50 137 Fy factor 0.80 0.85	100
ii value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q5	TOC 2 30	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789	= 5 85.6 I mm/hr 57.80 64.40 85.60	10 101 A ha 12.418 12.418 12.418	Area = 20 116 Q m ³ /sec 0.777 0.919 1.366	50 137 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC 2 30	30 1 57.8 124180 F*C*I*A F*C*I*A 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00	10 101 A ha 12.418 12.418 12.418 12.418	Area = 20 116 M ³ /sec 0.777 0.919 1.366 1.696	50 137 Fy factor 0.80 0.85 0.95 1.00	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q5 Q10 Q20	TOC 2 30	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 12.418 12.418 12.418 12.418 12.418	Area = 20 116 Q m³/sec 0.777 0.919 1.366 1.696 2.046	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q20 Q50	TOC 2 30	30 1 57.8 124180 F*C*1*A F*C*1*A 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 85.6 1 mm/hr 57.80 64.40 85.60 101.00 116.00 137.00	10 101 A 12.418 12.418 12.418 12.418 12.418 12.418	Area = 20 116 M ³ /sec 0.777 0.919 1.366 1.696 2.046 2.646	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
C10 value fi value EX Catchment 8 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major C10 value	TOC 2 30	30 1 57.8 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 64.4 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 85.6 101.00 116.00	10 101 A 12.418 12.418 12.418 12.418 12.418	Area = 20 116 Q m³/sec 0.777 0.919 1.366 1.696 2.046	50 137 Fy factor 0.80 0.85 0.95 1.00 1.05	100

Dine Outlet 1 Dynass (Om	<u>`</u>					
Pipe Outlet 1 Bypass (Qm						
Contributing Catchment	1	24				
Pipe Capacity @ 1%	1.25	m³/s				
1 x 750 dia RCP						
		_				
					Q	
					m³/sec	
Q ₁					0.000	
Q2 - Minor					0.000	
Q5					0.000	
Q10					0.000	
Q20					0.000	
Q50					0.000	1
Q100 - Major					0.177	
			I	1		I
Pipe Outlet 2 Bypass (Qm	\					
			D			
Contributing Catchment			Бураss			
Pipe Capacity @ 0.5%	3.173	m³/s				
1 x 600 3 x 750 dia RCP						
		_	_			
					Q	
					m³/sec	
Q ₁					0.000	
Q2 - Minor					0.000	
Q5					0.000	
Q10					0.000	
Q20					0.000	
Q50					0.864	
Q100 - Major					1.739	
-						
Pipe Outlet 3 Bypass (Qm	\					
Contributing Catchment	5	3/0				
Pipe Capacity @ 2.6%	2	m³/s				
1 x 750 dia RCP						
						 1
					Q	
					m³/sec	
Q 1					0.000	
Q2 - Minor					0.000	
Q5					0.000	1
Q10			1		0.000	1
Q20					0.000	
Q50					0.000	
Q100 - Major			<u> </u>		0.000	
					0.000	

Runoff Calculation downstream of Emmaus College, Yaamba Road: Case ii Using Coincident Flooding Method: Carroll (1990) QUDM BN8.3.4

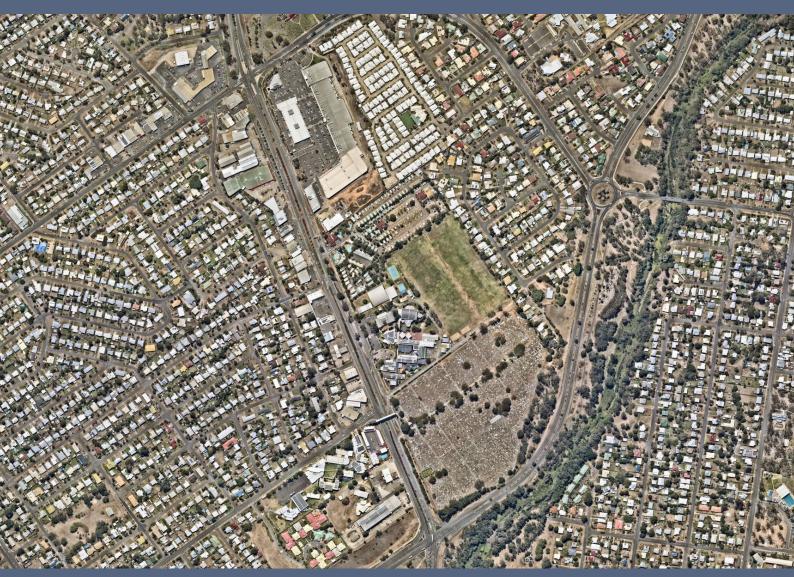
Case ii - Rainfall Intensity Corresponding to Time of Concentration for Main Drain

Main Drain Time of Concentration (t_{cm})	51.3	mins
Side Drain Time of Concentration (t_{cs})	30.1	mins

EV Catabrant 0 (Oa)								
EX Catchment 9 (Qs)								
1	<u> 0C</u>	51	mins			Area =	9.25	На
Rainfall Intensity Table								
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		92500	m²					
	Q=	F*C*I*A	I					
		F	С	I	Α	Q	Fy	1
		factor	co eff	mm/hr	ha	m³/sec	factor	1
Q ₁		0.00278	0.586	41.60	9.25	0.626	0.80	1
Q2 - Minor		0.00278	0.622	46.30	9.25	0.740	0.85	
Q 5		0.00278	0.695	61.90	9.25	1.106	0.95	
Q10		0.00278	0.732	73.00	9.25	1.373	1.00	1
Q20		0.00278	0.769	84.10	9.25	1.661	1.05	1
Q50		0.00278	0.842	99.50	9.25	2.152	1.15	
Q100 - Major		0.00278	0.878	112.00	9.25	2.528	1.20	1
C10 value				0.732				4
fi value		29.00	%	=	0.29	fi		

	тос	51	mins			Arco	F 71	На
	IUC	51	mins			Area =	5.71	На
Rainfall Intensity Table								
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		57100	m²					
	Q=	F*C*I*A	a					
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	5.71	0.438	0.80	
Q2 - Minor		0.00278	0.706	46.30	5.71	0.518	0.85]
Q5		0.00278	0.789	61.90	5.71	0.774	0.95	
Q10		0.00278	0.830	73.00	5.71	0.961	1.00	
Q20		0.00278	0.872	84.10	5.71	1.163	1.05	
Q50		0.00278	0.955	99.50	5.71	1.506	1.15	
Q100 - Major		0.00278	0.996	112.00	5.71	1.769	1.20	
C10 value				0.83				
fi value)	70.00	%	0.83	0.7	fi		
fi value	ТОС	70.00	% mins		0.7	fi Area =	10.702	На
fi value EX Catchment 2 (Qm)	тос				0.7		10.702	На
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	тос				0.7		10.702 50	Ha 100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	тос	51	mins	=		Area =		
fi value EX Catchment 2 (Qm) Rainfall Intensity Table	TOC	51	mins 2	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period	TOC	51 1 41.6 107020	mins 2 46.3	=	10	Area = 20	50	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	51 1 41.6 107020 F*C*I*A	mins 2 46.3 m ²	= 5 61.9	10 73	Area = 20 84.1	50 99.5	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC	51 1 41.6 107020 F*C*I*A F	mins 2 46.3 m ² C	= 5 61.9	10 73	Area = 20 84.1 Q	50 99.5 Fy	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	51 1 41.6 107020 F*C*I*A F factor	mins 2 46.3 m ² C co eff	= 5 61.9 I mm/hr	10 73 A ha	Area = 20 84.1 Q m ³ /sec	50 99.5 Fy factor	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor Q5	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278	mins 2 46.3 m ² C co eff 0.664	= 5 61.9 I mm/hr 41.60	10 73 A ha 10.702	Area = 20 84.1 Q m ³ /sec 0.821	50 99.5 Fy factor 0.80	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706	= 5 61.9 I mm/hr 41.60 46.30	10 73 A ha 10.702 10.702	Area = 20 84.1 Q m ³ /sec 0.821 0.971	50 99.5 Fy factor 0.80 0.85	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 10.702 10.702 10.702	Area = 20 84.1 M ³ /sec 0.821 0.971 1.451	50 99.5 Fy factor 0.80 0.85 0.95	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830	= 5 61.9 <i>I</i> mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 10.702 10.702 10.702 10.702 10.702	Area = 20 84.1 M ³ /sec 0.821 0.971 1.451 1.801 2.179 2.823	50 99.5 Fy factor 0.80 0.85 0.95 1.00	100
fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀ Q ₁₀₀ - Major	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A 10.702 10.702 10.702 10.702	Area = 20 84.1 Q m³/sec 0.821 0.971 1.451 1.801 2.179	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
C10 value fi value EX Catchment 2 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value fi value	TOC	51 1 41.6 107020 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	= 5 61.9 <i>I</i> mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 10.702 10.702 10.702 10.702 10.702	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

		_	-					
	тос	51	mins			Area =	2.477	На
Rainfall Intensity Table	2							
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		24770	m²					
	Q=	F*C*I*A	-					_
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	2.477	0.190	0.80	
Q2 - Minor		0.00278	0.706	46.30	2.477	0.225	0.85	
Q5		0.00278	0.789	61.90	2.477	0.336	0.95	
Q10		0.00278	0.830	73.00	2.477	0.417	1.00	
Q20		0.00278	0.872	84.10	2.477	0.504	1.05	
Q50		0.00278	0.955	99.50	2.477	0.653	1.15	
Q100 - Major		0.00278	0.996	112.00	2.477	0.768	1.20	
C10 value				0.83				
i value		70.00	%	=	0.7	fi		
	тос	51	mins	I		Area =	2.606	На
Rainfall Intensity Table		51	mins	I		Area =	2.606	На
		51	mins 2	5	10	Area = 20	2.606 50	Ha 100
				5 61.9	10 73			
Return period		1 41.6	2 46.3			20	50	100
Return period	51	1 41.6 26060	2 46.3			20	50	100
Return period	51	1 41.6 26060 F*C*I*A	2 46.3 m²		73	20 84.1	50 99.5	100
Return period	51	1 41.6 26060 F*C*I*A F	2 46.3 m ² C	61.9 I	73 A	20 84.1 Q	50 99.5 Fy	100
Return period	51	1 41.6 26060 F*C*I*A F factor	2 46.3 m ² C co eff	61.9 I mm/hr	73 A ha	20 84.1 Q m³/sec	50 99.5 Fy factor	100
Return period	51	1 41.6 26060 F*C*I*A F factor 0.00278	2 46.3 m ² C co eff 0.664	61.9 I mm/hr 41.60	73 A ha 2.606	20 84.1 Q m ³ /sec 0.200	50 99.5 Fy factor 0.80	100
Return period Total Catchment Area Q ₁ Q2 - Minor	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278	2 46.3 m ² C 0.664 0.706	61.9 I mm/hr 41.60 46.30	73 A ha 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236	50 99.5 Fy factor 0.80 0.85	100
Return period Total Catchment Area Q ₁ Q2 - Minor Q5	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278	2 46.3 m ² C co eff 0.664 0.706 0.789	61.9 I mm/hr 41.60 46.30 61.90	73 A ha 2.606 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236 0.353	50 99.5 Fy factor 0.80 0.85 0.95	100
Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	2 46.3 m ² C 0.664 0.706 0.789 0.830	61.9 I mm/hr 41.60 46.30 61.90 73.00	73 A ha 2.606 2.606 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439	50 99.5 Fy factor 0.80 0.85 0.95 1.00	100
Return period Total Catchment Area Q ₁ Q2 - Minor Q5 Q10 Q20	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	73 A ha 2.606 2.606 2.606 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439 0.531	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
Return period Total Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q ₁₀ Q ₂₀ Q ₅₀	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	73 A ha 2.606 2.606 2.606 2.606 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439 0.531 0.687	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value	51	1 41.6 26060 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	73 A ha 2.606 2.606 2.606 2.606 2.606	20 84.1 Q m ³ /sec 0.200 0.236 0.353 0.439 0.531	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100


				_				
	TOC	51	mins			Area =	1.744	На
Rainfall Intensity Table								
Return period		1	2	5	10	20	50	100
	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		17440	m²					
	Q=	F*C*I*A						
		F	С	I	Α	Q	Fy	
		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	1.744	0.134	0.80	
Q2 - Minor		0.00278	0.706	46.30	1.744	0.158	0.85	
Q5		0.00278	0.789	61.90	1.744	0.236	0.95	1
Q10		0.00278	0.830	73.00	1.744	0.294	1.00	
Q20		0.00278	0.872	84.10	1.744	0.355	1.05	
Q50		0.00278	0.955	99.50	1.744	0.460	1.15	
Q100 - Major		0.00278	0.996	112.00	1.744	0.540	1.20	
C10 value				0.02				_
				0.83				
fi value		70.00	%	=	0.7	fi		
fi value	тос	70.00 51	% mins		0.7	fi Area =	4.789	На
ïi value EX Catchment 6 (Qm)	тос				0.7		4.789	На
ii value EX Catchment 6 (Qm) Rainfall Intensity Table	тос				0.7		4.789 50	Ha 100
fi value EX Catchment 6 (Qm) Rainfall Intensity Table	тос	51	mins	=		Area =		
i value EX Catchment 6 (Qm) Rainfall Intensity Table	TOC	51 1 41.6	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890	mins 2 46.3	=	10	Area = 20	50	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A	mins 2 46.3 m ²	=	10	Area = 20 84.1	50 99.5	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A F	mins 2 46.3 m ² C	= 5 61.9	10 73 A	Area = 20 84.1 Q	50 99.5 Fy	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period	TOC 51	51 1 41.6 47890 F*C*I*A F factor	mins 2 46.3 m ² C co eff	= 5 61.9 I mm/hr	10 73 A ha	Area = 20 84.1 Q m³/sec	50 99.5 Fy factor	100
ii value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278	mins 2 46.3 m ² C co eff 0.664	= 5 61.9 I mm/hr 41.60	10 73 A ha 4.789	Area = 20 84.1 Q m ³ /sec 0.367	50 99.5 Fy factor 0.80	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706	= 5 61.9 I mm/hr 41.60 46.30	10 73 A ha 4.789 4.789	Area = 20 84.1 Q m ³ /sec 0.367 0.435	50 99.5 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789	= 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 4.789	Area = 20 84.1 Q m ³ /sec 0.367 0.435 0.649	50 99.5 Fy factor 0.80 0.85 0.95	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C 0.664 0.706 0.789 0.830	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 4.789 4.789	Area = 20 84.1 M ³ /sec 0.367 0.435 0.649 0.806	50 99.5 Fy factor 0.80 0.85	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A ha 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1 Q m³/sec 0.367 0.435 0.649 0.806 0.975	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q ₁ Q ₂ - Minor Q ₅ Q10 Q20 Q20	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 4.789 4.789 4.789 4.789	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100
i value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Fotal Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A ha 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1 Q m³/sec 0.367 0.435 0.649 0.806 0.975	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
fi value EX Catchment 6 (Qm) Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50 Q100 - Major C10 value	TOC 51	51 1 41.6 47890 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278 0.00278	mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955	= 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 4.789 4.789 4.789 4.789 4.789 4.789	Area = 20 84.1	50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

