

DRAWING SCHEDULE

Document Title COVER SHEET

EXISTING OVERALL SITE PLAN DA001

OVERALL SITE PLAN DA002 **GROUND FLOOR PLAN** DA003

ROOF PLAN

Document Title

DETAIL FLOOR PLAN DA005 LANDSCAPING PLAN

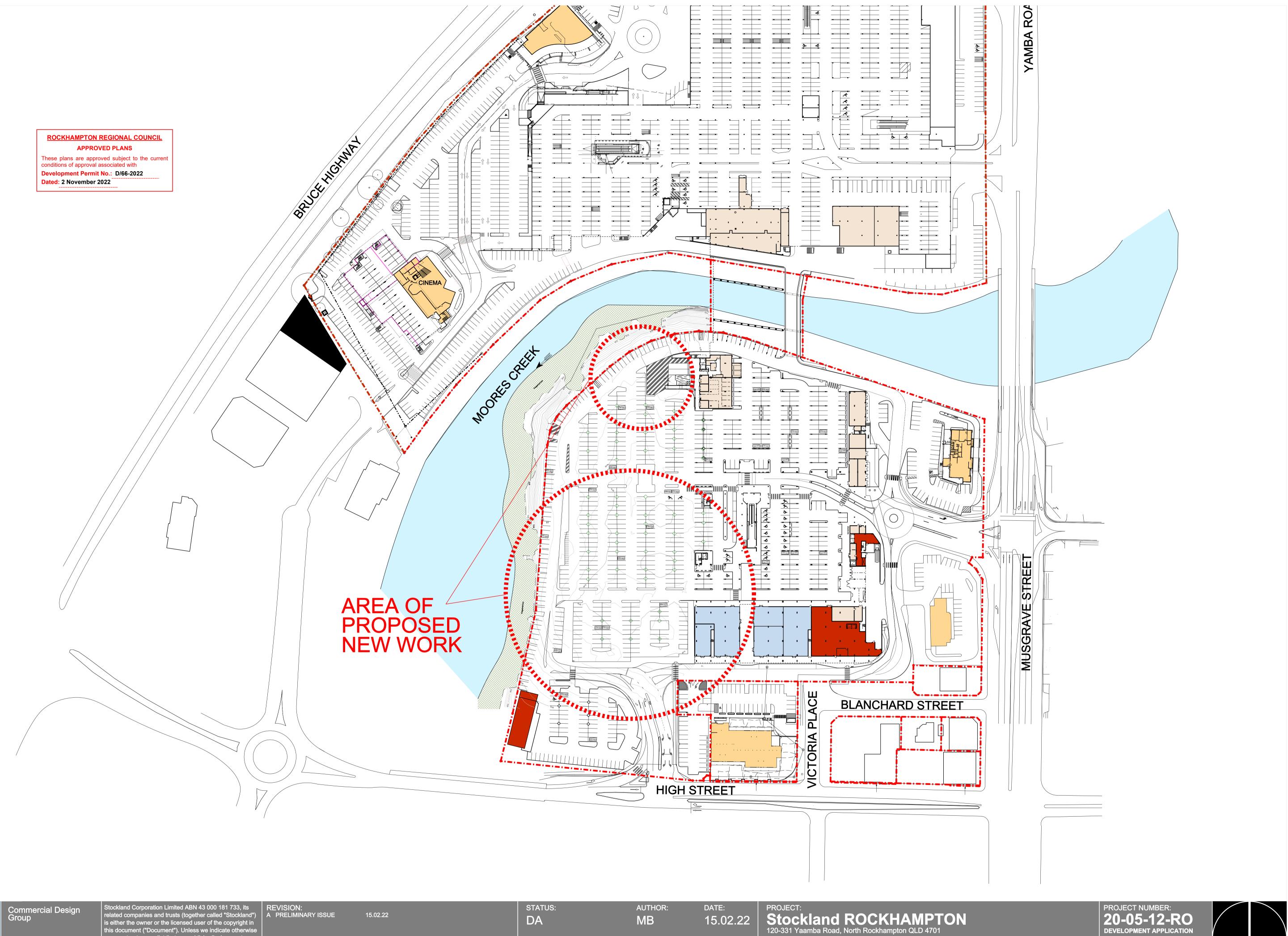
DA030 SUNSHADING DIAGRAM PLAN DA031 **MATERIALS PALETTE**

Document Title ELEVATIONS DA041

ELEVATIONS DA042 **SECTION**

PERSPECTIVES PERSPECTIVES DA051 DA052 PERSPECTIVES DA053 PERSPECTIVES DA054 PERSPECTIVES

Document Title


DA055 PERSPECTIVES PERSPECTIVES

Stockland ROCKHAMPTON 120-331 Yaamba Road, North Rockhampton QLD 4701

COVER SHEET

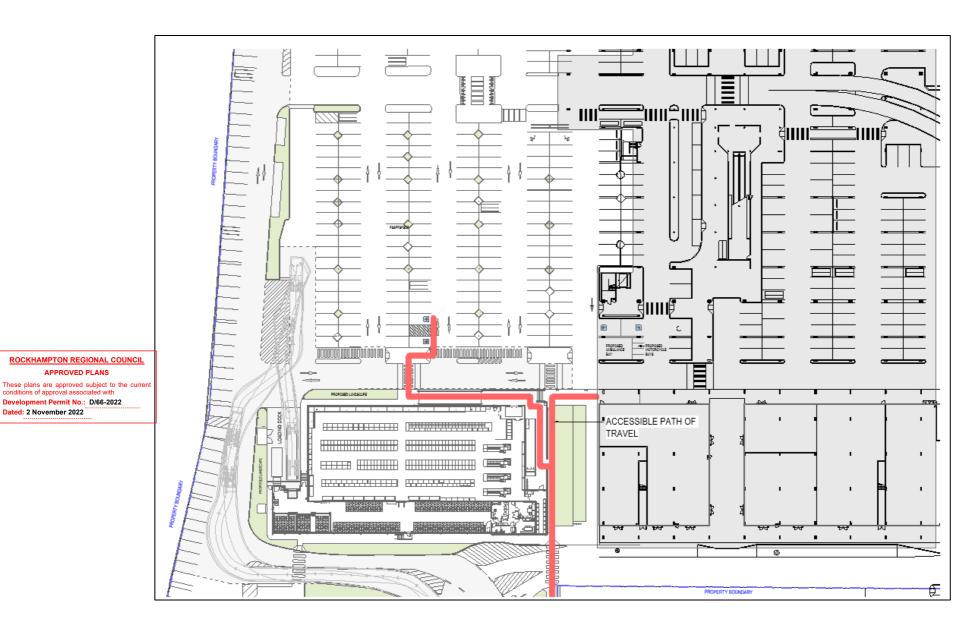
Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000

you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means includir but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the writte consent of the copyright owner.