EX Catchment 7 (Qm)								
	тос	51	mins			Area =	3.161	На
Rainfall Intensity Table	2							
Return period	-	1	2	5	10	20	50	100
•	51	41.6	46.3	61.9	73	84.1	99.5	112
Total Catchment Area		31610	m²					
	Q=	F*C*I*A						-
		F	С	I	Α	Q	Fy	
-		factor	co eff	mm/hr	ha	m³/sec	factor	
Q ₁		0.00278	0.664	41.60	3.161	0.243	0.80	_
Q2 - Minor		0.00278	0.706	46.30	3.161	0.287	0.85	4
Q5		0.00278	0.789	61.90	3.161	0.429	0.95	4
Q10		0.00278	0.830	73.00	3.161	0.532	1.00	4
Q20		0.00278	0.872	84.10	3.161	0.644	1.05	_
Q50		0.00278	0.955	99.50	3.161	0.834	1.15	_
Q100 - Major		0.00278	0.996	112.00	3.161	0.979	1.20	
							-	
				0.83				_
C10 value fi value EX Catchment 8 (Qm)	70.00			0.7			
fi value) TOC			0.83	0.7		12.418	Ha
fi value EX Catchment 8 (Qm	ТОС	70.00	%	0.83	0.7	fi		На
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	ТОС	70.00	%	0.83	0.7	fi		Ha 100
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	ТОС	70.00 51	% mins	0.83		fi Area =	12.418	
fi value EX Catchment 8 (Qm) Rainfall Intensity Table	TOC	70.00 51 1	% mins 2	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6 124180	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period	TOC	70.00 51 1 41.6 124180	% mins 2 46.3	0.83 = 5	10	fi Area = 20	<u>12.418</u> 50	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area	TOC	70.00 51 1 41.6 124180 F*C*I*A	% mins 2 46.3 m ²	0.83 = 5	10 73	fi Area = 20 84.1	12.418 50 99.5	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area	TOC	70.00 51 1 41.6 124180 F*C*I*A F	% mins 2 46.3 m ² C	0.83 = 5 61.9	10 73 A	fi Area = 20 84.1	12.418 50 99.5	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor	TOC	70.00 51 41.6 124180 F*C*I*A F factor	% mins 2 46.3 m ² C co eff	0.83 = 5 61.9 I mm/hr	10 73 A ha	fi Area = 20 84.1 Q m³/sec	12.418 50 99.5 Fy factor	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q ₁ Q2 - Minor Q5	TOC	70.00 51 1 41.6 124180 F*C*I*A F factor 0.00278	% mins 2 46.3 m ² C co eff 0.664	0.83 = 5 61.9 I mm/hr 41.60	10 73 A ha 12.418	fi Area = 20 84.1 Q m³/sec 0.953	12.418 50 99.5 Fy factor 0.80	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706	0.83 = 5 61.9 I mm/hr 41.60 46.30	10 73 A 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127	12.418 50 99.5 Fy factor 0.80 0.85	100
ii value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90	10 73 A ha 12.418 12.418 12.418	fi Area = 20 84.1 Q m ³ /sec 0.953 1.127 1.684	12.418 50 99.5 Fy factor 0.80 0.85 0.95	100
fi value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	70.00 51 1 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00	10 73 A ha 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127 1.684 2.090	12.418 50 99.5 Fy factor 0.80 0.85 0.95 1.00	100
ii value EX Catchment 8 (Qm Rainfall Intensity Table Return period Total Catchment Area Q1 Q2 - Minor Q5 Q10 Q20 Q50	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.830 0.872	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10	10 73 A 12.418 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m³/sec 0.953 1.127 1.684 2.090 2.528	12.418 50 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05	100
fi value	TOC	70.00 51 41.6 124180 F*C*I*A F factor 0.00278 0.00278 0.00278 0.00278 0.00278	% mins 2 46.3 m ² C co eff 0.664 0.706 0.789 0.830 0.872 0.955 0.996	0.83 = 5 61.9 I mm/hr 41.60 46.30 61.90 73.00 84.10 99.50	10 73 A ha 12.418 12.418 12.418 12.418 12.418 12.418 12.418	fi Area = 20 84.1 Q m ³ /sec 0.953 1.127 1.684 2.090 2.528 3.276 3.848	12.418 50 99.5 99.5 Fy factor 0.80 0.85 0.95 1.00 1.05 1.15	100

Dine Outlet 1 Dynass (Om)	\ \						
Pipe Outlet 1 Bypass (Qm)							
Contributing Catchment	1	2/					
Pipe Capacity @ 1%	1.25	m³/s					
1 x 750 dia RCP							
		_					
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10					0.000		
Q20					0.000		
Q50					0.256		
Q100 - Major					0.519		
		<u> </u>	1	1	0.010	1	
Pipe Outlet 2 Bypass (Qm)							
		ina Quilat 1	Dunaaa				
Contributing Catchment		-	Буразб				
Pipe Capacity @ 0.5%	3.173	m³/s					
1 x 600 3 x 750 dia RCP							
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10					0.016		
Q20					0.684		
Q50					2.082		
Q100 - Major					3.217		
-							
Pipe Outlet 3 Bypass (Qm)	\						
Contributing Catchment	5						
Pipe Capacity @ 2.6%	2	m³/s					
1 x 750 dia RCP							
					_		
					Q		
					m³/sec		
Q ₁					0.000		
Q2 - Minor					0.000		
Q5					0.000		
Q10			İ		0.000		
Q20					0.000		
Q50					0.000		
Q100 - Major					0.000		
					0.000		

Emmaus College – Yaamba Road Campus

362 Yaamba Road - Norman Gardens Transport Impact Assessment

Prepared by: Stantec Australia Pty Ltd for Catholic Education – Diocese of Rockhampton on 18/01/2022 Reference: 301401314 Issue #: A

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/33-2022

Emmaus College – Yaamba Road Campus

362 Yaamba Road - Norman Gardens Transport Impact Assessment

Client: Catholic Education – Diocese of Rockhampton on 18 January 2022 Reference: 301401314 Issue #: A

Quality Record

lssue	Date	Description	Prepared By	Checked By	Approved By	Signed
А	18/01/2022	Final (for client)	S.Bate J.Hulbert	J.Hulbert	J.Hulbert (RPEQ 08902)	/m44

© Stantec Australia Pty Ltd [ABN 17 007 820 322] 2021 The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of Stantec Australia constitutes an infringement of copyright. The intellectual property contained in this document remains the property of Stantec Australia.

Melbourne | Sydney | Brisbane Adelaide | Perth

CONTENTS

1.	Intro	oduction	1
	1.1.	Background	2
	1.2.	Purpose of this Report	2
	1.3.	References	2
2.	Exis	ting Conditions	3
	2.1.	Redeveloped Yaamba Road Campus	4
	2.2.	Active Transport Network	5
	2.3.	Public Transport Network	7
	2.4.	Existing Road Network	8
	2.5.	Future Road Network Planning	9
	2.6.	On-Street Car Parking Supply	9
3.	Futu	Ire Conditions	10
	3.1.	Future Transport Network Planning	11
	3.2.	Background Traffic Growth	11
4.	Prop	posed Yaamba Road Campus	12
	4.1.	Site Plan	13
	4.2.	Proposed Service Offering	13
	4.3.	Pedestrian Access	14
	4.4.	Bicycle Facilities	15
	4.5.	Public Transport Access	15
	4.6.	Vehicle Access Arrangements	16
	4.7.	Car Parking Provision	18
	4.8.	Car Parking Design	20
	4.9.	Servicing and Refuse Collection	22
5.	Traf	fic Impact Assessment	23
	5.1.	Analysis Overview	24
	5.2.	Traffic Impact Summary	24

301401314 // 18/01/2022

Transport Impact Assessment // Issue: A

Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

6. Response to Council Codes And SDAP State Code 1

7. Conclusion

Appendices

- A. Development Plans
- B. Swept Path Assessment
- C. Response to Council Codes And SDAP State Code 1

Figures

Figure 2.1:	Campus Location and Its Environs	4
Figure 2.2:	Rockhampton Regional Council Zoning	4
Figure 2.3:	Easement 'C' Location	5
Figure 2.4:	Easement 'C' Cross Section	5
Figure 2.5:	Yaamba Road Campus - Walkability Mapping	6
Figure 2.6:	Yaamba Road Campus – Bicycle Mapping	6
Figure 2.7:	Public Transport Accessibility	7
Figure 2.8:	Yaamba Road (Bruce Highway) at Emmaus College (Facing south)	8
Figure 2.9:	Yaamba Road Service Road (Facing south)	9
Figure 2.10:	Main Street at Yaamba Road (Facing east)	9
Figure 2.11:	Easement C on SP209765 (facing east)	9
Figure 3.1:	Local Government Infrastructure Plan – Trunk Road Network	11
Figure 4.1:	Site Plan	13
Figure 4.2:	Internal Pedestrian Connections	15
Figure 4.3:	Proposed Northern Vehicle Access	16
Figure 4.4:	Proposed Southern Vehicle Access	17
Figure 4.5:	Proposed Refuse Storage & Collection Area	22
Figure 4.6:	Proposed Loading Dock	22

Tables

Table 2.1:	Public Transport Provision	7
Table 2.2:	Existing Road Network	8
Table 4.1:	Car Park Layout Review	20

301401314 // 18/01/2022

Stantec Norman Gardens

25 27

1. INTRODUCTION

GTACONSULTANTS Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

y 🕥 Stantec

301401314 // **18/01/2022** Transport Impact Assessment // Issue: A Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

1

1.1. Background

Stantec Australia Pty Ltd has been commissioned by Catholic Education – Diocese of Rockhampton to undertake a Transport Impact Assessment (TIA), as presented in this report for the new master plan of redevelopment of the Yaamba Road Campus of Emmaus College located at 362 Yaamba Road, Norman Gardens. The site is described as Lots 1 on RP607187, Lot 2 on RP607681, and Lot 2 on RP613982.

The proposed redevelopment of the campus, which services school years 7 - 9, introduces new facilities such as a multi-use centre, student services and amenities block, as well as a new multi-use car park. This redevelopment is expected to cater for an increase of the student population from 750 to 773 students. This TIA outlines the conceptual level transport servicing strategy to support the development application for the proposed redevelopment being lodged with Rockhampton Regional Council.

1.2. Purpose of this Report

This report sets out an assessment of the anticipated transport implications of the proposed redevelopment, including consideration of the following:

- 1. existing traffic and parking conditions surrounding the site
- 2. suitability of the proposed parking in terms of supply (quantum) and layout
- 3. service vehicle requirements
- 4. pedestrian and bicycle requirements
- 5. suitability of the proposed access arrangements for the site
- 6. the transport impact of the development proposal on the surrounding road network.

1.3. References

In preparing this report, reference has been made to the following:

- Rockhampton Regional Council 'Rockhampton Region Planning Scheme' (dated July 2017)
- Department of Transport and Main Roads (TMR) 'Guidelines for Assessment of Road Impacts of Development' (GARID) (dated March 2006)
- Australian/New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking 2890.1:2004 (AS/NZS 2890.1:2004)
- Australian Standard, Parking Facilities, Part 2: Off-Street Commercial Vehicle Facilities 2890.2-2002 (AS 2890.2-2002)
- Australian Standard, Parking Facilities, Part 3: Bicycle Parking Facilities 2890.3-1993 (AS 2890.3-1993)
- Australian/New Zealand Standard, Parking Facilities, Part 6: Off-Street Parking for People with Disabilities 2890.6:2009 (AS/NZS 2890.6:2009)
- plans for the proposed development prepared by Tony Madden Architects provided at Appendix A:
 - o Proposed Overall Site Plan MCU-02, Issue P21, dated 12/01/2022
- other documents and data as referenced in this report.

301401314 // 18/01/2022

2. EXISTING CONDITIONS

GTACONSULTANTS Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

🖌 🕥 Stantec

2.1. Redeveloped Yaamba Road Campus

The existing Yaamba Road Campus is located at 362 Yaamba Road, Norman Gardens and is described as Lots 1 on RP607187, Lot 2 on RP607681, and Lot 2 on RP613982. The site of approximately 92,500sq.m has frontages of approximately 240m to the Yaamba Road Service Road. The location of the Yaamba Road Campus and its surrounding environs is shown in Figure 2.1.

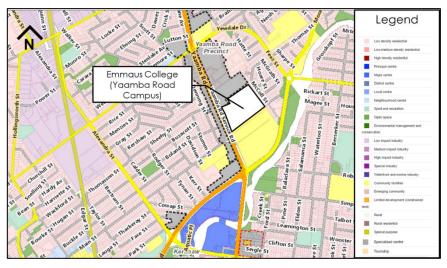


Figure 2.1: Campus Location and Its Environs

The surrounding properties predominantly include community use (North Rockhampton Cemetery) to the south, the Yaamba Road Specialised Centre (highway focussed retail function) to the west, low-density residential property to the east, and the Discovery Park Rockhampton (caravan park) to the north.

The Yaamba Road Campus is classified as 'community use' in Council's Rockhampton Region Planning Scheme as shown in Figure 2.2.



301401314 // **18/01/2022** Transport Impact Assessment // Issue: A **Stantec** Norman Gardens The campus is also bordered to the south by a water easement for an underground trunk water main, formally known as Easement 'C' on SP209765, as shown in Figure 2.3.

Figure 2.3: Easement 'C' Location

The existing easement arrangement is currently used as a driveway for the school as shown in Figure 2.4. This allows access to the south-eastern side of the campus, including the store areas and school grounds whilst also being readily available for Council if they are required to inspect or conduct repairs along the easement.

Figure 2.4: Easement 'C' Cross Section

2.2. Active Transport Network

2.2.1. Pedestrian Infrastructure

The provision of pedestrian infrastructure on the Yaamba Road service road is currently provided in the form of a shared zone along the western frontage of the campus, with Easement 'C' on SP209765 also providing an east-west pedestrian connection for staff and students. A skybridge due south of the campus also allows students to cross Yaamba Road without conflicting with vehicle movements on street, providing safe and efficient movement. The current walkability measure of the school is indicated in Figure 2.5, with the walking times from 5 minutes to 30 minutes outlined.

🧹 🕥 Stantec

3BEXISTING CONDITIONS

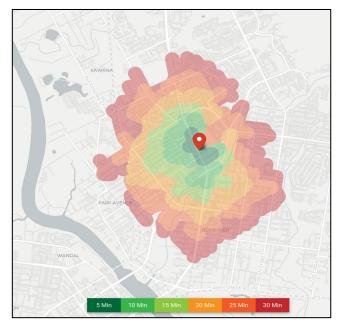


Figure 2.5: Yaamba Road Campus - Walkability Mapping

2.2.2. Bicycle Infrastructure

Dedicated on-road bicycle infrastructure is currently provided proximate to the campus, with bicycle lanes on currently provided on the Yaamba Road corridor, as well as on the intersection legs of Main Street (Main Street / Yaamba Road intersection), Moores Creek Road (Moores Creek Road / Yaamba Road intersection) and Richardson Road (Richardson Road / Yaamba Road intersection). The current bicycle connectivity of the school is indicated in Figure 2.5, with the cycling times from 5 minutes to 30 minutes outlined.

Figure 2.6: Yaamba Road Campus - Bicycle Mapping

2.3. Public Transport Network

Public transport accessibility is defined in TransLink's Public Transport Infrastructure Manual (PTIM) and measured by the reasonable walk-up catchment by stop type. The reasonable walk-up catchment for a standard bus stop is defined as 400m. This increases to 800m where access to high-frequency services, such as to rail or busway services are available.

The proposed new campus site currently has access to several Translink operated services, and more importantly, several dedicated school bus services all within 400m walking distance to the school, as shown in Figure 2.7. Details of the services are outlined in Table 2.1.

Based on the intent of Translink's guideline, the Yaamba Road Campus is well serviced by existing public transport infrastructure and services.

Table 2.1: Public Transport Provision

Service	Route #	Route Description	Location of Stop	Frequency On/Off Peak
Bus	Yep Express	Capricorn Coast – Rockhampton	Emmaus College	1 AM & PM Service
Bus	19	Rockhampton State High School – Emmaus College	Emmaus College	2 AM & PM Services
Bus	20	Capricorn Coast – Rockhampton	Emmaus College	2 AM services
Bus	410	City – Parkhurst Via Stockland	Main Street at Emmaus College (Norman Park)	Hourly

301401314 // 18/01/2022

Transport Impact Assessment // Issue: A

Stantec Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

Service F	Route #	Route Description	Location of Stop	Frequency On/Off Peak
Bus	401	Glenmore Schools – Stockland – City – Allenstown – The Range South	Main Street at Emmaus College (Park Avenue)	30 mins peak / Hourly off peak
Bus	403	CQU – Stockland – City – Rockhampton HS Clockwise	Main Street at Emmaus College (Park Avenue)	90 – 120 minutes
Bus	407	CQU – Stockland – City – Base Hospital South	Main Street at Emmaus College (Park Avenue)	35 minutes peak / Hourly off peak

2.4. Existing Road Network

Characteristics of existing roads in the vicinity of the subject site are outlined in Table 2.2, with typical crosssections of those roads proximate to the Yaamba Road Campus shown in Figure 2.8 to Figure 2.11.

Table 2.2: Existing Road Network

Road Name	Yaamba Road (Bruce Highway)	Yaamba Road Service Road	Main Street
Jurisdiction	State Controlled	State Controlled	Council Controlled
Class Type	Highway	Highway (Service Road)	Major Urban Collector
Posted Speed	70km/h	20km/h (shared zone)	60km/h
Lane Formation	four-lane / divided / two-way	One-lane/ undivided / one-way	two-lane / undivided / two- way
Carriageway Width	11m NBD / 10m SBD	6m	11m
Reserve Width	32m	18m	20m
Kerbside Parking	No Stopping	16 drop and go bays	Unrestricted

Figure 2.8: Yaamba Road (Bruce Highway) at Emmaus College (Facing south)

301401314 // 18/01/2022

StantecTransport Impact Assessment // Issue: AEmmaus College – Yaamba Road Campus, 362 Yaamba Road -
Norman Gardens

3BEXISTING CONDITIONS

Figure 2.9: Yaamba Road Service Road (Facing south)

Figure 2.10: Main Street at Yaamba Road (Facing east)

Figure 2.11: Easement C on SP209765 (facing east)

2.5. Future Road Network Planning

A review of the Queensland Department of Transport and Main Roads' *Queensland Transport and Roads Investment Program (QTRIP)* and Council's *My Neighbourhood* Works and Projects interactive mapping has indicated that there are no proposed road upgrades or other related works within the vicinity of the Campus.

2.6. On-Street Car Parking Supply

A review of publicly available car parking in the vicinity of the site indicates that on-street parking is currently only permitted in the 16 car parking spaces servicing the drop and go facility at the Yaamba Road Campus.

3. FUTURE CONDITIONS

GTACONSULTANTS Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

🖌 🕥 Stantec

3.1. Future Transport Network Planning

3.1.1. Local Government Infrastructure Plan

A review of Rockhampton Regional Council's *Local Government Infrastructure Plan* has revealed that no future road projects are planned within the vicinity of the Yaamba Road campus, as shown in Figure 3.1.