1:1000 @ A1

SCALE:

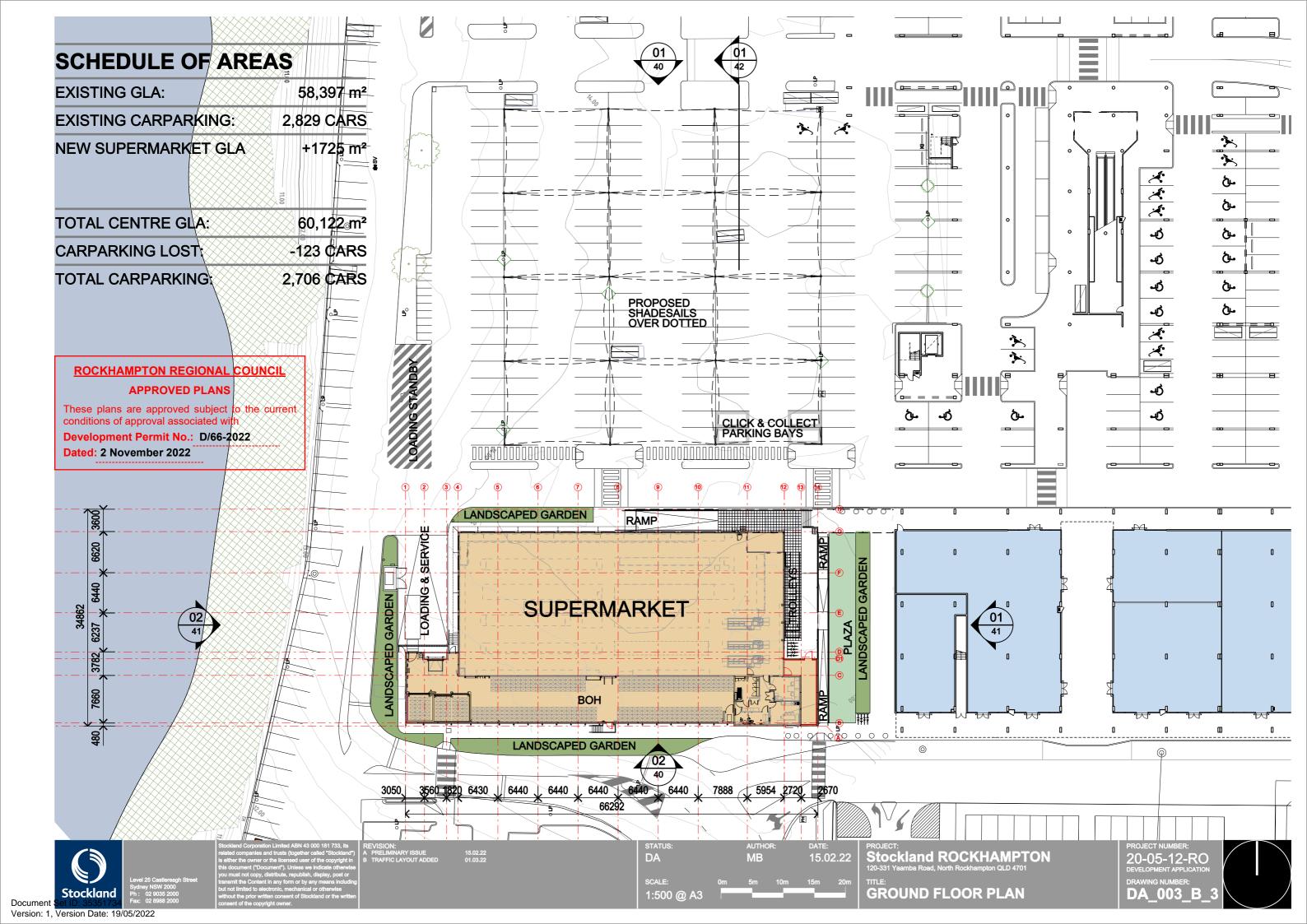
DEVELOPMENT APPLICATION DRAWING NUMBER: DA_001_A_3

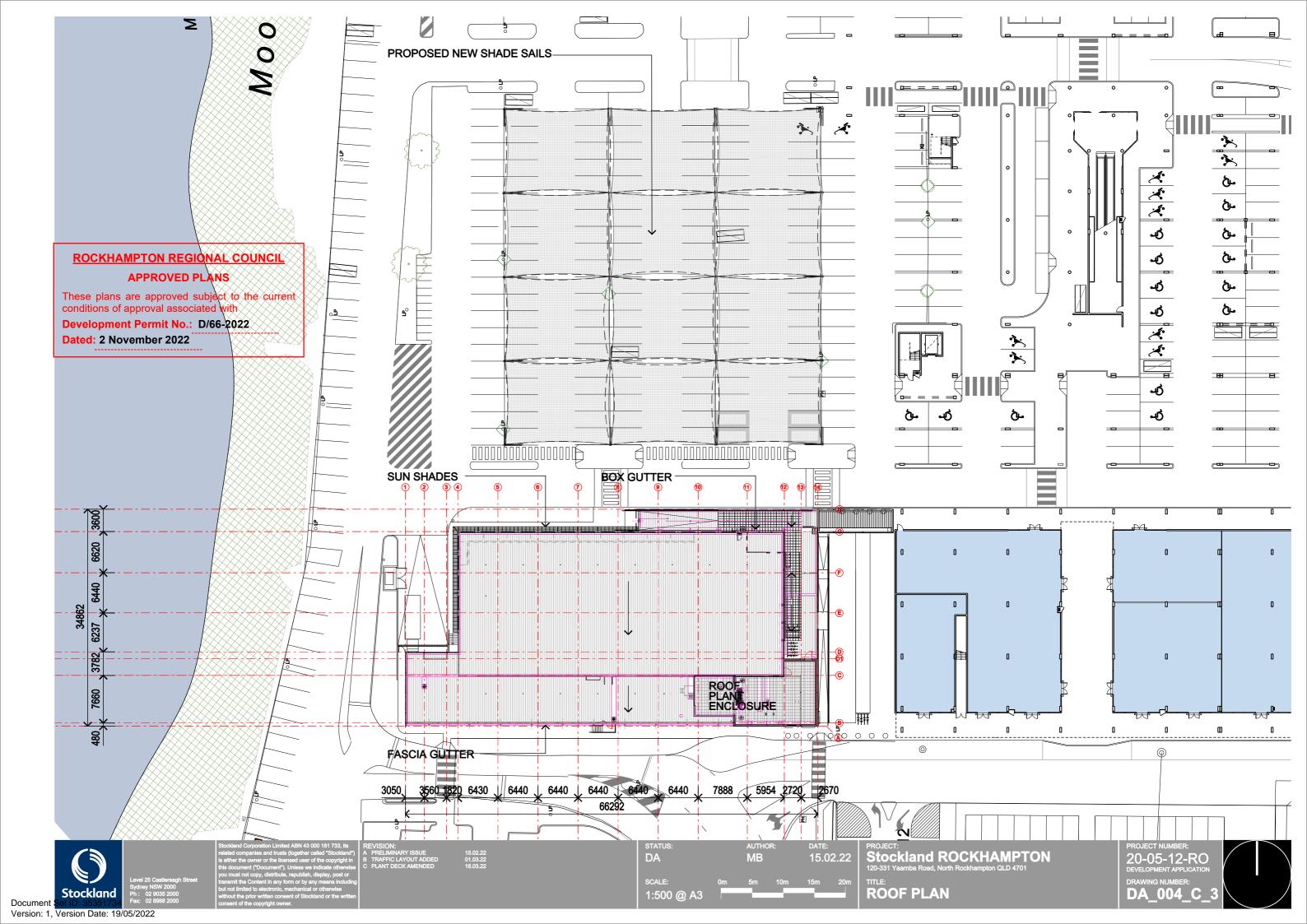

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000

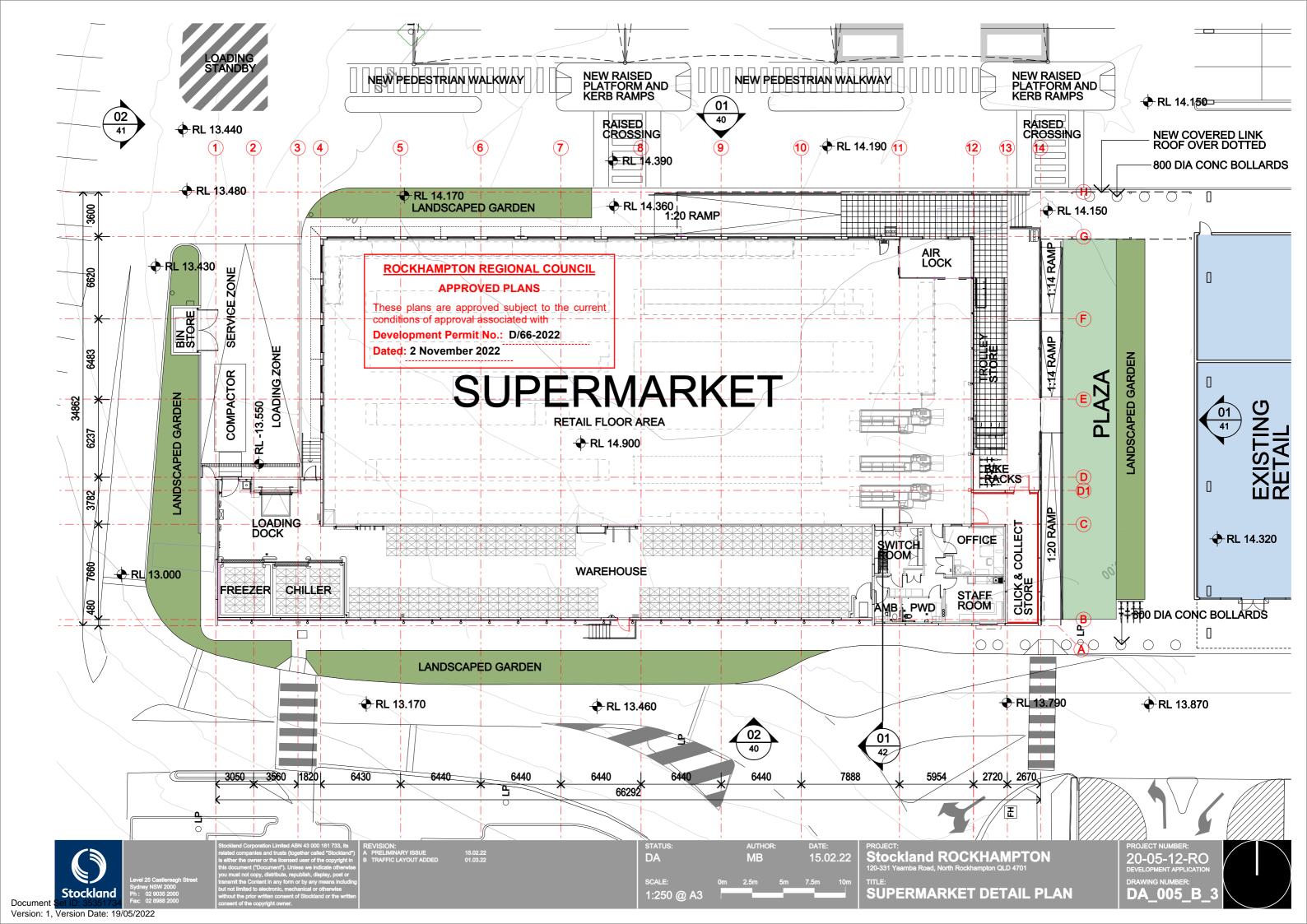
transmit the Content in any form or by any means includ but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written consent of the copyright owner.

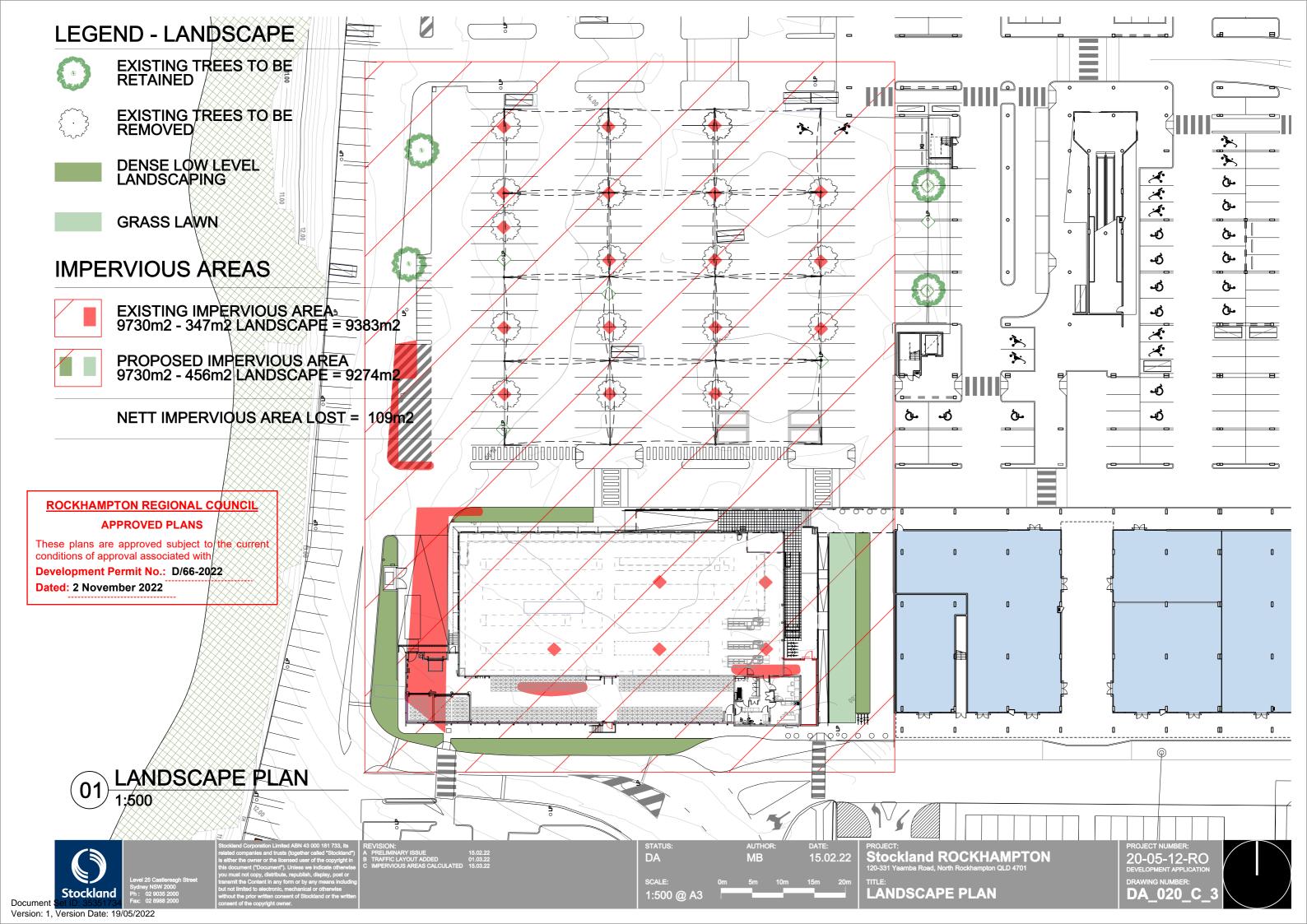
SCALE: 1:1000 @ A1

Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 OVERALL SITE PLAN

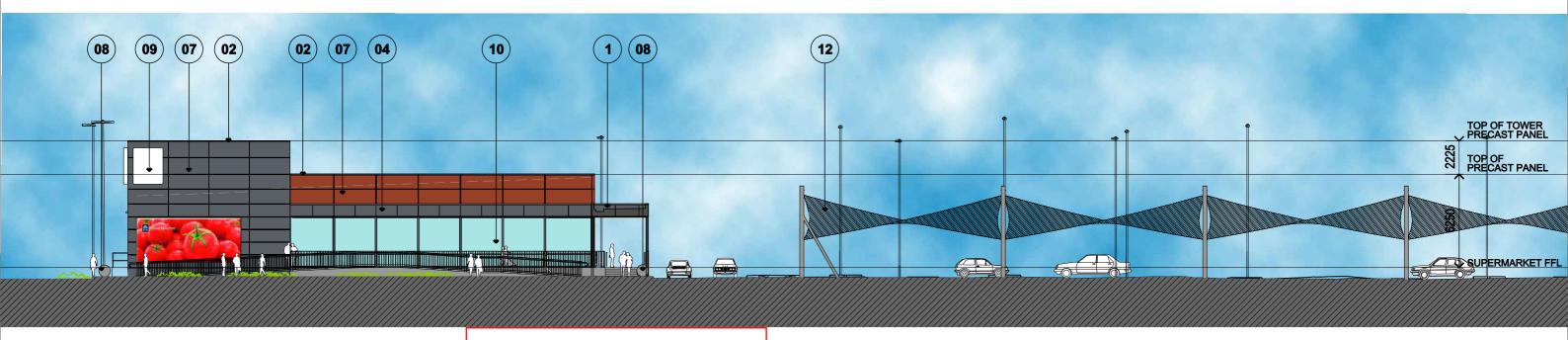

DEVELOPMENT APPLICATION DRAWING NUMBER: DA_002_B_3




Part Site Plan: The main internal pedestrian pathway (red line) from the PWD parking bays past the Aldi shopping centre entrance and through to the pedestrian link / line of scope of building works.