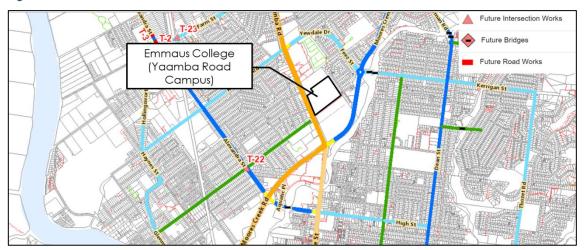


Figure 3.1: Local Government Infrastructure Plan – Trunk Road Network

3.1.2. Department of Transport and Main Roads

A review of publicly available information on the projects in the Fitzroy Region (i.e. Rockhampton) of Department of Transport and Main Roads has revealed that no major projects are planned within the vicinity of the Yaamba Road campus. It should be noted however that continual projects on the provision of improved bicycle infrastructure and safety improvements along the Bruce Highway have been recently completed, promoting the active travel accessibility and safety along this road corridor.

3.2. Background Traffic Growth

Traffic growth rates for the background road network have been derived from data supplied within 'Table SC3.1.5.6 – Existing and projected demand for the transport network', contained within Council's LGIP. For the catchment of North Rockhampton, the daily trip projections were used to estimate a forecast annual average traffic growth. With an existing vehicle trip demand of 348,601 in 2016, and a projected demand of 395,076 in 2036, a growth rate of 0.70% is understood to be the linear annual growth for the area surrounding the campus.

Stantec

4. PROPOSED YAAMBA ROAD CAMPUS

GTACONSULTANTS Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

y 🕥 Stantec

4.1. Site Plan

An overview of the proposed redevelopment of the Yaamba Road Campus for Emmaus College and its intended access arrangements, car parking and pedestrian / vehicle circulation network is generally provided in the site plan shown in Figure 4.1, with master plan drawings provided in Appendix A.

4.2. Proposed Service Offering

The proposed redeveloped Yaamba Road campus involves the construction of several new buildings and facilities, including:

• a new multi-use centre to the north-west of the campus

Stantec

reconfiguration of the existing car park access and carpark layout to the north-west of the campus

301401314 // 18/01/2022

- a new landscaped student gathering area in the centre of the campus
- a new administration building to the south-west of the campus
- student services building and male/female student amenities
- a bus set down zone accommodating up to 3 buses to the south of the campus
- a GLA block to the south of the campus

The school has approval for a student population of 1422 students (for both the Yaamba Road and Main Street campuses), with approximately 735 students in Years 7 to 9 forming the student population for the Yaamba Road campus for 2022. The future 2025 student population for the Yaamba Road campus is expected to increase by 25 students, resulting in an expected future student population of 760. This student population increase is not viewed as major, nor is it expected to have any material impact to the operation of the campus.

This redevelopment is expected to commence in early to mid-2022 with the construction of the administration building. The remaining elements of the redevelopment of the campus are expected to be constructed thereafter in stages over a period of 3 to 4 years with a goal completion date of the early 2025 (i.e. before the start of the 2025 school year).

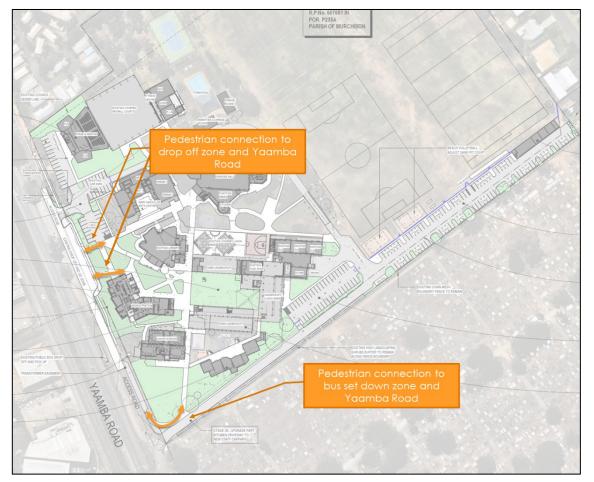
4.3. Pedestrian Access

4.3.1. External Pedestrian Access

A formal pedestrian footpath network is currently provided around the proposed new campus in the form of dedicated pedestrian and shared zone roads. The existing footpath network provides necessary pedestrian connections to and from the campus to key public transport stops and stations.

Safe pedestrian crossings are also provided at the skybridge across Yaamba Road, south of the campus and the signalised intersections of Yaamba Road / Richardson Road to the north and Yaamba Road / Moores Creek Road to the south.

4.3.2. Internal Pedestrian Access


The preliminary pedestrian network internal to the campus connects the main buildings of the school to key pedestrian nodes, such as the school drop off zone, bus set down zone and Yaamba Road itself. The pedestrian connection to the west has also been noted in Easement C on SP209765. These connections are shown on Figure 4.2.

5BPROPOSED YAAMBA ROAD CAMPUS

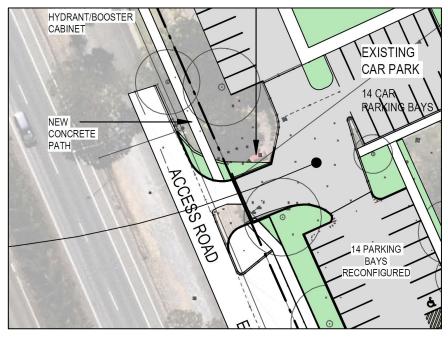
Figure 4.2: Internal Pedestrian Connections

4.4. Bicycle Facilities

The Yaamba Road Campus currently has on-site capacity for the secure storage of 56 student bicycles. This capacity currently caters for existing student bicycle mode-share demands and is also expected to adequately cater for additional demands that may arise from increased mode-share attributed to the total student population forecast (i.e. 735 to 760).

4.5. Public Transport Access

With consideration to the type of use for the educational establishment (i.e., Year 7 to 9 school) and provision of public transport services, it is expected that public transport usage by the students will continue to be high. With this in mind, the connections to the existing public transport will be maintained to ensure equity of access to the Campus. With connections to the Campus's buildings to the external pedestrian network intended to be provided, the safe and efficient movement of people from the school to the external pathway network is expected, resulting in high public transport accessibility.


4.6. Vehicle Access Arrangements

As part of the redevelopment of the Yaamba Road Campus, the existing north and south vehicle accesses are proposed to remain to cater for the various needs of the users of the school, with the central vehicle access to be removed. This overall reduction in vehicle access numbers is expected to reduce the friction along the Yaamba Road corridor as well as promote the safety and operation of the pedestrian network (i.e. less conflict points along the campus's verge).

4.6.1. Northern Vehicle Access

The northern vehicle access is proposed to be maintained as part of one of the two vehicle accesses proposed to the redeveloped campus, as shown in Figure 4.3. This vehicle access will provide entry to the northern car park modules containing 42 parking spaces.

Whilst the proposed access's location and intended uses remains the same, a review of the vehicle access against Council's Planning Scheme has found that any vehicle access is to be located such at it is:

- at least 6m away from the tangent point of a nearby intersection
- at least 1m away from any pit lintel
- at least 1m away from any local area traffic management device
- achieves a desirable minimum sight distance of 55m or absolute minimum of 35m, based on a 40km/h frontage road speed (lowest speed under Australian Standards).

The proposed vehicle access location is as per the arrangements of the existing site. Having regard for this and the above design requirements, the proposed northern vehicle access locations is considered satisfactory.

The vehicle access design for the northern carpark has also considered the intended design vehicles (i.e. up to a service vehicle vehicle) which are expected to be maintained as per the existing arrangements. Per the

301401314 // 18/01/2022

StantecTransport Impact Assessment // Issue: AStantecEmmaus College – Yaamba Road Campus, 362 Yaamba Road -
Norman Gardens

requirements of Council's Planning Scheme, for a service vehicle on a minor road, the driveway is proposed to be designed in accordance with the following:

- a Type B2 crossover, based on Council's standard drawing CMDG R 042A
- a crossover width of 7.0m
- kerb tapers as set out in standard drawing CMDG R 042A.

The proposed northern vehicle access to be utilised by the school accords with these design requirements and is therefore considered acceptable. A swept path assessment was also undertaken, and is provided in Appendix C, which confirms that the proposed vehicle access form can accommodate the nominated design vehicles.

4.6.2. Southern Vehicle Access

The southern vehicle access is proposed to be maintained as part of one of the two vehicle accesses proposed to the redeveloped campus, as shown in Figure 4.3. This vehicle access will provide entry to the southern staff car park containing 39 parking spaces, the 80 bay multi-use car park to the east of the site as well as the campus's refuse servicing area and managed bus turnaround area.

Figure 4.4: Proposed Southern Vehicle Access

Whilst the proposed access's location and intended uses remains the same, a review of the vehicle access against Council's Planning Scheme has found that any vehicle access is to be located such at it is:

- at least 6m away from the tangent point of a nearby intersection
- at least 1m away from any pit lintel
- at least 1m away from any local area traffic management device
- achieves a desirable minimum sight distance of 55m or absolute minimum of 35m, based on a 40km/h frontage road speed (lowest speed under Australian Standards).

301401314 // 18/01/2022

Transport Impact Assessment // Issue: A **Stantec** Norman Gardens The proposed vehicle access location is as per the arrangements of the existing site. Having regard for this and the above design requirements, the proposed southern vehicle access locations is considered satisfactory.

The vehicle access design for the southern carparks has also considered the intended design vehicles (i.e. up to a bus) which are expected to be maintained as per the existing arrangements. Per the requirements of Council's Planning Scheme, for a design vehicle of a bus on a minor road, the driveway is proposed to be designed in accordance with the following:

- a Type B2 crossover, based on Council's standard drawing CMDG R 042A
- a crossover width of 9.0m
- kerb tapers as set out in standard drawing CMDG R 042A.

The proposed southern vehicle access to be utilised by the school has been designed generally in accordance with the above requirements, noting that the form of the driveway has largely been driven by the spatial requirements of a bus entering and exiting the driveway (as per the Australian Standard requirements), as such, the design of the southern crossover is viewed as acceptable.

A swept path assessment was also undertaken, and is provided in Appendix C, which confirms that the proposed vehicle access form can accommodate a bus entering and exiting the vehicle access.

4.7. Car Parking Provision

It is understood that the redeveloped campus will include the following:

- 59 car parking spaces for short-term parking
- 100 car parking spaces for staff
- drop and go facility with a capacity of 16 cars (can be used as visitor parking during non-peak periods)
- 3 bus parking bays.

As the Yaamba Road campus caters for the years 7 to 9 student population, there is an expectation that no students attending this campus will be of driving age. As such, parking for students has not been provided. The resulting car parking provision internal to the site is 161 car parking spaces.

The existing car park provision currently provided on the campus is 141 car parking spaces (unallocated) comprising of:

- 71 formal car parking spaces for staff and visitors
- 70 informal car parking spaces (provided adjacent to the school's sports grounds)
- drop and go facility with a capacity of 16 cars.

4.7.1. Short-Term Parking

TMR's planning guidelines, 'Planning for Safe Transport Infrastructure at Schools' highlights that short-term parking should be provided at the rate equivalent to 1 space per 15 students. The application of this rate to the upper-bound student population (i.e., 760 students) equates to a short-term parking provision of 51 car spaces.

301401314 // 18/01/2022

 Transport Impact Assessment // Issue: A

 Stantec

 Emmaus College – Yaamba Road Campus, 362 Yaamba Road - Norman Gardens

As presented on the drawings, the short-term parking is located at both the north-west and east of the campus and will provide a total capacity of 59 car parking spaces. As such, the short-term car parking to be provided to support the redeveloped campus is aligned with the required intent of TMR's planning guidelines.

4.7.2. Staff Parking

TMR Requirements

TMR's planning guidelines, 'Planning for Safe Transport Infrastructure at Schools' highlights that parking for school staff should be provided at the rate equivalent to 0.7 spaces per staff member. The application of this rate to the expected staff population in 2025 (i.e., 100 FTE staff) equates to a staff parking provision of 70 car spaces.

As presented on the drawings, the parking for staff vehicles is located under to the east of the undercroft lunch area and will provide a total capacity of 37 regular car parking spaces and 4 motorcycle bays (accessed via the southern access road) in the dedicated staff car parking area. The remaining staff bays are provided to the west mixed with the short-term car parking areas.

The staff car parking to be provided to support the redeveloped campus is aligned with the requirement of TMR's planning guidelines.

Council Requirements

It is also noted that the only car parking requirement set out in Council's Planning Scheme for an educational establishment is for staff car parking at a rate of 2 spaces for every 3 full-time employees. With an FTE staff population of 100 in 2025, this equates to a required staff parking provision of 67 spaces.

The provision of 100 staff car parking spaces exceeds with Council's requirement and is considered acceptable.

4.7.3. Drop and Go Facility

The maintenance of the existing drop and go facility is proposed as part of the redevelopment of the campus. With no major change in student numbers expected for the campus, the provision of a 16 bay drop and go facility is expected to adequately maintain the demand for a set down facility for the campus.

4.7.4. Accessible Car Parking Provision

Car parking for people with disabilities (PWD) have been provided at the rates specified in the Disability (Access to Premises – Buildings) Standards 2010. For a school type use, the required provision rate is 1 space per 100 car parking spaces or part thereof.

Based on the car parking provisions for short-term and staff parking (i.e 166 spaces), 2 PWD spaces and their associated shared space are required to provided near the main pedestrian access points at the campus.

The provision of 4 PWD spaces exceeds the statutory requirements and is considered an acceptable provision.

4.8. Car Parking Design

4.8.1. Car Park Design Review

The proposed car park layout has been reviewed against the requirements of Council's Planning Scheme, and relevant Australian Standards (ASS2890.1, AS2890.2 and AS2890.6). The assessment included a review of the following:

- car parking bay and aisle widths
- adjacent structures
- turnaround facilities
- circulation roads and ramps
- ramp grades
- height clearances
- internal queueing
- parking for persons with disabilities
- motorcycle / motor scooter parking.

The review of the car park layout is summarised in Table 4.1.

Design Aspect	Design Element	Statutory Requirement (Council)	Statutory Requirement (Australian Standard)	Proposed Design	Compliance			
	Car Park Bays (for User Class 1)							
Parking Bays &	Bay width	As per AS 2890.1	2.4m	2.7m	AS 2890.1			
Aisles	Bay length	As per AS 2890.1	5.4m	5.4m	AS 2890.1			
	Aisle width	As per AS 2890.1	6.2m	6.5m	AS 2890.1			
	Car Park Bays (for User Class 3)							
Parking Bays & Aisles	Bay width	As per AS 2890.1	2.6m	2.7m	Bay width			
AISIES	Bay length	As per AS 2890.1	5.4m	5.4m	Bay length			
	Aisle width	As per AS 2890.1	6.2m	6.5m	Aisle width			
Adianant	Walls	0.3m clearance	0.3m clearance	0.3m clearance	AS 2890.1			
Adjacent Structures	Columns	Outside of parking envelope	Outside of parking envelope	Outside of parking envelope	AS 2890.1			
Turnaround Facilities	Terminating aisles	As per AS 2890.1	1m aisle extension	1m aisle extension (sliding gate)	AS 2890.1			
Circulation Roads and Ramps	Circulation aisle width	As per AS 2890.1	One-way: 3.0m – straight Two-way: 5.5m – straight	6.5m	AS 2890.1			

301401314 // **18/01/2022**

Transport Impact Assessment // Issue: A

Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

5BPROPOSED YAAMBA ROAD CAMPUS

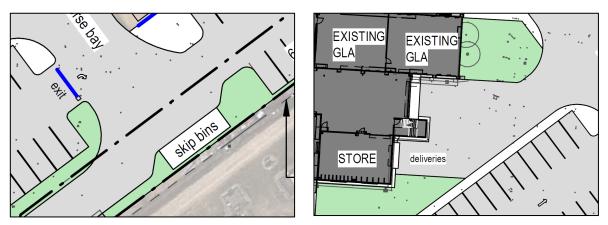
Design Aspect	Design Element	Statutory Requirement (Council)	Statutory Requirement (Australian Standard)	Proposed Design	Compliance
Ramp Gradients	First 6m	As per AS 2890.1	1:20 for first 6m	To be designed at a max of 1:20 for the first 6m	To be designed at a max of 1:20 for the first 6m
	Service Area Gradient	As per AS 2890.1	1:8	To be designed at a max of 1:8 for the service areas	To be designed at a max of 1:8 for the service areas
	Queueing Areas	As per AS 2890.1	1:6.5	To be designed at a max of 1:6.5 for the queueing areas	To be designed at a max of 1:6.5 for the queueing areas
	Parking Areas (parallel with parking spaces)	As per AS 2890.1	1:20	To be designed at a max of 1:20 for the parking areas	To be designed at a max of 1:20 for the parking areas
	Summit Transition Requirement	As per A AS 2890.1	1:16 in 10m of travel	N/A	-
	Circulation ramp	As per AS 2890.1	1:6.5	N/A	-
	Sag Transition Requirement	As per AS 2890.1	1:16 in 10m of travel	N/A	-
	Parking module ramp	As per AS 2890.1	1:16	N/A	-
Height Clearances	Circulation aisles	As per AS 2890.1	2.2m (regular bay) OR 2.3m (PWD)	N/A Open Air Car Park	-
	Parking bays	As per AS 2890.1	2.2m (regular bay) OR 2.5m (PWD)	N/A Open Air Car Park	-
Internal Queuing	Internal vehicle queuing provision	As per AS 2890.1	2 vehicles for car park	12m (2 vehicles)	AS 2890.1
Parking for Persons with Disabilities	Provision	2 spaces	2 spaces	2 spaces	Disability (Access to Premises - Buildings) Standards 2010
	PWD bay / adjacent shared bay width	As per AS 2890.1	2.4m	2.7m	AS 2890.1
	PWD bay / adjacent shared bay length	As per AS 2890.1	5.4m	5.4m	AS 2890.1

301401314 // 18/01/2022

The review indicates that the proposed car parking layout complies with the requirements set out in Council's Planning Scheme and Australian Standards and is therefore considered acceptable.

4.8.2. Car Parking Interim Management

Stantec has been advised that the car parking areas are intended to be completed in one stage. Due to this, no major no interim management or operational requirements are expected to be required, noting some management due to construction traffic is expected throughout the redevelopment of the campus.


4.9 Servicing and Refuse Collection

Whilst Council's Planning Scheme does not explicitly specify a service vehicle for an educational establishment, servicing and refuse collection is expected to occur to the south of the campus. In terms of operations, this is consistent to the location of existing operations.

The refuse storage area is proposed to be located at the southern boundary of the school as shown in Figure 4.5. Collection of the refuse is expected to occur during off peak periods and managed internally, to minimise potential conflict with other vehicles.

Dedicated loading bays for service vehicles are also located at the stores to the south of the campus for any expected deliveries, as shown in Figure 4.6.

Figure 4.5: Proposed Refuse Storage & Collection Figure 4.6: Proposed Loading Dock Area

The accessibility to the refuse collection and servicing area is viewed as satisfactory to the needs of the school.

5. TRAFFIC IMPACT ASSESSMENT

301401314 // **18/01/2022** Transport Impact Assessment // Issue: A Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

23

5.1. Analysis Overview

This section of the report examines the expected operational impacts of the proposed redevelopment of the Yaamba Road campus on the external road network.

5.2. Traffic Impact Summary

With an expected increase of 18 car parking spaces provided on-site and an increase of the student population of 25 students, under Schedule 20 of Planning Regulation 2017, the threshold of assessing any impacts to state transport networks is the increase of the educational establishment to likely accommodate an extra 100 students. As the increase falls well short of the 100-student threshold, no assessment against state-controlled road infrastructure is required.

It is noted that an increase of car parking supply is proposed in total (i.e., 159 proposed vs 141 existing), as well as the change in the location of the car park supply throughout the campus (decrease in car parking supply to the north of the campus, with an increase in car parking supply to the south accessed off the easement proposed). This is expected to result in a moderate redistribution of traffic accessing the campus from the service road, with more vehicles expected to access the southern driveway with the formalisation of a staff car park, and the sports ground car park.

This redistribution internal to the campus, however, is not expected to impact the distribution of traffic accessing the service road (and thus the campus) from Yaamba Road, with all vehicles travelling to the site still required to access the campus from the Sheehy Street / Yaamba Road priority-controlled intersection and exit the campus from the Yaamba Road / Main Street signalised intersection.

As the overall traffic distribution to and from the road network to the campus is understood to occur at two localised intersections, it is easy to understand that an increase of 18 vehicle trips (based on a conservative assumption because of an increase in 18 car park spaces for the campus), is going to result in no material impact to the operation and safety of the two aforementioned intersections or the Yaamba Road service road itself.

RESPONSE TO COUNCIL CODES AND SDAP STATE CODE 1

7BRESPONSE TO COUNCIL CODES AND SDAP STATE CODE 1

A response table to Rockhampton Region Planning Scheme and SDAP's State Code 1 is provided at Appendix C to this report.

7. CONCLUSION

GTACONSULTANTS Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

🗸 🕥 Stantec

Based on the analysis and discussions presented within this report, the following conclusions are made:

- The existing pedestrian and footpath network provides pedestrian connections to / from the proposed campus to key destinations and public transport services.
- The existing provision for bicycle facilities in the form of 56 student bicycle parking spaces is expected to maintain capacity to cater for existing student bicycle mode-share demands and is also expected to adequately cater for additional demands that may arise from the increased student count.
- The proposed secondary school generates a statutory car parking requirement of:
 - o 52 short term car parking spaces.
 - o 70 staff car parking spaces.
 - o 24 set-down bays.
- The provision of 59 short term car parking spaces, 100 staff car park spaces exceeds or matches TMR's requirements and is viewed as an acceptable provision.
- The maintained provision of 16 drop and go bays is viewed as an acceptable provision, noting that ample parking provision is also provided internal to the campus for use.
- The proposed parking layout is to be consistent with the dimensional requirements as set out in the Council's Planning Scheme and the relevant Australian Standards (AS 2890.1 and AS 2890.6).
- On-site servicing and refuse collection by service vehicles is expected to be satisfactory, with confirmation of the servicing arrangements to be finalized at a later stage.
- The increase in student population of 25 students for the campus does not trigger an assessment of impacts to state controlled infrastructure.
- This increase in student population is viewed as minor in nature, with no material impact to the operation and safety of the campus and external road network as a result.

A.DEVELOPMENT PLANS

301401314 // 18/01/2022 Transport Impact Assessment // Issue: A Emmaus College - Yaamba Road Campus, 362 Yaamba Road -Stantec Norman Gardens

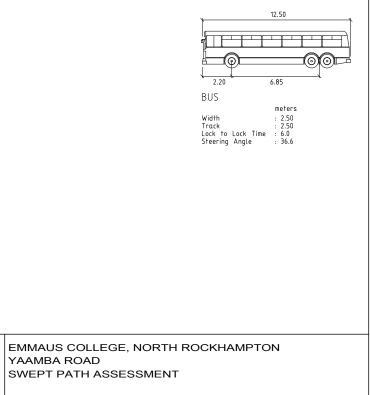
A-1

Version: 1, Version Date: 21/03/2022

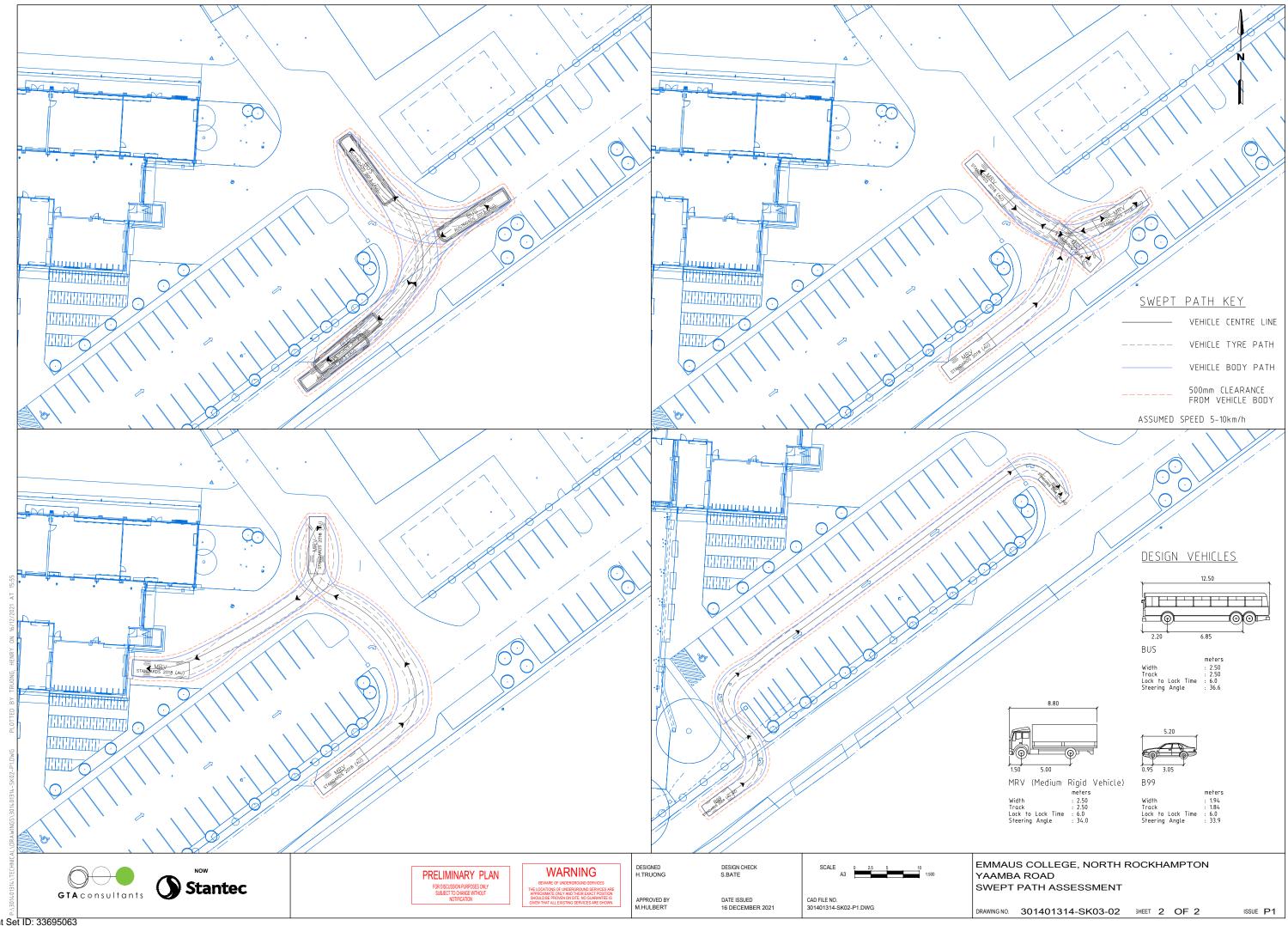
	COMMENCING V • ALL WORKS TO REQUIREMENTS • THESE DRAWIN SPECIFICATION	O CONFIRM ALL DIMENSIONS VORK. BE CARRIED OUT TO LOCAL A	JTHORITY NCTION WITH
	SITE AREA 362 YAAMBA ROAD, 362 YAAMBA ROAD, TOTAL SITE COVI TOTAL IMPERVIO BUILDINGS PATHS & COVERED CARPARKS, ROADS TOTAL LANDSCAN TOTAL	LOT 1 LOT 2 ERAGE US AREA AREAS	3678m ² 88720m ² 92398m ² 12.9% (11 936m ²) 7 870m ² 14 150m ² 8 295m ² 32.8% (30 315m ²) 66.7% (61 600m ²)
EASEMENT LINE - EASEMENT A RP612698 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED) WATER LINE UNDER			
STAGE 38 - NEW MAINTENANCE SHED			
STAGE 5B - NEW MULTI-USE CAR PARK - 83 PARKING BAYS - 1 PWD PARKING BAY - NEW 1200 FENCE AND GATES			
BEACH VOLLEYBALL. ADJUST SAND PIT COURT		scale @A1 sr 1:750	ale @A3
EASEMENT LINE - EASEMENT C SP209765 WATER EASEMENT FOR EXISTING 475 DIA MSCL (MILD STEEL CEMENT LINED) WATER LINE UNDER EXISTING CHAIN MESH	P REV. P19 P20	RELIMINAF DESCRIPTION STANTEC INTERNAL REVIEW	SSUED BY DATE 09/12/2021 20/12/2021
BOUNDARY FENCE TO REMAIN	P21		12/01/2022
STAGE 38 - NEW STAFF CARPARK, STUDENT BYCYCLE PARKING, DELIVERIES AREA_SKIP BIN LOADING AREA & BUS REVERSE BAY - 36 PARKING BAYS - 4 MOTOCYCLE PARKING BAYS - 1 PWD PARKING BAY		ARCH	MADDEN ITECTS 1927 9700 chitects.com.au
EXISTING HIGH LANDSCAPING SHRUBS BUFFER TO REMAIN ALONG FENCE BOUNDARY	DIOCESE	ATHOLIC TRUST OF ROCKHAMP CEDUCATION - I HAMPTON	TON FOR
STAGE 4B - DEMOLISH AMENITIES & PART OF UNDERCROFT - M BLOCK	EMMAUS	College, yaan Dokhampton	/IBA RD
STAGE 6C - DEMOLISH 3 CLASSROOMS TO FORM UNDERCROFT - M BLOCK	PROPOSE	D NEW ADMINI	STRATION
STAGE 6D - NEW GLA BLOCK	drawing title: PROPOSE	D OVERALL SIT	E PLAN
	job no: 2203	drawing no: MCU-02	P21

B.SWEPT PATH ASSESSMENT

301401314 // **18/01/2022**


Transport Impact Assessment // Issue: AStantecMorman Gardens

<u>SWEPT PATH KEY</u>


	VEHICLE	CENTR	E LINE
	VEHICLE	TYRE	PATH
	VEHICLE	BODY	PATH
	500mm (FROM VI		
ASSUMED	SPEED 5-1	0km/h	

DESIGN VEHICLE

DRAWING NO. 301401314-SK03-01 SHEET 1 OF 2

ISSUE P1

Document Set ID: 33695063 Version: 1, Version Date: 21/03/2022

APPENDIX: RESPONSE TO COUNCIL CODES AND SDAP STATE CODE 1

C. RESPONSE TO COUNCIL CODES AND SDAP STATE CODE 1

Stantec 301401314 // 18/01/2022 Transport Impact Assessment // Issue: A Emmaus College – Yaamba Road Campus, 362 Yaamba Road -Norman Gardens

C-3

Proposed Development (362 Yaamba Road - Norman Gardens)

Access, parking and transport code Assessment (Rockhampton Region Planning Scheme 2015)

PERFO	RMANCE OUTCOMES	ACCEPTA	ABLE OUTCOMES	RESPONSE
P01	Access driveways are located to avoid conflicts and designed to operate efficiently and safely, taking into account: the size of the parking area; the volume, frequency and type of vehicle traffic; the need for some land uses (for example hospitals) to accommodate emergency vehicle access; the type of use and the implications on parking and circulation, for example long-term or short-term car parking; <u>frontage</u> road function and conditions; and the capacity and function of the adjoining street system. 	A01.1	 Access driveways are not located within: twenty-five (25) metres of a signalised road intersection; twenty (20) metres of an un-signalised road intersection in an industrial or centres zone or ten (10) metres otherwise; and one (1) metre of any street signage, power poles, street lights, manholes, stormwater gully pits or other <u>Council</u> asset. 	Complies with Performance Outcome The proposed access driveways are to remain in their existing location. It is expected that these will maintain their functional operational use, and no conflicts will arise to the efficiency or safety of the vehicle access and adjacent road network as a result of utilising the existing vehicle access driveways.
P02	Access driveways do not disrupt existing road or footpath infrastructure.	A02.1	 Access driveways: do not require the modification, relocation or removal of any infrastructure including street trees, fire hydrants, water meters and street signs; do not front a traffic island, speed control device, car parking bay, bus stop or other infrastructure within the road carriageway; must be sealed and to a <u>formed road</u>; are not constructed over an access point to equipment under the control of a regulatory authority, including storm water pits, water meters, hydrants and telephone pits; and are raised or lowered to match the surface level of the driveway, where an access chamber is to be incorporated within the driveway. 	Complies with Acceptable Outcome The proposed access driveways are to be based on the existing locations and form of the vehicle access driveways at the Yaamba Road campus. This results in little to no modification, relocation or removal of any infrastructure, or a proposed fronting to traffic control infrastructure. The access driveways will be sealed and to a formed road and are not constructed over any regulatory authorities' infrastructure. The existing driveways will also be expected to match the level surface of the driveway.
PO3	Access driveways are designed and constructed so as to: 1. enable safe and functional vehicular access from the street to the property; and 2. not cause a change in the level of a footpath.	A03.1	Access driveways are constructed in compliance with the Capricorn Municipal Development Guidelines.	Complies with Performance Outcome The access driveways are designed and constructed such that the enable the safe and functional access to the site from the road as well as not cause a change in the level of the adjacent footpath.