Document Set ID: 39438287 Version: 1, Version Date: 31/10/2022

Dated: 2 November 2022

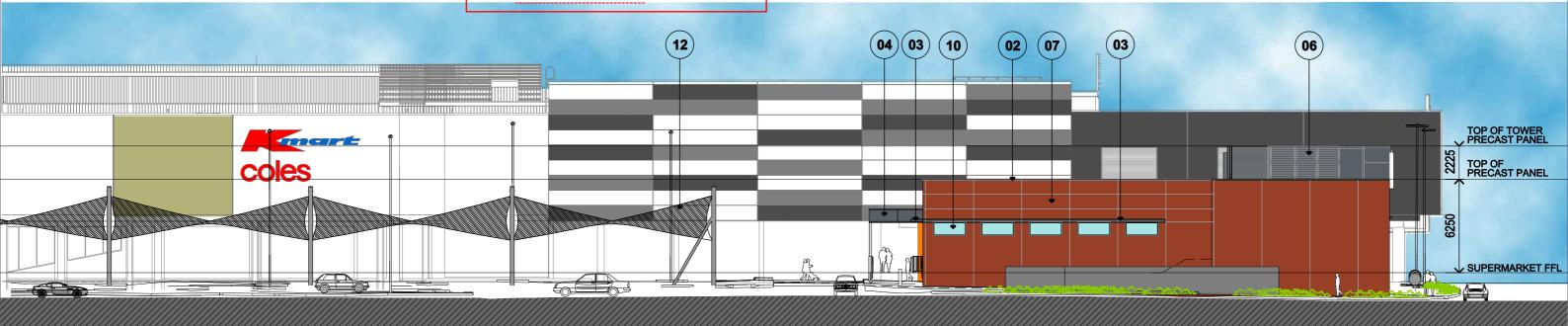


1:250 @ A3

ELEVATIONS

Stockland Version: 1, Version Date: 19/05/2022

01 EAST ELEVATION
1:250


ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/66-2022

Dated: 2 November 2022

02 WEST ELEVATION

ROOF SHEETING - COULOURBOND SURFMIST 05 EXTERNAL WALL LINING (MINIORB)
- PREFINISHED (09) SIGN PANEL ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES 02 06 (03) (11) **SUN SHADE AWNING - PREFINISHED** 07 PRECAST CONCRETE - PAINT FINISH **ROLLERSHUTTER - PREFINISHED** AWNING FACIA - FC PANEL PAINT FINISH 800 DIAMETER CONCRETE BOLLARDS (12) **HYPER SHADE SAIL**

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written consent of the copyright owner.

15.02.22

DA MB 15.02.22 SCALE: 0m 2.5m 5m 7.5m 10m 1:250 @ A3 PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

TITLE:
ELEVATIONS

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:

DA_041_A_3

Document Set ID: 35351734 Fax: 02 8988 Version: 1, Version Date: 19/05/2022

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/66-2022

Dated: 2 November 2022

FLOOD HAZARD OVERLAY CODE ASSESSMENT REPORT

SUPERMARKET - STOCKLAND ROCKHAMPTON

3 March 2022

ACN 105 078 377 5/541 Old Cleveland Rd, CAMP HILL QLD 4152 Ph (07) 3398 4992 Fax (07) 3398 4993 www.stormw.com.au

Document Set ID: 35351738 Version: 1, Version Date: 19/05/2022 Job No: J8700 v1.0

Job Name: Supermarket - Stockland Rockhampton

Report Name	Date	Report No.
Flood Hazard Overlay Code Assessment Report	3 March 2022	J8700 v1.0

Project Engineer: Jack Hu

BE Civil (Hons), MIEAust

E jack@stormw.com.au

Reviewed By: Darren Rogers

BE Civil (Hons), MIEAust, RPEQ 5016

Director

E <u>darren@stormw.com.au</u>

3 March 2022

ii

Table of Contents

1.0	Introduction	1
2.0	Site Conditions	2
	2.2 Developed Site	2
3.0	Moores Creek Flood Study	3
4.0	Hydrologic Modelling	5
5.0	Hydrodynamic Modelling	7
	5.1 TUFLOW Model Setup – Existing	7
	5.2 TUFLOW Model Results – Existing	9
	5.3 TUFLOW Model Setup – Developed	11
	5.4 TUFLOW Model Results – Developed	12
	5.5 Flood Impacts	14
	5.6 Minimum Design Levels	15
6.0	Conclusions	16
List o	f Appendicies	17

1.0 INTRODUCTION

Storm Water Consulting Pty Ltd was commissioned by Stockland to complete a Flood Hazard Overlay Code Assessment Report for the proposed supermarket at Stockland Rockhampton (120-331 Yaamba Road, North Rockhampton).

This report has been prepared to assess the extent of flooding on the subject site and the potential impacts of the proposed development. This report addresses the relevant sections of the Flood Hazard Overlay Code. This code forms part of the Rockhampton Region Planning Scheme 2015.

2.0 SITE CONDITIONS

2.1 Existing Site

The location of the proposed supermarket is shown in Figure 2.1 below, located west of the southern shopping centre building. The area on which the development is proposed is currently a bitumen open-air carpark. The shopping centre is susceptible to flooding from Moores Creek. Moores Creek is located approximately 50 metres west of the proposed supermarket location.

Figure 2.1 – Locality Plan

2.2 Developed Site

A supermarket is proposed to be constructed within the location shown in Figure 2.1 above. The proposed works involve a new building constructed slab on fill. Development plans are presented in Appendix C.

3 March 2022

2

3.0 MOORES CREEK FLOOD STUDY

Rockhampton Regional Council (RRC) recently completed a flood study of Moores Creek in 2017 and published the draft findings in the *Moores Creek Local Catchment Study*. The defined flood event for commercial developments is the 1% AEP (1 in 100 year ARI) flood event. The 1% AEP flood results were sourced from RRC and are presented below.

Figure 3.1 – 1% AEP Flood Levels (metres AHD)

Figure 3.2 – 1% AEP Flood Depths (metres)

3 March 2022

3

Figure 3.3 – 1% AEP Flood Velocities (m/s)

The XP-RAFTS model of Moores Creek was sourced from Council. The model sub-areas were used to form the basis for an URBS model. The URBS model was set up to generate an inflow hydrograph for input into TUFLOW. The URBS model setup, parameters and results are presented in Section 4.0.

The TUFLOW model of Moores Creek was sourced from Council. The model was truncated to around the shopping centre to assess the potential impacts of the supermarket on creek flooding. The TUFLOW model setup, parameters and results are presented in Section 5.0.

4.0 HYDROLOGIC MODELLING

The URBS sub-areas contributing to Moores Creek are presented below, as well as in Figure 1, Appendix A (based on Council's XP-RAFTS model sub-area setup). The total catchment flowing toward High Street (downstream end of the site) is 2680 ha in area. URBS data files are presented in Appendix D. A summary of the adopted URBS parameters is presented in Table 4.1 below.

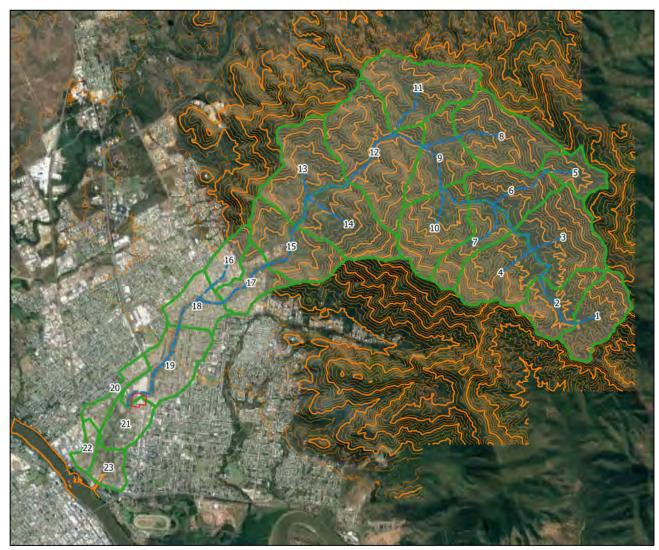


Figure 4.1 - URBS Schematic Layout

Table 4.1 – Catchment URBS Model Parameters

AEP	Storage Coefficient	Non-Linearity Index	Initial Rainfall Loss	Continuing Rainfall Loss
%	α	β	mm	mm/hr
1	0.85	0.8	15	2.5

The URBS model peak 1% AEP catchment runoff immediately downstream of sub-area #19 (High Street), adopting the model parameters in Table 4.1, is 350 m³/s. This flow compares favourably with the Council's XP-RAFTS flow at High Street of 359 m³/s (sourced from *Moores Creek Local Catchment Study*).

3 March 2022

5

The critical storm duration for the 1% AEP event is the 12-hour storm. The peak 1% AEP hydrograph is shown below. This hydrograph was input into TUFLOW.

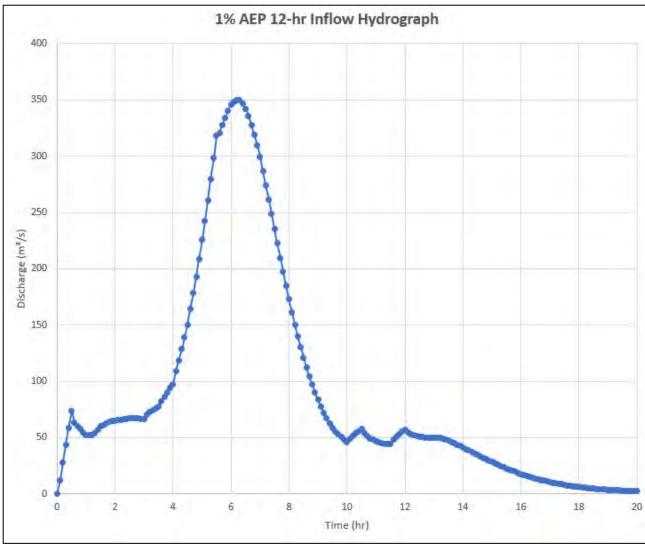


Figure 4.2 – Inflow Hydrograph

5.0 HYDRODYNAMIC MODELLING

The TUFLOW model of Moores Creek was sourced from Council. The model was truncated to around the shopping centre to assess the potential impacts of the supermarket on creek flooding. The existing and developed model setup, results and comparisons are presented in the following sections.

Figure 5.1 - Existing Model Extents

A schematic of the existing TUFLOW model setup is presented above (detailed version in Figure 2, Appendix A). The Digital Elevation Model (DEM) was based on the DEM contained within the Moores Creek Flood Study, which included DEMs of the northern and southern undercroft carparks of the shopping centre. Detailed survey of the childcare centre site (located on the southern side of the site), as well as the open-air carpark (located on the western side of the site) were included. The DEM consists of 3 metre cell sizes, which matches the grid size of the Moores Creek Flood Study.

Existing obstructions, such as storage areas, landings and elevator shafts were included as raised elevation polygons (2d_zsh and 2d_z). Existing upstream/downstream bridges and crossings, including the shopping centre crossing/connection spanning Moores Creek, were modelled using layered flow constriction layers (2d_lfcsh) with properties sourced from the Moores Creek Flood Study.

The Manning's roughness coefficients within the Moores Creek Flood Study were adopted in the TUFLOW model. The adopted values are shown below. For flow depths less than *Depth1*, a value of *n1* was assigned. For flow depths more than *Depth2*, a value of *n2* was assigned. Assigned values between *Depth1* and *Depth2* were interpolated between the values of *n1* and *n2*.

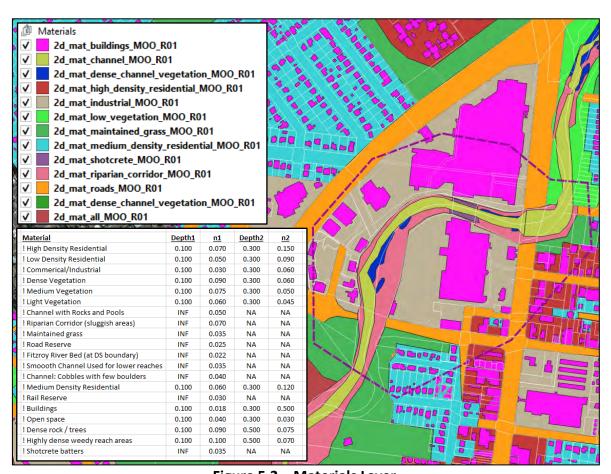


Figure 5.2 – Materials Layer

The downstream boundary condition was set as a height-discharge (HQ) boundary based on the Moores Creek Local Catchment Study 1% AEP flood slope. The inflow into the model was based on a discharge-time (QT) inflow utilising the hydrograph presented in Figure 4.2. The existing model was run with a timestep of 1 second for a period of 9 hours. The results of the existing TUFLOW are presented in the following section, as well as in Figures 3 to 6, Appendix A.

5.2 TUFLOW Model Results – Existing

Figure 5.3 – Existing 1% AEP Inundation Levels (metres AHD)

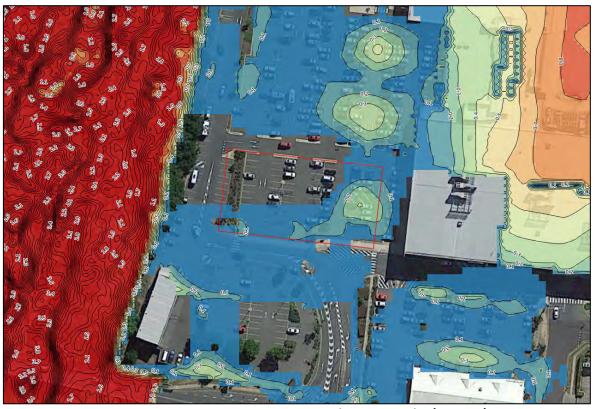


Figure 5.4 – Existing 1% AEP Inundation Depths (metres)

9

Figure 5.5 – Existing 1% AEP Velocities (m/s)

Figure 5.6 – Existing 1% AEP Velocity-Depth (VD) Products (m²/s)

10

5.3 TUFLOW Model Setup – Developed

The existing TUFLOW model was modified to include the design surface DEM. The supermarket building is proposed with a finished floor level of 14.9 m AHD. The DEM also incorporates the proposed ramps and stairs around the supermarket building. Figure 5.7 below presents the DEM as included in the developed TUFLOW model.