PERFC	DRMANCE OUTCOMES	ACCEPT	ABLE OUTCOMES	RESPONSE
PO4	A driveway does not allow water to pond adjacent to any buildings or cause water to enter a building.	AO4.1	A driveway has a minimum cross fall of one (1) metre (vertical) to 100 metres (horizontal) away from all adjoining buildings.	Complies with Performance Outcome The access driveways are not expected to cause any undue water ponding to adjacent buildings, nor cause any water to enter nearby buildings.
PO5	 Provision is made for on-<u>site</u> vehicle parking: to meet the demand likely to be generated by the development; and to avoid on-street parking where that would adversely impact on the safety or capacity of the road network or unduly impact on local amenity. Editor's note—SC6.6 — Car parking contributions planning scheme policy prescribes circumstances under which an applicant can satisfy PO5. 	A05.1	On- <u>site</u> car parking is provided at the rates set out in Table 9.3.1.3.2 of the access, parking and transport code. OR	Complies with Acceptable Outcome The on-site parking for the campus complies with the rates set out in Table 9.3.1.3.2 of the access, parking and transport code.
		AO5.2	Where a change of use of existing premises is proposed and there is no increase in the <u>gross floor area</u> , the existing number of on- <u>site</u> car parks is retained or increased. AND	
		AO5.3	All parking, loading and manoeuvring facilities for visitors and employees to be located on- <u>site</u> . AND	Complies with Acceptable Outcome All parking, loading and manoeuvring facilities for visitors and employees are located within the campus property boundary.
		A05.4	Manoeuvring facilities to be of adequate dimensions to prevent any queuing in a roadway.	Complies with Acceptable Outcome The design of the carpark and carpark aisles have been designed in accordance with the queuing requirements of the Australian Standards. More than 2 vehicles are able to store at each vehicle access respectively, resulting in the prevention of queuing on to the public road network.
206	Parking and servicing facilities are designed to meet user requirements.	AO6.1	Parking spaces, access and manoeuvring facilities, loading facilities and connections to the transport network are sealed and designed in accordance with Australian Standard AS 2890.	Complies with Acceptable Outcome All parking spaces, access and manoeuvring facilities, loading facilities and connections to the transport network have been designed in accordance with the Australian Standards, with the expectation that all areas are to be sealed.
P07	Sites with more than one (1) road <u>frontage</u> (excluding laneways) gain access only from the lower order road, except if it will introduce traffic generated by a non-residential use into a street that is in a residential zone.		No acceptable outcome is nominated	<i>N/A</i> The site only has one (1) road frontage.
PO8	Parking areas are illuminated in a manner that maximises user safety but minimises the impacts on adjoining residents.	AO8.1	Parking areas for uses that operate at night are illuminated in accordance with the requirements of Australian Standard AS 1158.	Complies with Performance Outcome All parking areas are expected to be illuminated to maximise user safety

PERFORMANCE OUTCOMES		ACCEPTA	BLE OUTCOMES	RESPONSE
		A08.2	Lighting used in parking areas does not cause an environmental nuisance and complies with Australian Standard AS 4282.	
PO9	Car parking areas, pathways and other elements of the transport network are designed to enhance public safety by discouraging crime and antisocial behaviour, having regard to: a. provision of opportunities for casual surveillance; b. the use of fencing to define public and private spaces, whilst allowing for appropriate sightlines; c. minimising potential concealment points and assault locations; d. minimising opportunities for graffiti and other vandalism; and e. restricting unlawful access to buildings and between buildings.		No acceptable outcome is prescribed.	N/A Not relevant to the assessment of traffic & transport elements.
PO10	Parking and servicing areas are kept accessible and available for their intended use at all times during the normal business hours of the activity.		No acceptable outcome is prescribed.	Complies with Performance Outcome The parking and servicing areas of the school are intended to be accessible to relevant user groups during normal school hours.
P011	 Development contributes to the creation of a transport network which is designed to: achieve a high level of permeability and connectivity for all modes of transport, including pedestrians and cyclists, within the development and to the surrounding area; and encourage people to walk, cycle or use public transport to and from the site instead of using a car. 		No acceptable outcome is prescribed.	Complies with Performance Outcome The campus has a high level of permeability and connectivity to a wide range of transport modes, including pedestrians and cyclists for both students and staff. The redevelopment of the campus has taken into account the surrounding infrastructure of active travel users to ensure satisfactory integration as well as the ability to encourage students and staff to utilise alternative modes of transport rather than private vehicles.
PO12	Development is located on roads that are appropriate for the nature of traffic (including vehicles, pedestrians and cyclists) generated, having regard to the safety and efficiency of the transport network.	A012.1	Traffic generated by the development is safely accommodated within the design capacity of roads as provided in SC6.15 — Road infrastructure and hierarchy planning scheme policy.	Complies with Performance Outcome The redevelopment of the campus is not expected to result in a material difference in traffic generation compared to its existing generation output

PERFO	RMANCE OUTCOMES	ACCEPTA	ABLE OUTCOMES	RESPONSE
		A012.2	A road or street does not connect with another road or street that is more than two (2) levels higher or lower in the road hierarchy.	due to a minimal increase in student and staff numbers. The redeveloped campus is expected to be appropriate to the surrounding road network, and not result in any material worsening to the safety or efficiency of the transport network.
		A012.3	The existing infrastructure fronting the proposed development is upgraded in accordance with SC6.15 — Road infrastructure and hierarchy planning scheme policy and Capricom Municipal Development Guidelines.	
P013	 Where the nature of the development creates a demand, provision is made for set down and pick-up facilities by bus, taxis or private vehicle, which: are safe for pedestrians and vehicles; are conveniently connected to the main component of the development by pedestrian pathway; and provide for pedestrian priority and clear sightlines. 		No acceptable outcome is prescribed.	Complies with Performance Outcome Set down facilities for both private vehicles and buses are proposed as part of the redevelopment which are safe for pedestrians and vehicles, conveniently located to the main pedestrian access points and have clear sightlines.
P014	O14 Development does not impact on the safety, operation or function of the road network or system.	A014.1	Vehicle manoeuvring into and from the <u>site</u> for all vehicles is designed in accordance with the Australian Standard AS 2890, as updated from time to time.	Complies with Acceptable Outcome Vehicle manoeuvring into and from the site have been confirmed with swept path assessments in accordance with the Australian Standards.
		A014.2	No direct property access is gained to a highway, main road, urban arterial or sub arterial road as defined in SC6.15 — Road infrastructure and hierarchy planning scheme policy other than via a service road or a joint access arrangement with other sites.	Complies with Acceptable Outcome Direct property access is achieved through the Yaamba Road service road.
		A014.3	Development that generates greater than 100 vehicle movements per day does not gain access to or from an urban access place or urban access streets as defined in SC6.15 — Road infrastructure and hierarchy planning scheme policy.	Complies with Acceptable Outcome The school campus gains access from a highway service road.
PO15	Development facilitates the orderly provision and upgrading of the transport network or contributes to the construction of transport network improvements.		No acceptable outcome is prescribed.	N/A No upgrades are proposed nearby the site nor as part of the redevelopment of the campus.
PO16	On- <u>site</u> transport network infrastructure integrates safely and effectively with surrounding networks.	AO16.1	Intersections, connections and access arrangements are designed in accordance with the Capricorn Municipal Development Guidelines and Australian Standard AS 2890.	Complies with Acceptable Outcome The access arrangements of the site have been designed in accordance with the relevant guidelines and Australian Standards.
P017	Development provides safe and convenient pedestrian and cycle movement to the <u>site</u> and within the <u>site</u> having regard to desire lines, users' needs, safety and legibility.	A017.1	Pedestrian and cyclist movement are designed in compliance with the Capricorn Municipal Development Guidelines and Australian Standard AS 2890 — Parking facilities.	Complies with Acceptable Outcome The access arrangements of the site have been designed in accordance with the relevant guidelines and Australian Standards.

PERFO	PERFORMANCE OUTCOMES		BLE OUTCOMES	RESPONSE
PO18	Provision is made for adequate bicycle parking and end of trip facilities, to meet the likely needs of users and encourage cycle travel.		No acceptable outcome is nominated. Editor's note—Provisions are made for parking and end of trip facilities in accordance with the SC6.4 — Bicycle network planning scheme policy.	Complies with Performance Outcome Provision of bicycle parking and end of trip facilities is proposed as part of the redevelopment of the campus to further encourage bicycle travel.
PO19	Refuse collection vehicles are able to safely access on- <u>site</u> refuse collection facilities.	AO19.1	Refuse collection areas are provided and designed in accordance with the waste management code and Australian Standard AS 2890.	Complies with Acceptable Outcome The refuse collection areas are provided and designed in accordance the waste management code and the relevant Australian Standards

State code 1: Development in a state-controlled road environment

Table 1.2.1: Development in a state-controlled road environment

Performance outcomes	Acceptable outcomes	Response
Buildings and structures		
PO1 The location of buildings, structures, infrastructure, services and utilities does not create a safety hazard in a state-controlled road, or cause damage to, or obstruct road transport infrastructure.	AO1.1 Buildings, structures, infrastructure, services and utilities are not located in a state-controlled road. AND	N/A
	AO1.2 Buildings, structures, infrastructure, services and utilities can be maintained without requiring access to a state-controlled road.	N/A
PO2 The design and construction of buildings and structures does not create a safety hazard by distracting users of a state-controlled road.	AO2.1 Facades of buildings and structures facing a state-controlled road are made of non-reflective materials. OR	N/A
	AO2.2 Facades of buildings and structures do not reflect point light sources into the face of oncoming traffic on a state-controlled road. AND	N/A
	AO2.3 External lighting of buildings and structures is not directed into the face of oncoming traffic on a state-controlled road and does not involve flashing or laser lights. AND	N/A
	AO2.4 Advertising devices visible from a state- controlled road are located and designed in accordance with the Roadside Advertising Guide, 2 nd Edition, Department of Transport and Main Roads, 2017.	N/A

Performance outcomes	Acceptable outcomes	Response
PO3 Road, pedestrian and bikeway bridges over a state-controlled road are designed and constructed to prevent projectiles from being thrown onto a state-controlled road.	AO3.1 Road, pedestrian and bikeway bridges over a state-controlled road include throw protection screens in accordance with section 4.9.3 of the Design Criteria for Bridges and Other Structures Manual, Department of Transport and Main Roads, 2018.	N/A
Filling, excavation and retaining structures		
PO4 Filling and excavation does not interfere with, or result in damage to, infrastructure or services in a state-controlled road. Note: Information on the location of services and public utility	No acceptable outcome is prescribed.	N/A
plants in a state-controlled road can be obtained from the Dial Before You Dig service.		
Where development will impact on an existing or future service or public utility plant in a state-controlled road such that the service or public utility plant will need to be relocated, the alternative alignment must comply with the standards and design specifications of the relevant service or public utility provider, and any costs of relocation are to be borne by the developer.		
Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.		
PO5 Filling, excavation, building foundations and	No acceptable outcome is prescribed.	N/A
retaining structures do not undermine, or cause subsidence of, a state-controlled road.		
Note: To demonstrate compliance with this performance outcome, it is recommended an RPEQ certified geotechnical assessment, prepared in accordance with the Road Planning and Design Manual 2 nd Edition: Volume 3, Department of Transport and Main Roads, 2016, is provided.		
Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome and prepare a geotechnical assessment.		
PO6 Filling, excavation, building foundations and retaining structures do not cause ground water disturbance in a state-controlled road.	No acceptable outcome is prescribed.	N/A

Performance outcomes	Acceptable outcomes	Response
Note: To demonstrate compliance with this performance outcome, it is recommended an RPEQ certified geotechnical assessment, prepared in accordance with the Road Planning and Design manual 2 nd Edition: Volume 3, Department of Transport and Main Roads, 2016, is provided.		
Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome and prepare a geotechnical assessment.		
PO7 Excavation, boring, piling, blasting or fill compaction during construction of a development does not result in ground movement or vibration impacts that would cause damage or nuisance to a state-controlled road, road transport infrastructure or road works.	No acceptable outcome is prescribed.	N/A
Note: To demonstrate compliance with this performance outcome, it is recommended an RPEQ certified geotechnical assessment, prepared in accordance with Road Planning and Design Manual 2 nd Edition: Volume 3, Department of Transport and Main Roads, 2016, is provided.		
Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome and prepare a geotechnical assessment.		
PO8 Development involving the haulage of fill, extracted material or excavated spoil material exceeding 10,000 tonnes per year does not damage the pavement of a state-controlled road.	AO8.1 Fill, extracted material and spoil material is not transported to or from the development site on a state-controlled road.	N/A
Note: It is recommended a pavement impact assessment is provided.		
Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, and the Guide to Traffic Impact Assessment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome and prepare a pavement impact assessment.		

Performance outcomes	Acceptable outcomes	Response
PO9 Filling and excavation associated with the construction of vehicular access to a development does not compromise the operation or capacity of existing drainage infrastructure for a state-controlled road. Note: Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	No acceptable outcome is prescribed.	N/A
PO10 Fill material used on a development site does not result in contamination of a state-controlled road.	AO10.1 Fill material is free of contaminants including acid sulfate content.	N/A
Note: Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	Note: Soils and rocks should be tested in accordance with AS 1289.0 – Methods of testing soils for engineering purposes and AS 4133.0-2005 – Methods of testing rocks for engineering purposes. AND	
	AO10.2 Compaction of fill is carried out in accordance with the requirements of AS 1289.0 2000 – Methods of testing soils for engineering purposes.	N/A
PO11 Filling and excavation does not cause wind- blown dust nuisance in a state-controlled road. Note: Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance	AO11.1 Compaction of fill is carried out in accordance with the requirements of AS 1289.0 2000 – Methods of testing soils for engineering purposes. AND	N/A
outcome.	AO11.2 Dust suppression measures are used during filling and excavation activities such as wind breaks or barriers and dampening of ground surfaces.	N/A
Stormwater and drainage		
PO12 Development does not result in an actionable nuisance, or worsening of, stormwater, flooding or drainage impacts in a state-controlled road.	No acceptable outcome is prescribed.	N/A
Note: Refer to the SDAP Supporting Information: Stormwater and drainage in a state-controlled road environment, Department of		

Performance outcomes	Acceptable outcomes	Response
Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.		
PO13 Run-off from the development site is not unlawfully discharged to a state-controlled road.	AO13.1 Development does not create any new points of discharge to a state-controlled road.	N/A
Note: Refer to the SDAP Supporting Information: Stormwater and drainage in a state-controlled road environment, Department of	AND	
Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	AO13.2 Stormwater run-off is discharged to a lawful point of discharge.	N/A
	Note: Section 3.9 of the Queensland Urban Drainage Manual, Institute of Public Works Engineering Australasia (Queensland Division) Fourth Edition, 2016, provides further information on lawful points of discharge. AND	
	AO13.3 Development does not worsen the condition of an existing lawful point of discharge to the state-controlled road.	N/A
PO14 Run-off from the development site during	AO14.1 Run-off from the development site during	N/A
construction does not cause siltation of stormwater infrastructure affecting a state-controlled road.	construction is not discharged to stormwater infrastructure for a state-controlled road.	
Note: Refer to the SDAP Supporting Information: Stormwater and drainage in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.		
Vehicular access to a state-controlled road		
PO15 Vehicular access to a state-controlled road that is a limited access road is consistent with government policy for the management of limited access roads. Note: Refer to the SDAP Supporting Information: Vehicular access to a state-controlled road, Department of Transport and	AO15.1 Development does not require new or changed access to a limited access road. Note: Limited access roads are declared by the transport chief executive under section 54 of the <i>Transport Infrastructure</i> <i>Act 1994</i> and are identified in the DA mapping system. OR	Complies with AO15.1 The proposed development does not require any new or materially changed accesses to any limited access road.

Performance outcomes	Acceptable outcomes	Response
Main Roads, 2017, for further guidance on how to comply with this performance outcome.	 AO15.2 A new or changed access to a limited access road is consistent with the limited access policy for the state-controlled road. Note: Limited access policies for limited access roads declared under the <i>Transport Infrastructure Act 1994</i> can be obtained by contacting the relevant Department of Transport and Main Roads regional office. AND 	Complies with AO15.2 The proposed development does not require any new or materially changed accesses to any limited access road.
	AO15.3 Where a new or changed access is for a service centre, access is consistent with the Service centre policy, Department of Transport and Main Roads, 2013 and the Access policy for roadside service centre facilities on limited access roads, Department of Transport and Main Roads, 2013, and the Service centre strategy for the state-controlled road. Note: The Service centre policy, Department of Transport and Main Roads, 2013, Access policy for roadside service centre facilities, Department of Transport and Main Roads, 2013, and the relevant Service centre strategy for a state-controlled road can be accessed by contacting the relevant Department of Transport and	Complies with AO15.3 The proposed development does not require any new or materially changed accesses to any limited access road.
PO16 The location and design of vehicular access to a state-controlled road (including access to a limited	Main Roads regional office. AO16.1 Vehicular access is provided from a local road.	
access road) does not create a safety hazard for users of a state-controlled road or result in a worsening of operating conditions on a state- controlled road. Note: Where a new or changed access between the premises and a state-controlled road is proposed, the Department of Transport and Main Roads will need to assess the proposal to determine if the vehicular access for the development is safe. An	OR all of the following acceptable outcomes apply: AO16.2 Vehicular access for the development is consistent with the function and design of the state- controlled road. AND	Complies with AO16.2 The proposed development utilises existing vehicular accesses on the service road of Yaamba Road. This consistency is expected to result in no material change to the function or design of the state-controlled road of Yaamba Road or the Yaamba Road service road.