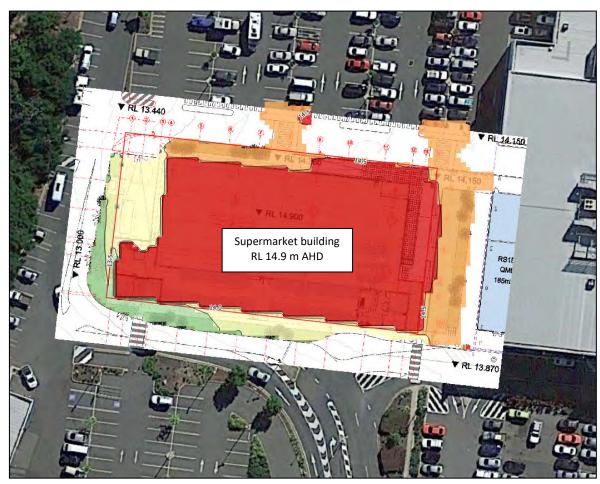


Figure 5.7 – Developed Model Setup

All other model parameters remain the same as the existing model. The developed model was run with a timestep of 1 seconds for a period of 9 hours. The results of the developed TUFLOW model are presented in the following section, as well as in Figures 8 to 11, Appendix A.

5.4 TUFLOW Model Results – Developed

Figure 5.8 – Developed 1% AEP Inundation Levels (metres AHD)

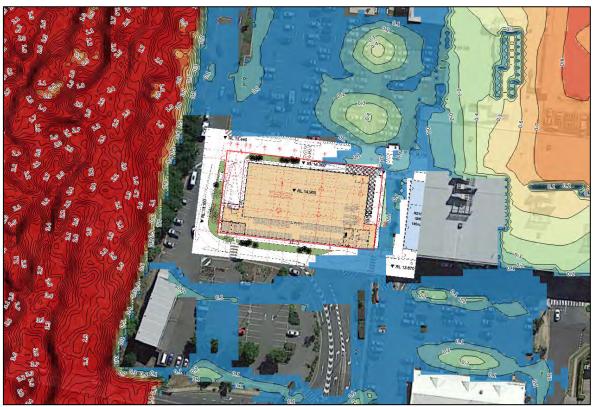


Figure 5.9 – Developed 1 % AEP Inundation Depths (metres)

Figure 5.10 – Developed 1% AEP Velocities (m/s)

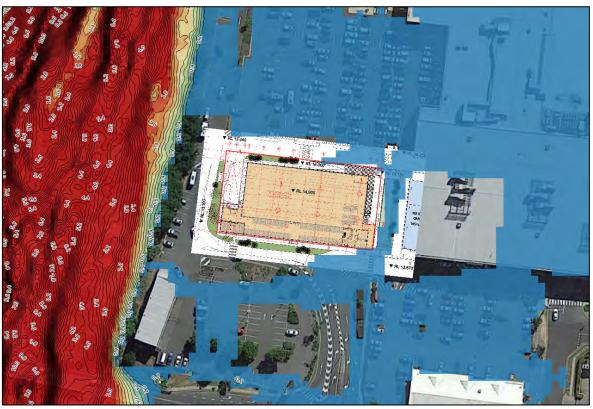


Figure 5.11 – Developed 1% AEP Velocity-Depth (VD) Products (m²/s)

5.5 Flood Impacts

The afflux impacts of the proposed development were assessed and are presented below, as well as in Figure 12, Appendix A.

Figure 5.12 – Afflux Impacts Plot (metres)

The above results show that the majority of the minor hydraulic impacts are contained within the Stockland Shopping Centre land, within Moores Creek or within the road reserve. The proposed development is not anticipated to create any material worsening on upstream, downstream or adjoining properties.

The maximum flow depths reach 0.24 metres and the maximum velocity-depth products reach 0.2 m²/s around the proposed supermarket, as well as along the footpath/driveway between the supermarket and High Street to the south. The supermarket is therefore considered to achieve safe trafficable pedestrian and vehicular access during flood events up to and including the 1% AEP storm event.

5.6 Minimum Design Levels

The defined flood level for setting minimum design levels is 14.4 m AHD, which is the highest 1% AEP flood level impacting the supermarket. The Flood Hazard Overlay Code recommends a minimum freeboard of 500 mm to be incorporated above the defined flood level. As such, the minimum design level for the supermarket is 14.9 m AHD. This requirement is summarised in Table 5.1 below.

Table 5.1 – Minimum Design Level

Flooding Type	Minimum Design Level	
	metres AHD	
Moores Creek Flood	14.9 m AHD	

Document Set ID: 3585473@sulting Lid Version: 1, Version Date: 19/05/2022

6.0 **CONCLUSIONS**

This Flood Hazard Overlay Code Assessment Report was prepared for the proposed supermarket development at Stockland Rockhampton (120-331 Yaamba Road, North Rockhampton).

TUFLOW hydrodynamic modelling was completed for the existing and developed site conditions. The model results show that the majority of the minor hydraulic impacts are contained within the Stockland Shopping Centre land, within Moores Creek or within the road reserve. The proposed development is not anticipated to create any material worsening on upstream, downstream or adjoining properties. The supermarket is also considered to achieve safe trafficable pedestrian and vehicular access during flood events up to and including the 1% AEP storm event.

The minimum design level for the supermarket is 14.9 m AHD. This level incorporates 500 mm of freeboard above the highest 1% AEP flood level impacting the proposed supermarket.

A response to the relevant sections of the Flood Hazard Overlay Code is presented in Appendix E.

Darren Rogers

BE Civil (Hons), MIE Aust, RPEQ 5016

Director

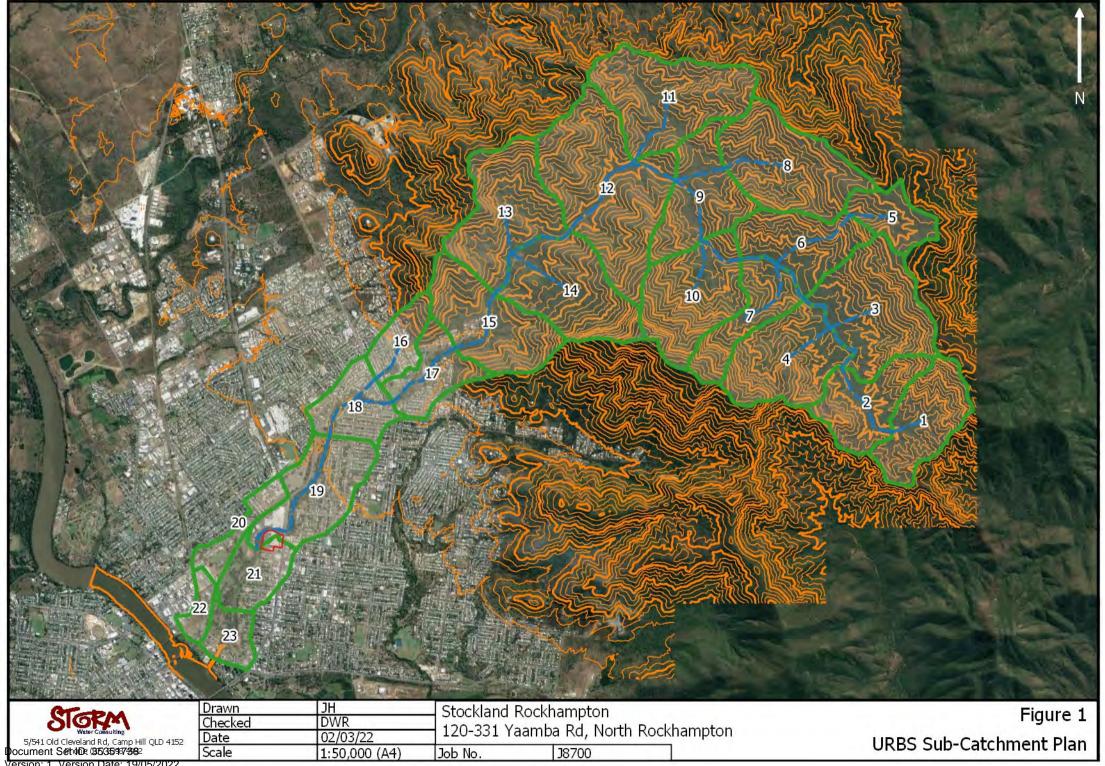
LIST OF APPENDICIES

APPENDIX A – Figures

APPENDIX B – Photographs

APPENDIX C – Development Plans

APPENDIX D – URBS Model Files


APPENDIX E – Flood Hazard Overlay Code Response

Document Set ID: 35351738 Version: 1, Version Date: 19/05/2022

APPENDIX A

Figures

Document Set ID: 35351738 Version: 1, Version Date: 19/05/2022

Water Consulting
5/541 Old Cleveland Rd, Camp Hill QLD 4152

 Drawn
 JH

 Checked
 DWR

 Date
 02/03/22

 Scale
 1:5,000 (A4)

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton Job No. J8700

Figure 2 Existing TUFLOW Model Setup

Version: 1, Version Date: 19/05/2022

Water Consulting
5/541 Old Cleveland Rd, Camp Hill QLD

 Drawn
 JH

 Checked
 DWR

 Date
 02/03/22

 Scale
 1:2,500 (A4)

Stockland Rockhampton
120-331 Yaamba Rd, North Rockhampton
Job No.
J8700

Figure 3

Existing 1% AEP Flood Contours (m AHD)



JH DWR 02/03/22 Checked Date Scale 1:2,500 (A4)

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton J8700 Job No.

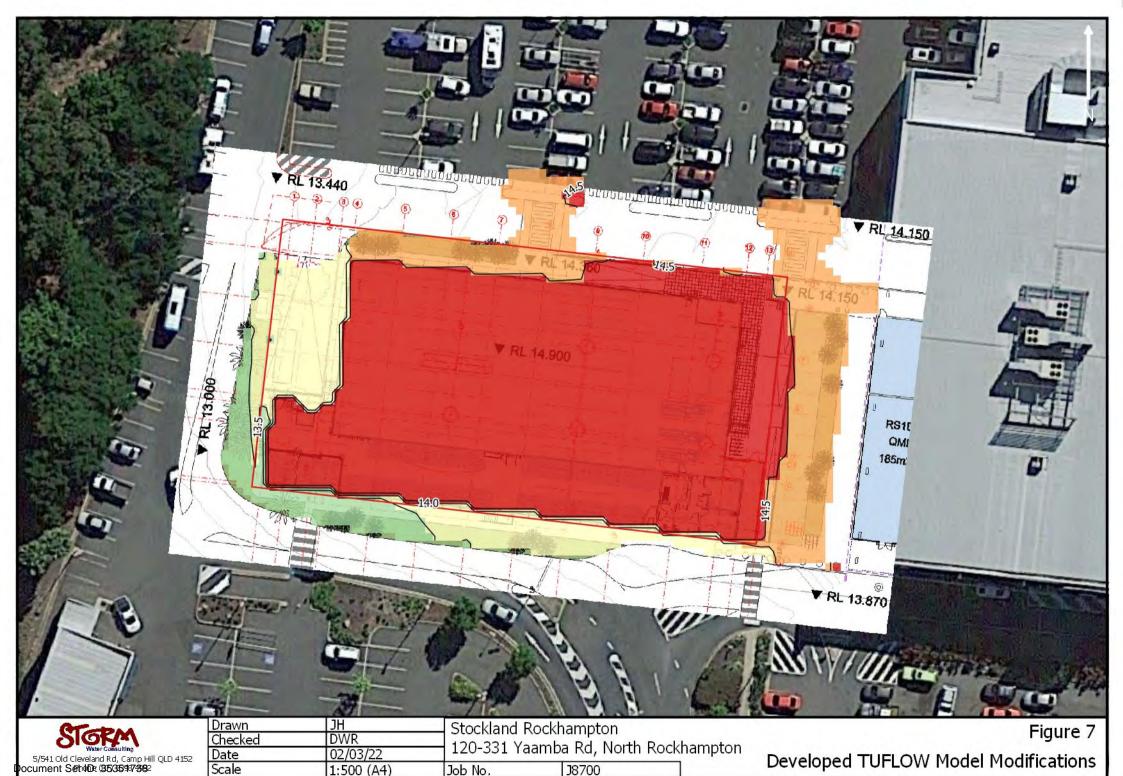
Figure 4


Existing 1% AEP Flood Depths (metres)

JH DWR 02/03/22 1:2,500 (A4) Drawn Checked Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton Date Scale J8700 Job No.

Figure 5

Existing 1% AEP Flood Velocities (m/s)



Date Scale

JH DWR 02/03/22 1:2,500 (A4) Checked

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton
Existing 1% AEP Flood VD Products (m²/s) Job No.

Figure 6

Version: 1, Version Date: 19/05/2022

STORM Water Consulting
 Drawn
 JH

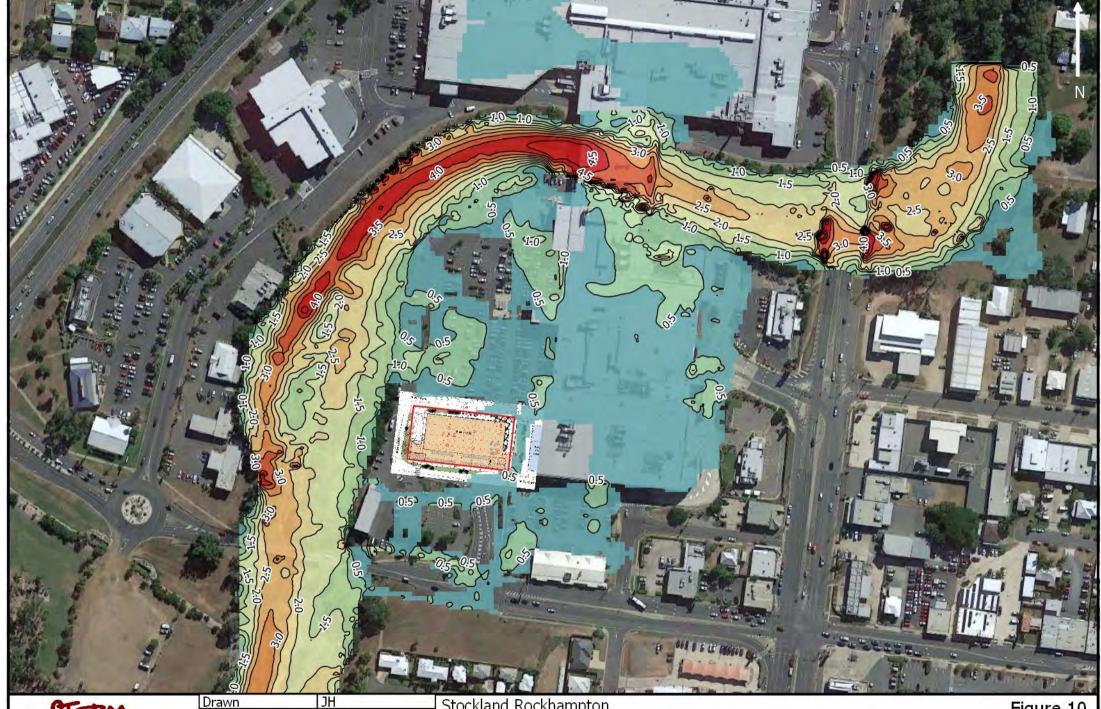
 Checked
 DWR

 Date
 02/03/22

 Scale
 1:2,500 (A4)

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton Job No. J8700 Figure 8

Dev 1% AEP Flood Contours (m AHD)



JH DWR 02/03/22 1:2,500 (A4) Drawn Checked Date Scale

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton J8700 Job No.