Performance outcomes	Acceptable outcomes	Response
assessment can be made by Department of Transport and Main Roads as part of the development assessment process and a decision under section 62 of <i>Transport Infrastructure Act 1994</i> issued. Refer to the SDAP Supporting Information: Vehicular access to a state-controlled road, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	AO16.3 Development does not require new or changed access between the premises and the state-controlled road. Note: A decision under section 62 of the <i>Transport Infrastructure</i> <i>Act 1994</i> outlines the approved conditions for use of an existing vehicular access to a state-controlled road . Current section 62 decisions can be obtained from the relevant Department of Transport and Main Roads regional office. AND	Complies with AO16.3 The proposed development is not proposing any new or changed vehicle accesses to the Yaamba Road service road.
	AO16.4 Use of any existing vehicular access to the development is consistent with a decision under section 62 of the <i>Transport Infrastructure Act 1994</i> . Note: The development which is the subject of the application must be of an equivalent use and intensity for which the section 62 approval was issued and the section 62 approval must have been granted no more than 5 years prior to the lodgement of the application. AND	Complies with AO16.4 The proposed development's use of existing vehicular accesses to the site is expected to be consistent with a decision under section 62 of the Transport Infrastructure Act 1994.
	AO16.5 On-site vehicle circulation is designed to give priority to entering vehicles at all times so vehicles do not queue in a road intersection or on the state-controlled road.	Complies with AO16.5 On-site vehicle circulation and entry is designed in accordance with the Australian Standards. This is expected to result in no queuing on state controlled roads and intersections whilst giving natural priority to vehicles entering the site.
Vehicular access to local roads within 100 metres of a		
PO17 The location and design of vehicular access to a local road within 100 metres of an intersection with a state-controlled road does not create a safety hazard for users of a state-controlled road.	AO17.1 Vehicular access is located as far as possible from the state-controlled road intersection. AND	Complies with PO17 The location and design of the vehicular accesses is to remain consistent with the existing vehicle accesses. The maintained use of these existing driveways is not expected to result in any material safety or operational impact to any state-controlled road or intersection.
Note: Refer to the SDAP Supporting Information: Vehicular access to a state-controlled road, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	AO17.2 Vehicular access is in accordance with parts, 3, 4 and 4A of the Road Planning and Design Manual, 2 nd Edition: Volume 3, Department of Transport and Main Roads, 2016. AND	

Performance outcomes	Acceptable outcomes	Response
	AO17.3 On-site vehicle circulation is designed to give priority to entering vehicles at all times so vehicles do not queue in the intersection or on the state-controlled road.	
Public passenger transport infrastructure on state-con	trolled roads	
PO18 Development does not damage or interfere with public passenger transport infrastructure, public passenger services or pedestrian or cycle access to public passenger transport infrastructure and public passenger services. Note: Refer to the SDAP Supporting Information: Vehicular access to a state-controlled road, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	 AO18.1 Vehicular access and associated road access works are not located within 5 metres of existing public passenger transport infrastructure. AND AO18.2 Development does not necessitate the relocation of existing public passenger transport infrastructure. AND AO18.3 On-site vehicle circulation is designed to give priority to entering vehicles at all times so vehicles using a vehicular access do not obstruct public passenger transport infrastructure and public passenger services or obstruct pedestrian or cycle access to public passenger services. AND AO18.4 The normal operation of public passenger services is not interrupted during construction of the development. 	Complies with PO18 The proposed development does not damage or interfere with the existing public passenger transport infrastructure, services or active travel access.
Planned upgrades		

Performance outcomes	Acceptable outcomes	Response
PO19 Development does not impede delivery of planned upgrades of state-controlled roads.	AO19.1 Development is not located on land identified by the Department of Transport and Main Roads as land required for the planned upgrade of a state-controlled road. Note: Land required for the planned upgrade of a state-controlled road is identified in the <u>DA mapping system</u> . OR	Complies with AO19.1 The development is not located on land identified by TMR as required for the planned upgrade of a state controlled road.
	AO19.2 Development is sited and designed so that permanent buildings, structures, infrastructure, services or utilities are not located on land identified by the Department of Transport and Main Roads as land required for the planned upgrade of a state-controlled road.	
	OR all of the following acceptable outcomes apply: AO19.3 Structures and infrastructure located on land identified by the Department of Transport and Main Roads as land required for the planned upgrade of a state-controlled road are able to be readily relocated or removed without materially affecting the viability or functionality of the development. AND	
	AO19.4 Vehicular access for the development is consistent with the function and design of the planned upgrade of the state-controlled road. AND AO19.5 Development does not involve filling and excavation of, or material changes to, land required	
	excavation of, or material changes to, faild required for a planned upgrade to a state-controlled road. AND AO19.6 Land is able to be reinstated to the pre-development condition at the completion of the use.	

Performance outcomes	Acceptable outcomes	Response
Network impacts		
PO20 Development does not result in a worsening of operating conditions on the state-controlled road network. Note: To demonstrate compliance with this performance outcome, it is recommended that an RPEQ certified traffic impact assessment is provided. Please refer to the Guide to Traffic Impact Assessment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	No acceptable outcome is prescribed.	Complies with PO20 The development is not expected to create a material worsening on the operating conditions of the state-controlled road network due to the minimal increase in student and staff numbers. It is noted that the intensifying of the school does not trigger the Code 6 response requirement (i.e. less than 100 students increase).
PO21 Development does not impose traffic loadings on a state-controlled road which could be accommodated on the local road network.	AO21.1 The layout and design of the development directs traffic generated by the development to the local road network.	Complies with PO21 The development is not expected to result in a material increase in vehicle trips. As a result, with increase in traffic loadings on to state-controlled roads is not expected to be materially increased as well.
PO22 Upgrade works on, or associated with, a state-controlled road are built in accordance with Queensland road design standards.	AO22.1 Upgrade works required as a result of the development are designed and constructed in accordance with the <i>Road Planning and Design Manual</i> , 2 nd edition, Department of Transport and Main Roads, 2016. Note: Road works in a state-controlled road require approval under section 33 of the <i>Transport Infrastructure Act 1994</i> before the works commence.	N/A No upgrade works are proposed as part of the redevelopment of the school campus.

Table 1.2.2: Environmental emissions

Statutory note: Where a **state-controlled road** is co-located in the same transport corridor as a railway, the development should instead comply with table 2.2.2: Environmental emissions in State code 2: Development in a railway environment.

Refer to the SDAP Supporting Information: Environmental emissions in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with the performance outcomes in Table 1.2.2.

Performance outcomes	Acceptable outcomes	
Noise		
Accommodation activities		

Performance outcomes	Acceptable outcomes	
PO23 Development involving an accommodation activity or land for a future accommodation activity	AO23.1 A noise barrier or earth mound is provided which is designed, sited and constructed:	N/A
minimises noise intrusion from a state-controlled road or type 1 multi-modal corridor in habitable	 to meet the following external noise criteria at all facades of the building envelope: 	
rooms.	 a. ≤60 dB(A) L₁₀ (18 hour) façade corrected (measured L₉₀ (8 hour) free field between 10pm and 6am ≤40 dB(A)) 	
	 b. ≤63 dB(A) L₁₀ (18 hour) façade corrected (measured L₉₀ (8 hour) free field between 10pm and 6am >40 dB(A)) 	
	 in accordance with chapter 7 integrated noise barrier design of the Transport Noise Management Code of Practice: Volume 1 (Road Traffic Noise), Department of Transport and Main Roads, 2013. 	
	Note: To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting Information: Environmental emissions in a state-controlled road environment, Department of Transport and Main Roads, 2017.	
	If the building envelope is unknown, the deemed-to-comply setback distances for buildings stipulated by the local planning instrument or relevant building regulations should be used.	
	In some instances, the design of noise barriers and mounds to achieve the noise criteria above the ground floor may not be reasonable or practicable. In these instances, any relaxation of the criteria is at the discretion of the Department of Transport and Main Roads.	
	OR all of the following acceptable outcomes apply:	N/A
	AO23.2 Buildings which include a habitable room are setback the maximum distance possible from a state-controlled road or type 1 multi-modal corridor. AND	

Performance outcomes	Acceptable outcomes	
	AO23.3 Buildings are designed and oriented so that habitable rooms are located furthest from a state-controlled road or type 1 multi-modal corridor. AND	N/A
	 AO23.4 Buildings (other than a relevant residential building or relocated building) are designed and constructed using materials which ensure that habitable rooms meet the following internal noise criteria: 1. ≤35 dB(A) L_{eq} (1 hour) (maximum hour over 24 	N/A
	hours). Note: Noise levels from a state-controlled road or type 1 multi- modal corridor are to be measured in accordance with AS1055.1– 1997 Acoustics – Description and measurement of environmental noise.	
	To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting Information: Environmental emissions in a state controlled road environment, Department of Transport and Main Roads 2017.	
	Habitable rooms of relevant residential buildings located within a transport noise corridor must comply with the Queensland Development Code MP4.4 Buildings in a transport noise corridor, Queensland Government, 2015. Transport noise corridors are mapped on the State Planning Policy interactive mapping system.	
PO24 Development involving an accommodation activity or land for a future accommodation activity	AO24.1 A noise barrier or earth mound is provided which is designed, sited and constructed:	N/A
minimises noise intrusion from a state-controlled road or type 1 multi-modal corridor in outdoor spaces for passive recreation.	 to meet the following external noise criteria in outdoor spaces for passive recreation: 	
spaces for passive recreation.	 a. ≤57 dB(A) L₁₀ (18 hour) free field (measured L₉₀ (18 hour) free field between 6am and 12 midnight ≤45 dB(A)) 	
	 b. ≤60 dB(A) L₁₀ (18 hour) free field (measured L₉₀ (18 hour) free field between 6am and 12 midnight >45 dB(A)) 	
	 in accordance with chapter 7 integrated noise barrier design of the Transport Noise 	

Performance outcomes	Acceptable outcomes	
	Management Code of Practice – Volume 1 Road Traffic Noise, Department of Transport and Main Roads, 2013.	
	Note: To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting Information: Environmental emissions in a state controlled road environment, Department of Transport and Main Roads 2017 OR	
	AO24.2 Each dwelling has access to an outdoor space for passive recreation which is shielded from a state-controlled road or type 1 multi-modal corridor by a building, solid gap-free fence, or other solid gap- free structure. AND	N/A
	AO24.3 Each dwelling with a balcony directly exposed to noise from a state-controlled road or type 1 multi-modal corridor has a continuous solid gap-free balustrade (other than gaps required for drainage purposes to comply with the Building Code of Australia).	N/A
Childcare centres and educational establishments		
PO25 Development involving a: 1. childcare centre; or	AO25.1 A noise barrier or earth mound is provided which is designed, sited and constructed:	N/A
2. educational establishment minimises noise intrusion from a state-controlled road or type 1 multi-modal corridor in indoor education areas and indoor play areas.	 to meet the following external noise criteria at all facades of the building envelope: a. ≤58 dB(A) L₁₀ (1 hour) façade corrected (maximum hour during normal opening hours) 	
	 in accordance with chapter 7 – Integrated noise barrier design of the Transport Noise Management Code of Practice: Volume 1 (Road Traffic Noise), Department of Transport and Main Roads, 2013. 	

Performance outcomes	Acceptable outcomes	
	Note: To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting Information: Environmental emissions in a state controlled road environment, Department of Transport and Main Roads 2017. If the building envelope is unknown, the deemed-to-comply setback distances for buildings stipulated by the local planning instrument or relevant building regulations should be used.	
	OR all of the following acceptable outcomes apply: AO25.2 Buildings which include indoor education areas and indoor play areas are setback the maximum distance possible from a state-controlled road or type 1 multi-modal corridor. AND	N/A
	AO25.3 Buildings are designed and oriented so that indoor education areas and indoor play areas are located furthest from the state-controlled road or type 1 multi-modal corridor. AND	N/A
	 AO25.4 Buildings are designed and constructed using materials which ensure indoor education areas and indoor play areas meet the following internal noise criteria: 1. ≤35 dB(A) L_{eq} (1 hour) (maximum hour during opening hours). 	N/A
	Note: Noise levels from a state-controlled road or type 1 multi- modal corridor are to be measured in accordance with AS1055.1– 1997 Acoustics – Description and measurement of environmental noise. To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting Information: Environmental emissions in a state controlled road environment, Department of Transport and Main Roads 2017.	

Performance outcomes	Acceptable outcomes	
 PO26 Development involving a: 1. childcare centre; or 2. educational establishment minimises noise intrusion from a state-controlled road or type 1 multi-modal corridor in outdoor education areas and outdoor play areas. 	 Acceptable outcomes AO26.1 A noise barrier or earth mound is provided which is designed, sited and constructed: to meet the following external noise criteria in each outdoor education area or outdoor play area:	N/A
Hospitals		
PO27 Development involving a hospital minimises noise intrusion from a state-controlled road or type 1 multi-modal corridor in patient care areas.	AO27.1 Hospitals are designed and constructed using materials which ensure patient care areas meet the following internal noise criteria:	N/A
	 ≤35 dB(A) L_{eq} (1 hour) (maximum hour during opening hours). 	
	Note: Noise levels from a state-controlled road or type 1 multi- modal corridor are to be measured in accordance with AS1055.1– 1997 Acoustics – Description and measurement of environmental noise.	
	To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified noise assessment report is provided, prepared in accordance with the SDAP Supporting	

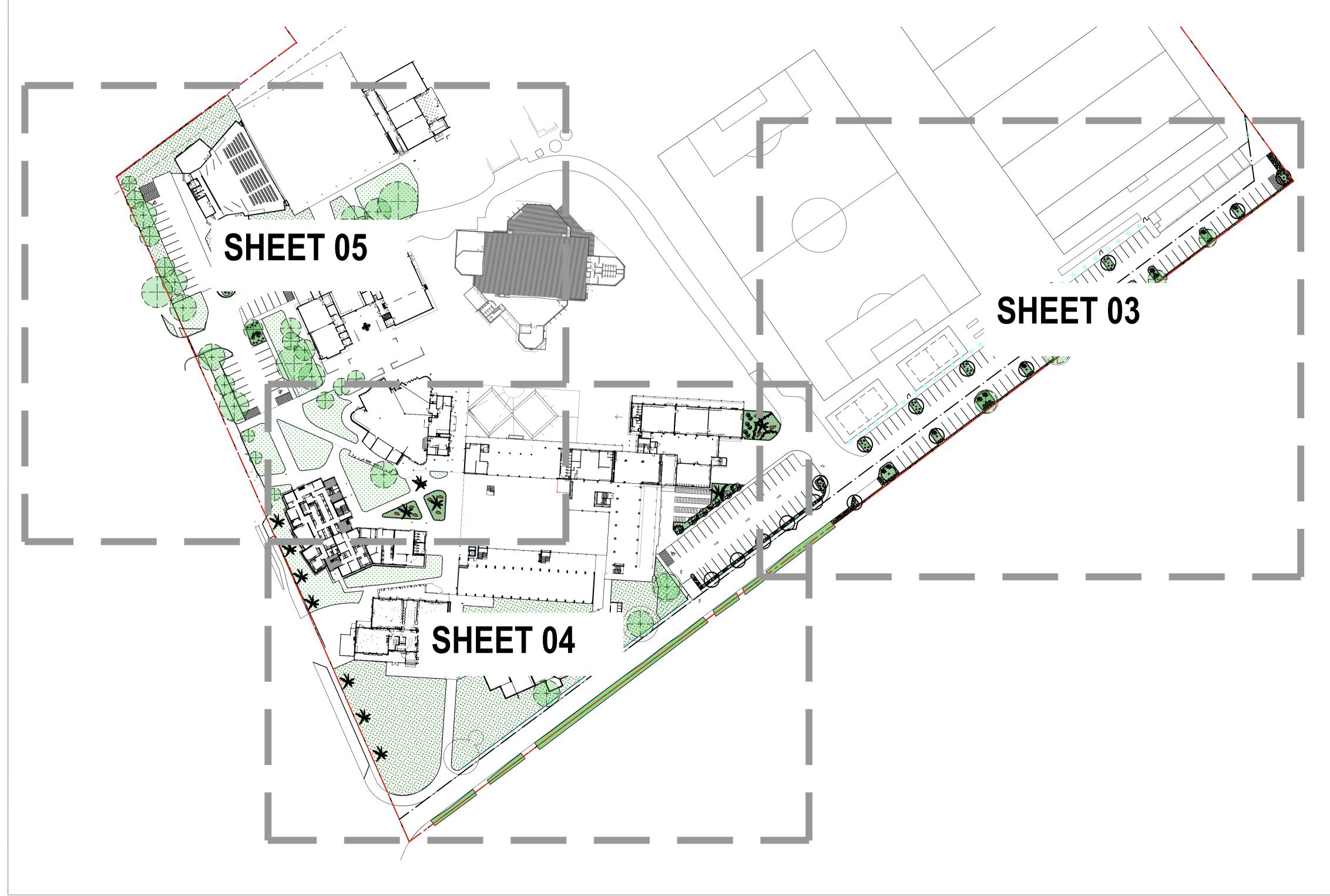
Performance outcomes	Acceptable outcomes	
	Information: Environmental emissions in a state controlled road	
	environment, Department of Transport and Main Roads 2017.	
Vibration		
Hospitals		
PO28 Development involving a hospital minimises vibration impacts from vehicles using a state-controlled road or type 1 multi-modal corridor in patient care areas.	AO28.1 Hospitals are designed and constructed to ensure vibration in the treatment area of a patient care area does not exceed a vibration dose value of 0.1m/s ^{1.75} . AND	N/A
	AO28.2 Hospitals are designed and constructed to ensure vibration in the ward area of a patient care area does not exceed a vibration dose value of 0.4m/s ^{1.75} . Note: To demonstrate compliance with the acceptable outcome, it is recommended that a RPEQ certified vibration assessment report	N/A
Air and light	is provided.	
PO29 Development involving an accommodation activity minimises air quality impacts from a state-controlled road or type 1 multi-modal corridor in outdoor spaces for passive recreation.	AO29.1 Each dwelling has access to an outdoor space for passive recreation which is shielded from a state-controlled road or type 1 multi-modal corridor by a building, solid gap-free fence, or other solid gap-free structure.	N/A
 PO30 Development involving a: 1. childcare centre; or 2. educational establishment minimises air quality impacts from a state-controlled road or type 1 multi-modal corridor in outdoor education areas and outdoor play areas. 	AO30.1 Each outdoor education area and outdoor play area is shielded from a state-controlled road or type 1 multi-modal corridor by a building, solid gap- free fence, or other solid gap-free structure.	N/A
PO31 Development involving an accommodation activity or hospital minimises lighting impacts from a state-controlled road or type 1 multi-modal corridor.	AO31.1 Buildings for an accommodation activity or hospital are designed to minimise the number of windows or transparent/translucent panels facing a state-controlled road or type 1 multi-modal corridor. OR	N/A

Performance outcomes	Acceptable outcomes	
	AO31.2 Windows facing a state-controlled road or type 1 multi-modal corridor include treatments to block light from a state-controlled road or type 1 multi-modal corridor.	

Table 1.2.3: Develo	oment in a future	state-controlled	road environment
10010 1.2.0. 001010	prinorie in a racaro	olulo oonilionou	

Performance outcomes	Acceptable outcomes	
PO32 Development does not impede delivery of a future state-controlled road.	AO32.1 Development is not located in a future state- controlled road. OR	Complies with AO32.1 The development is not located in a future state-controlled road.
	AO32.2 Development is sited and designed so that permanent buildings, structures, infrastructure, services or utilities are not located in a future state-controlled road.	
	OR all of the following acceptable outcomes apply: AO32.3 Structures and infrastructure located in a future state-controlled road are able to be readily relocated or removed without materially affecting the viability or functionality of the development. AND	
	AO32.4 Development does not involve filling and excavation of, or material changes to, a future state- controlled road.ANDAO32.5 Land is able to be reinstated to the pre- development condition at the completion of the use.	
PO33 Vehicular access to a future state-controlled road is located and designed to not create a safety hazard for users of a future state-controlled road or result in a worsening of operating conditions on a future state-controlled road.	AO33.1 Development does not require new or changed access between the premises and a future state-controlled road.AND	N/A – Refer to AO32.1

Performance outcomes	Acceptable outcomes	
Note: Where a new or changed access between the premises and a future state-controlled road is proposed, the Department of Transport and Main Roads will need to assess the proposal to determine if the vehicular access for the development is safe. An assessment can be made by Department of Transport and Main Roads as part of the development assessment process and a decision under section 62 of <i>Transport Infrastructure Act</i> 1994 issued.	AO33.2 Vehicular access for the development is consistent with the function and design of the future state-controlled road.	N/A – Refer to AO32.1
 PO34 Filling, excavation, building foundations and retaining structures do not undermine, or cause subsidence of, a future state-controlled road. Note: To demonstrate compliance with this performance outcome, it is recommended that an RPEQ certified geotechnical assessment is provided, prepared in accordance with the Road Planning and Design Manual, 2nd edition: Volume 3, Department of Transport and Main Roads, 2016. Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome and prepare a geotechnical assessment. 	No acceptable outcome is prescribed.	N/A – Refer to AO32.1
 PO35 Fill material from a development site does not result in contamination of land for a future state-controlled road. Note: Refer to the SDAP Supporting Information: Filling, excavation and retaining structures in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome. 	 AO35.1 Fill material is free of contaminants including acid sulfate content. Note: Soil and rocks should be tested in accordance with AS1289 Methods of testing soils for engineering purposes and AS4133 2005 – Methods of testing rocks for engineering purposes. AND AO35.2 Compaction of fill is carried out in accordance with the requirements of AS1289.0 2000 	N/A – Refer to AO32.1 N/A – Refer to AO32.1
PO36 Development does not result in an actionable nuisance, or worsening of, stormwater, flooding or drainage impacts in a future state-controlled road. Note: Refer to the SDAP Supporting Information: Stormwater and drainage in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	 Methods of testing soils for engineering purposes. No acceptable outcome is prescribed. 	N/A – Refer to AO32.1


Performance outcomes	Acceptable outcomes	
PO37 Run-off from the development site is not unlawfully discharged to a future state-controlled road.	AO37.1 Development does not create any new points of discharge to a future state-controlled road.	N/A – Refer to AO32.1
Note: Refer to the SDAP Supporting Information: Stormwater and drainage in a state-controlled road environment, Department of Transport and Main Roads, 2017, for further guidance on how to comply with this performance outcome.	AND AO37.2 Stormwater run-off is discharged to a lawful point of discharge. Note: Section 3.9 of the Queensland Urban Drainage Manual, Institute of Public Works Engineering Australasia (Queensland Division), Fourth Edition, 2016, provides further information on lawful points of discharge.	N/A – Refer to AO32.1
	AND AO37.3 Development does not worsen the condition of an existing lawful point of discharge to the future state-controlled road.	N/A – Refer to AO32.1

www.stantec.com

ROCKHAMPTON REGIONAL COUNCIL APPROVED PLANS These plans are approved subject to the current conditions of approval associated with Development Permit No.: D/33-2022 Dated: 2 February 2023

Document Set ID: 38612853 Version: 1, Version Date: 07/09/2022

EMMAUS COLLEGE, ROCKHAMPTON **INFORMATION REQUEST**

DRAWING SCHEDULE

TITLE PAGE & DRAWING SCHEDULE SPECIFICATION & PLANT SCHEDULE LANDSCAPE PLAN LANDSCAPE PLAN LANDSCAPE PLAN LANDSCAPE DETAILS

— Property ID —

EMMAUS COLLEGE ROCKHAMPTON

DISCLAIMER: OPERATIONAL WORKS

Rev.	Date.	Description.	Dwn.	Chk.
01	05.09.22	FOR APPROVAL	AH	AH

– Stamp –—

FOR APPROVAL

Approval Details

APPROVAL NO: D33-2022 - Information Request

- Drawing TITLE PAGE

— Scale Bar

SCALE 1:750

Project No. J0652

Drawing No. 01

Rev No. — 01

SPECIFICATIONS

GENERAL NOTES:

ALL WORKS TO BE CARRIED OUT IN ACCORDANCE WITH COUNCIL STANDARDS AND RELEVANT AUSTRALIAN STANDARDS.

A COPY OF THE COUNCIL DECISION NOTICE FOR THE APPROVED PLANS IS TO BE KEPT AT ALL TIMES WITH THE APPROVED LANDSCAPE PLANS.

VERIFY LOCATION OF ALL SERVICES PRIOR TO COMMENCEMENT OF WORKS.

1.0 SITE PREPARATION

1.1 EARTHWORKS

EARTHWORKS SHALL COMPRISE

- TOPSOIL CULTIVATION
- TOPSOIL MIXING AND INSTALLATION

1.2 SOIL CULTIVATION

CULTIVATE BY RIPPING TO THE DEPTHS SPECIFIED THIS SHEET TO LOOSEN AND AERATE GROUND. DO NOT DISTURB EXISTING SERVICES. REMOVE UNWANTED MATTER INCLUDING STONES, RUBBISH AND RUBBLE EXCEEDING 20MM IN DIAMETER AND STICKS AND WEEDS BROUGHT TO THE SURFACE DURING CULTIVATION. FINELY CULTIVATE THE SURFACE AND RAKE FREE OF CLODS.

TREE PLANTING AREAS: CULTIVATE TO THE DEPTH OF ROOT BALL PLUS A FURTHER DEPTH OF 300MM.

1.3 TOPSOIL - TREE PLANTING AREAS

IMPORTED TOPSOIL/SUPPLIMENTED SITE SOIL SHALL BE TO THE AUSTRALIAN STANDARD 4419 AND CERTIFIED FIRE ANT FREE IF REQUIRED.

1.4 COMPOST

COMPOST SHALL BE SPENT MUSHROOM COMPOST OR MILLED COW MANURE. IT SHALL HAVE A NEUTRAL pH VALUE AND BE FREE OF WEEDS, SEEDS AND DISEASE.

1.5 TOPSOIL MIXTURE

TOPSOIL MIXTURE SHALL BE A 3:1 MIX OF TOPSOIL/COMPOST.

1.6 TOPSOIL MIXTURE INSTALLATION

AS PER PLANTING DETAIL, INSTALL TOPSOIL BACKFILL TO TREE PLANTING AREAS BOTH BENEATH TO 300MM AND AROUND ROOT BALL.

2.00 PLANTING

2.1 THE WORKS

PLANTING WORK COMPRISES:

- SUPPLY AND INSTALLATION OF ALL PLANTS AND TREES
- MULCHING OF ALL TREE PLANTING AREAS
- STAKING OF ALL TREES

2.2 PLANTS

PLANTS SHALL BE VIGOROUS, WELL ESTABLISHED, OF GOOD FORM, NOT SOFT OR FORCED, HARDENED OFF, FREE FROM DISEASE AND PESTS WITH LARGE HEALTHY ROOT SYSTEMS AND NOT POT BOUND. THE ROOT SYSTEM SHALL BE WELL BALANCED IN RELATION TO THE SIZE OF THE PLANT.

TREES SHALL HAVE A SINGLE LEADING SHOOT.

PLANT CONTAINERS SHALL BE OF AN APPROPRIATE SIZE AND FREE FROM WEEDS. PLANTS SHALL NOT EXHIBIT SIGNS OF BEING STRESSED AT ANY STAGE DURING THEIR DEVELOPMENT DUE TO INADEQUATE WATERING, EXCESSIVE SUNLIGHT, PHYSICAL DAMAGE OR HAVE RESTRICTED GROWTH DUE TO NURSERY ROWS. NO SUBSTITUTIONS SHALL BE MADE UNLESS APPROVED BY THE LANDSCAPE ARCHITECT.

KEEP PLANTS IN GOOD CONDITION DURING STORAGE. PREVENT DRYING OUT OR DAMAGE FROM ANY CAUSE INCLUDING FROST, WIND, SUN, THEFT, VERMIN ETC.

2.3 PLANTING

IF PLANTING IS TO BE EXECUTED DURING <u>COUNCIL WATER RESTRICTION</u> <u>PERIODS</u> ENSURE PLANTS CAN BE WATERED IN AT TIME OF PLANTING. DO NOT ALLOW PLANTS TO BE INSTALLED ON A DAY THEY CAN'T BE WATERED. PLANTING TO BE EXECUTED IN ACCORDANCE WITH THE PLANTING DETAIL. DO NOT PLANT INTO DRY OR MUDDY SOIL OR IN EXTREME WEATHER CONDITIONS. ENSURE PLANT ROOT SYSTEMS ARE MOIST WHEN REMOVED FROM CONTAINER AND NOT ALLOWED TO DRY OUT AND PLANTING AREA HAS BEEN THOROUGHLY WATERED. PLANT OUT WITH MINIMUM DISTURBANCE TO ROOT BALL ENSURING FINISHED COMPACTED SOIL LEVELS COINCIDE WITH THE NATURAL SOIL LEVEL OF THE PLANT. PLANT, STAKE, TIE AND MULCH ACCORDING TO DETAIL DRAWINGS AND THEN DEEP SOAK THE WHOLE OF THE PLANTING AREA.

2. 4 DEPTH OF PLANTING

2.41 CULTIVATION

CULTIVATE SUBGRADE TO MIN 200MM DEPTH SUPPLY AND PLACE MIN 300MM DEPTH IMPORTED SOIL MIX TO BEDS IN GENERAL.

2.5 WATER SAVING GRANULES

SUPPLY AND IMPLEMENT FYOTGREEN HYDROCELL OR APPROVED EQUIVALENT.

BACKFILLING SOIL MIX TO TREE PLANTING AND BED PLANTING WILL BE AS FOLLOWS:

30% IMPORTED TOPSOIL 60% COARSE SAND 10% ORGANIC MATTER

PLUS AMENDMENTS AS DETERMINED BY SOIL CHEMICAL ANALYSIS TO ACHIEVE PH AND FERTILITY SUITABLE TO PROMOTE VIGOROUS GROWTH AND ESTABLISHMENT

ONCE THE BACK FILLING SOIL MIX HAD BEEN CREATED, MIX IN HYDROCELL OR APPROVED EQUIVALENT AT THE RATE OF HALF THE VOLUME OF THE ROOT BALL (IE 22.5L FOR A 45L ROOT BALL) AND PROCEED TO BACKFILL AROUND THE ROOT BALL.

WHEN THE PLANT IS IN ITS FINAL POSITION IN ITS HOLE THE TOP SOIL LEVEL OF THE PLANT ROOT BALL SHALL BE LEVEL WITH THE FINISHED SURFACE OF THE SOIL SURROUNDING THE HOLE. TEST THE DEPTH BY MEASURING THE SIDES OF CONTAINERS. IF BACKFILLING IS REQUIRED TO CORRECT THE DEPTH USE TOPSOIL MIX.

2. 6 PLANTING FERTILIZER

'OSMOCOTE' SUSTAINED RELEASE FERTILISER IN GRANULE FORM OR APPROVED EQUIVALENT SHALL BE ADDED TO THE TOPSOIL AS PER MANUFACTURERS DIRECTION.

'BIOPTIVATE GRANULE' SOIL ADDITIVE FOR REHABILITATION PLANTING AREA SHALL BE ADDED AT THE RATE OF: 1 TEASPOON PER PLANTING HOLE FOR TUBESTOCK. 10 TABLESPOONS PER PLANTING HOLE FOR 100 LTR TREE

2.7 MULCHING

MULCH TO BE 'FOREST MULCH' AS DETAILED, FREE OF WEEDS, TERMITES AND OTHER FOREIGN MATTER. SPREAD MULCHES EVENLY TO A DEPTH OF 100MM TO ALL PLANTING AREAS REDUCING AROUND PLANT BASE. TAPER MULCH AT EDGES TO MAINTAIN FINISHED LEVEL WITH ADJACENT SURFACES.

3.0 DRAINAGE

ALL PLANTING AREAS AT GRADE TO DRAIN THROUGH NATURAL GROUND. PERFORATED AGRICULTURAL DRAIN TO BE INSTALLED WHERE ROCK IS AFFECTING DRAINAGE OF BED AREAS / SPECIMEN PLANTING AND GRADED TO PROVIDE ADEQUATE (MIN 1 IN 100 FALLS) DRAINAGE IN NATURAL GROUND.

4.0 TURFING

4.1 THE WORKS

TURFING WORK COMPRISES

- SUPPLY OF TURF AND FERTILIZER
- INSTALLATION OF PROPOSED TURF AREAS

4.2 TURF SPECIES

TURF SHALL BE A GRADE COUCH WITH AN EVEN THICKNESS TO NOT LESS THAN 30MM.

TURF SHALL BE OBTAINED FROM AN APPROVED GROWER OF CULTIVATED TURF. TURF TO BE DELIVERED ON SITE WITHIN 24 HOURS OF BEING CUT AND LAID WITHIN 36 HOURS OF BEING CUT. PREVENT TURF FROM DRYING OUT BETWEEN CUTTING AND LAYING.

ZER D TURF AREAS

4.3 TURF UNDERLAY

UNDERLAY SHALL BE CLEAN WASHED COURSE RIVER SAND AND LOAM MIX FREE OF CLAY LUMPS, CLODS, WEEDS, TREE ROOTS, STICKS, ORGANIC MATTER, RUBBISH AND MATERIAL TOXIC TO PLAN GROWTH.

4.4 LAYING

PREPARE THE AREA TO BE TURFED AS SPECIFIED. INSTALL 75M SANDY LOAM AND CULTIVATE INTO THE PREPARED SUB-GRADE. FERTILIZE USING 'TURF STARTER' OR APPROVED EQUIVALENT PER MANUFACTURERS DIRECTIONS.

LAY TURF IN STRETCHED BOND PATTERN WITH THE JOINTS STAGGERED AND CLOSE BUTTED. TURF TO BE PARALLEL WITH THE LONG SIDE OF LEVEL AREAS AND WITH THE CONTOURS OF SLOPES. TURF TO FINISH FLUSH AND LEVEL WITH ADJACENT FINISHED SURFACES WHEN ROLLED. ELIMINATE AIR POCKETS AND WATER IMMEDIATELY TO MOISTEN THE SOIL TO IT'S FULL DEPTH. CONTINUE WATERING TO MAINTAIN MOISTURE TO THIS DEPTH.

5.0 MAINTENANCE:

THE DURATION OF THE ESTABLISHMENT PERIOD IS 12 WEEKS AND COMMENCES AT THE DATE OF PRACTICAL COMPLETION. THE FOLLOWING TASKS SHOULD BE CARRIED OUT DURING THE ESTABLISHMENT PERIOD:

- WATERING, FERTILISING, WEEDING AND TREATMENT OF PLANTS AND TURF FOR PEST AND DISEASE TO MAINTAIN HEALTH AND GROWTH.
- MAINTAIN MINIMUM SOIL AND MULCH DEPTHS
- TOPDRESSING TURF TO MAINTAIN AN EVEN SURFACE FREE FROM DEPRESSIONS
- ADJUSTMENTS AND REPLACEMENTS OF STAKES AND TIES
- PRUNING TO PROMOTE THE DESIRED FORM
- MOWING OF ALL LAWN AREAS TO MAINTAIN A UNIFORM GRASS COVER WITH A MAXIMUM HEIGHT OF 50MM.

WATER: REGULARLY WATER THE PLANTS TO ENSURE CONTINUOUS HEALTHY GROWTH. WATER WITHIN COUNCIL WATER RESTRICTION PERIODS OR AS ADVISED WITHIN GUIDELINES FOR THE AREAS LOCAL RESTRICTIONS. CONTRACTOR IS TO ALLOW FOR WATER TRUCKING TO SITE DURING MIN ONE MONTH OF ESTABLISHMENT AND TO THE APPROVAL OF COUNCIL INSPECTORS.

REPLACEMENTS: REPLACE ALL PLANTS THAT ARE UNHEALTHY OR DEAD. REPLACEMENTS SHALL BE IDENTICAL IN SIZE AND SPECIES.

SOIL SUBSIDENCE: MAKE GOOD IF DUE TO WORKMANSHIP OF LANDSCAPE CONTRACTOR.

STAKES AND TIES: ADJUST AS REQUIRED, REMOVE FROM SITE AT COMPLETION OF MAINTENANCE PERIOD.

PROTECTION: PROTECT PLANTED AREAS FROM DAMAGE, EITHER MALICIOUS, IRRESPONSIBLE OR ACCIDENTAL. MULCHED SURFACE: MAINTAIN IN A TIDY CONDITION, REINSTATE IF NECESSARY.

SPRAYING AND PEST ERADICATION: CHECK FOR INFESTATION REGULARLY AND IN PARTICULAR KNOWN PERIODS OF ACTIVITY. SPRAY AND REMOVE BY HAND.

Planting Schedule

Code	Botanical Name	Common Name	Container Size	Density/m2	Number
Trees					
ARC ale	Archontophoenix alexandrae	Alexandria Palm	100Ltr	As shown	12
BUC cel	Buckinghamia celsissima	Ivory Curl	100Ltr	As shown	18
HAR pen	Harpullia pendula	Tulipwood	100 Ltr	As shown	6
Shrubs &	& Feature Plants				
CALvim	Callistemon viminalis 'Little John'	Little John	140mm	As shown	219
COR fru	Cordyline fruticosa 'Pink diamond'	Pink Diamond	200mm	As shown	6
MEL lin	Melaleuca linariifolia 'Claret Tops'	Honey Myrtle	200mm	As Shown	61
Groundo	covers				
DIA cae	Dianella caerulea	Blue Flax Lilly	75mm tube	As shown	103
LOM hys	Lomandra hystrix	Mat Rush	75mm tube	As shown	180
MYO par	Myoporum parvifolium	Creeping Boobialla	75mm tube	As shown	400
Notes:					
Planting i	n accordance with Rockhampton Regional	Council Plannning Scheme			
Plant sele	ection subject to commercial availability, s	ubstitutes to be confirmed w	ith Landscape A	rchitect.	

ROCKHAMPTON REGIONAL COUNCIL APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with **Development Permit No.:** D/33-2022 Dated: 2 February 2023

- Property ID EMMAUS COLLEGE ROCKHAMPTON

DISCLAIMER: OPERATIONAL WORKS

Rev.	Date.	Description.	Dwn.	Chk.
01	05.09.22	FOR APPROVAL	AH	AH

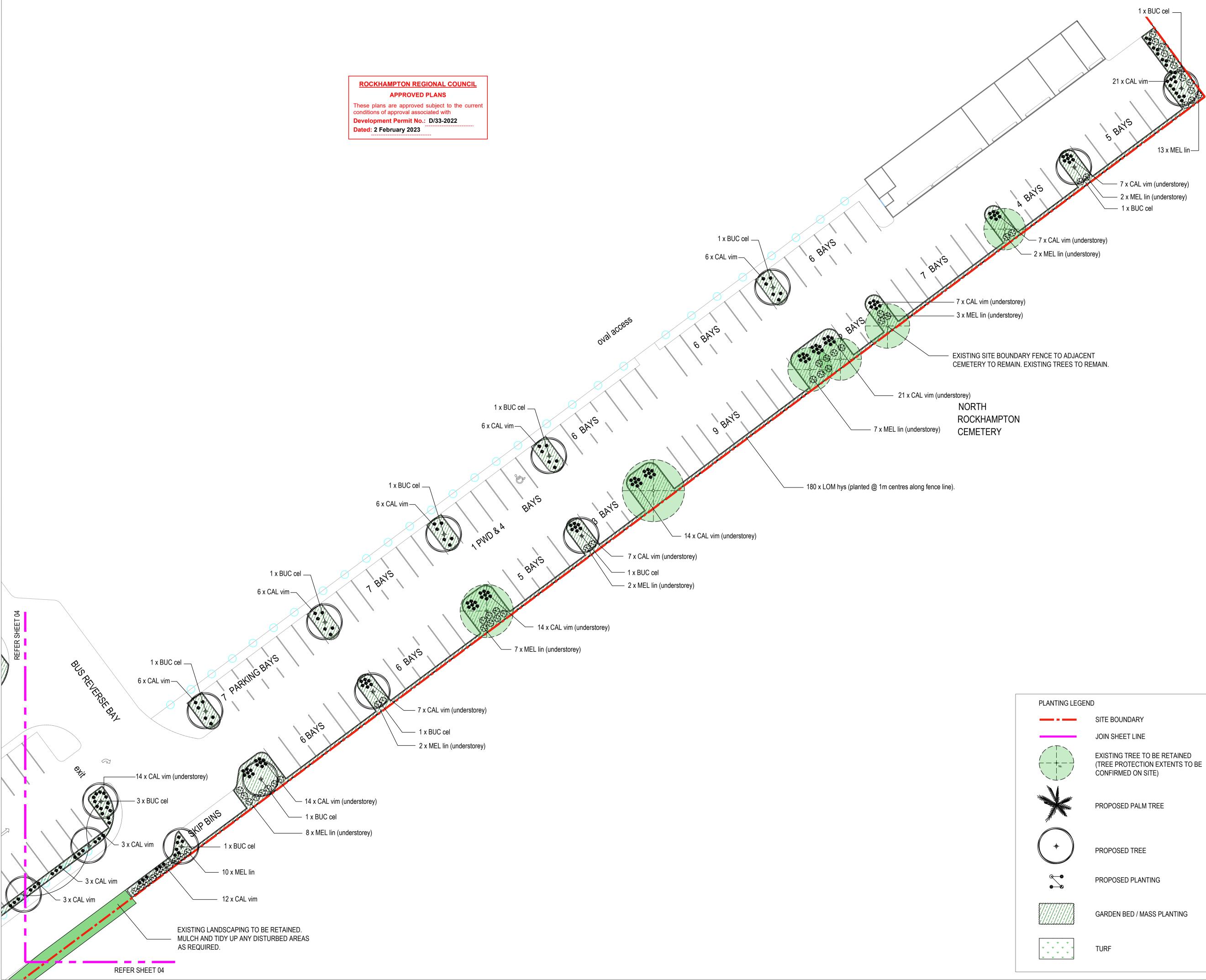
Stamp

FOR APPROVAL

- Approval Details

APPROVAL NO: D33-2022 - Information Request

Drawing


SPECIFICATION & PLANT SCHEDULE

Scale Bar

- Project No

J0652

Drawing No.

Document Set ID: 38612853 Version: 1, Version Date: 07/09/2022

Property ID ——

EMMAUS COLLEGE ROCKHAMPTON

DISCLAIMER: OPERATIONAL WORKS

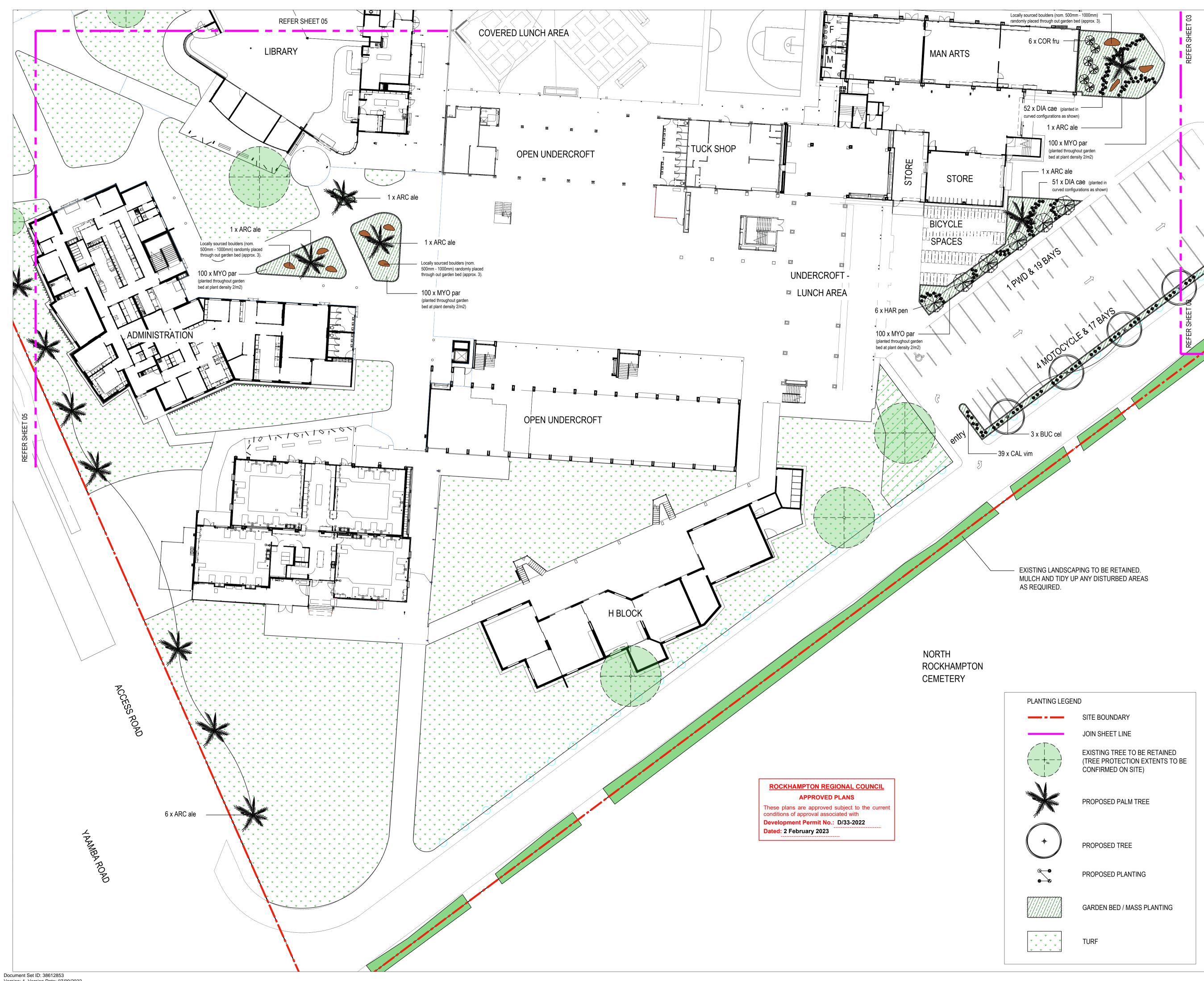
Rev.	Date.	Description.	Dwn.	Chk.
01	05.09.22	FOR APPROVAL	AH	AH

– Stamp –

FOR APPROVAL

 Approval Details APPROVAL NO: D33-2022 - Information Request

Drawing -LANDSCAPE PLAN


Scale Bar SCALE 1:250 @ A1 1:500 @ A3

N `

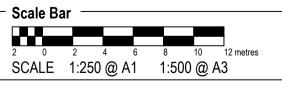
— Project No. J0652

 Drawing No. 03

Rev No. —— 01

— Property ID —— EMMAUS COLLEGE ROCKHAMPTON

DISCLAIMER: OPERATIONAL WORKS

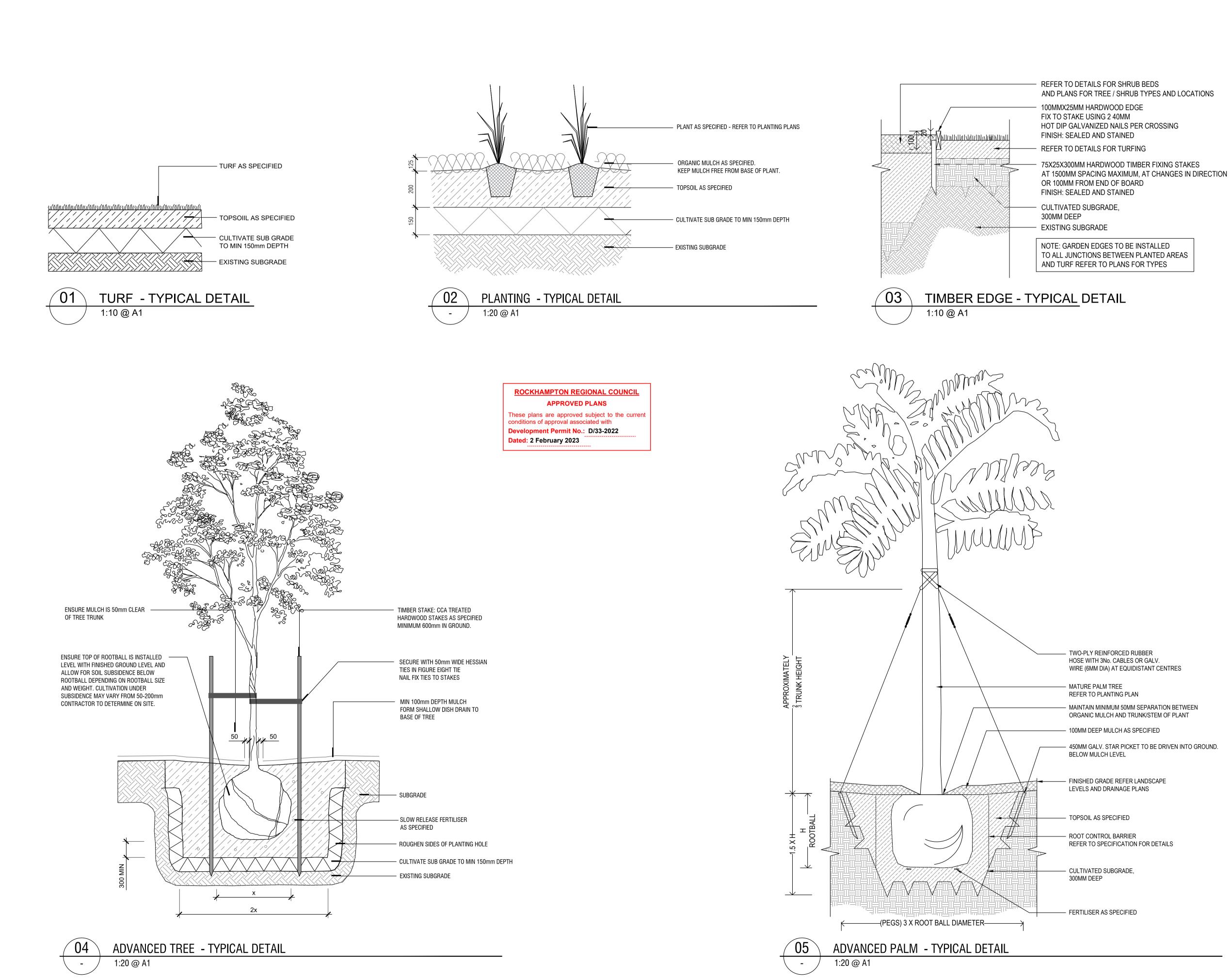

Rev.	Date.	Description.	Dwn.	Chk.
01	04.07.22	FOR APPROVAL	AH	AH

– Stamp –—

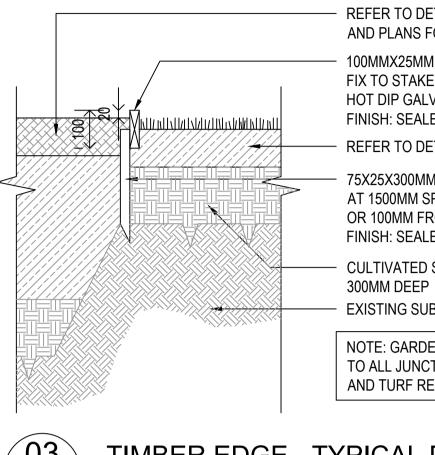
FOR APPROVAL

— Approval Details APPROVAL NO: D33-2022 - Information Request

 Drawing LANDSCAPE PLAN


Project No. J0652

- Drawing No. 04


Rev No. — 01

Document Set ID: 38612853 Version: 1, Version Date: 07/09/2022

Document Set ID: 38612853 Version: 1, Version Date: 07/09/2022

- MAINTAIN MINIMUM 50MM SEPARATION BETWEEN

- 450MM GALV. STAR PICKET TO BE DRIVEN INTO GROUND.

— Property ID —

EMMAUS COLLEGE ROCKHAMPTON

DISCLAIMER: OPERATIONAL WORKS

Rev.	Date.	Description.	Dwn.	Chk.
01	05.09.22	FOR APPROVAL	AH	AH

– Stamp –

FOR APPROVAL

Approval Details

APPROVAL NO: D33-2022 - Information Request

Drawing

LANDSCAPE DETAILS

— Scale Bar

SCALE AS SHOWN @ A1

— Project No. J0652

 Drawing No. 06

Rev No. —— 01