Figure 9

Dev 1% AEP Flood Depths (metres)



JH DWR 02/03/22 1:2,500 (A4) Checked Date Scale

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton J8700 Job No.

Figure 10

Dev 1% AEP Flood Velocities (m/s)

JH DWR 02/03/22 1:2,500 (A4) Checked Date Scale

Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton J8700 Job No.

Figure 11

Dev 1% AEP Flood VD Products (m²/s)

STORM Water Consulting

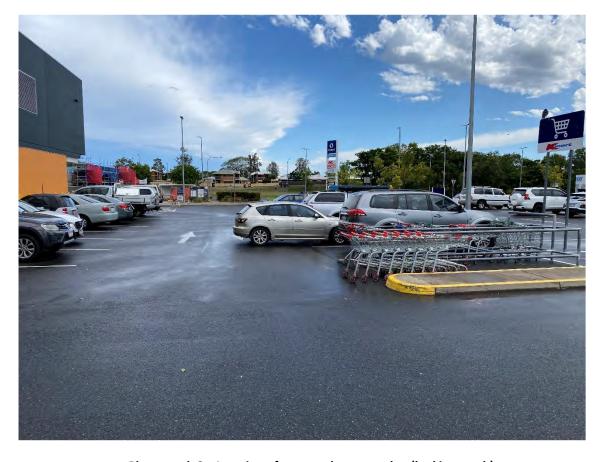
5/541 Old Cleveland Rd, Camp Hill QLD 4152

 Drawn
 JH

 Checked
 DWR

 Date
 02/03/22

 Scale
 1:2,500 (A4)


Stockland Rockhampton 120-331 Yaamba Rd, North Rockhampton Job No. J8700 Figure 12

Afflux Impacts Plot (metres)

APPENDIX B Photographs

Photograph 1 – Location of proposed supermarket (looking north-east)

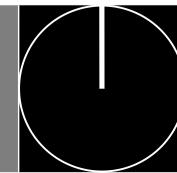
Photograph 2 – Location of proposed supermarket (looking south)

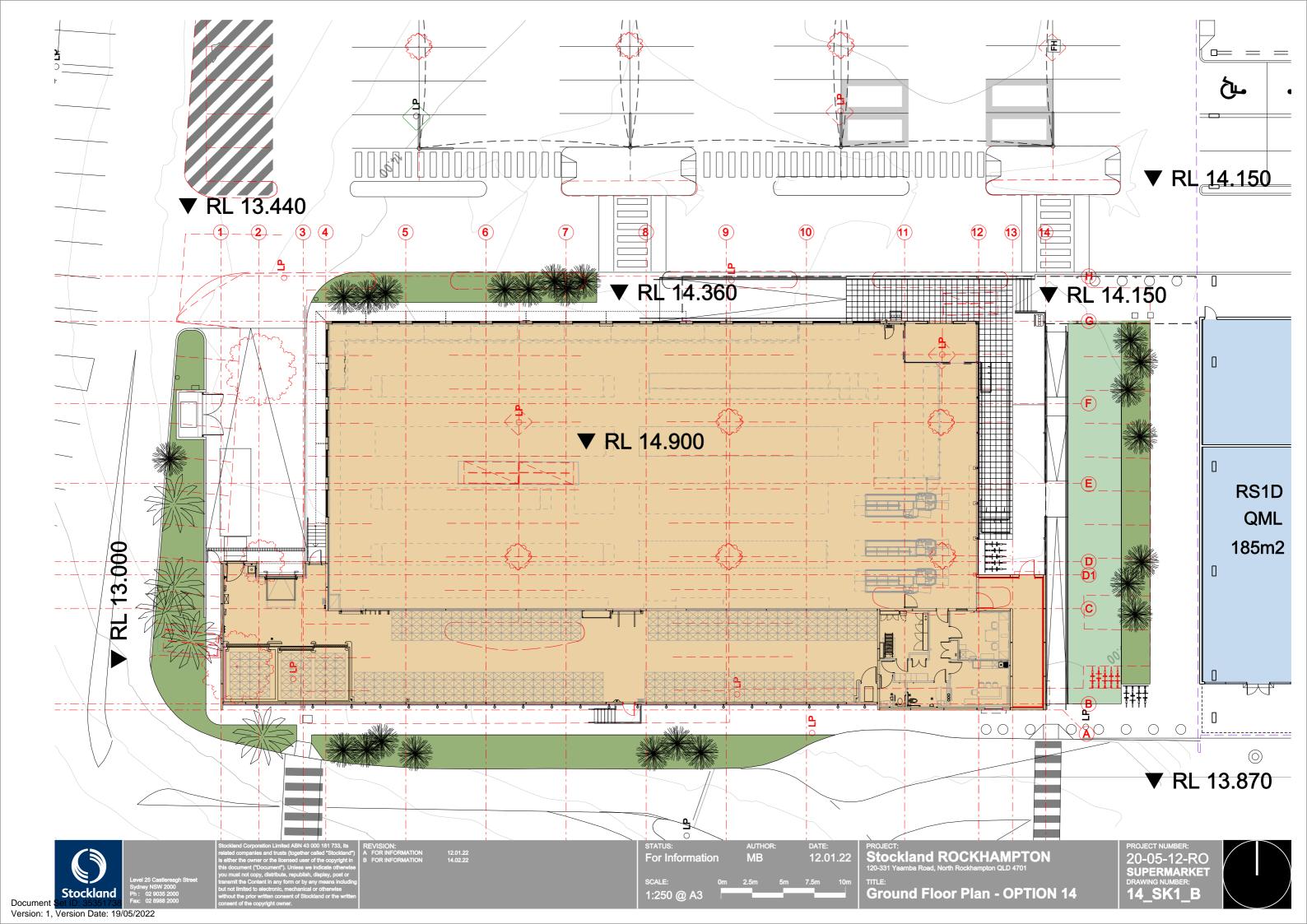
Photograph 3 – Moores Creek below shopping centre crossing/connection (looking south)

Photograph 4 - Moores Creek at High Street bridge crossing

APPENDIX C

Development Plans


Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000 ransmit the Content in any form or by any means includi without the prior written consent of Stockland or the written consent of the copyright owner.


SCALE:

1:1000 @ A1

Overall Site Plan - OPTION 14

PROJECT NUMBER:
20-05-12-RO
ALDI DRAWING NUMBER: 14_SK2_B

APPENDIX D URBS Model Files

8700_Ex.DAT - Catchment Parameters

```
"Index", "Area", "UF", "UL", "UH", "I"
#1,1.18662,1.00,0.00,0.00,0.00
#2,1.09298,1.00,0.00,0.00,0.00
#3,1.89137,1.00,0.00,0.00,0.00
#4,1.55377,1.00,0.00,0.00,0.00
#5,0.63005,1.00,0.00,0.00,0.00
#6,1.20352,1.00,0.00,0.00,0.00
#7,0.93565,1.00,0.00,0.00,0.00
#8,1.85409,1.00,0.00,0.00,0.00
#9,1.36000,1.00,0.00,0.00,0.00
#10,1.63655,1.00,0.00,0.00,0.00
#11,1.98090,1.00,0.00,0.00,0.00
#12,2.84917,1.00,0.00,0.00,0.00
#13,1.76430,1.00,0.00,0.00,0.00
#14,1.71989,1.00,0.00,0.00,0.00
#15,1.55979,0.80,0.20,0.00,0.14
#16,0.55836,0.30,0.70,0.00,0.49
#17,0.81669,0.20,0.80,0.00,0.56
#18,0.81831,0.00,1.00,0.00,0.70
#19,1.38356,0.00,0.60,0.40,0.78
```

8700 Ex.U - Routing

```
MooresCreek - Existing
MODEL: Basic
USES: L, U
Default Parameters: alpha=1.20 m=0.8
Catchment File=8700_Ex.dat
     #1
            L=0.436
             #2 L=0.589
Route thru
                    L=0.583
Add Rain
             #2
                   L=0.797
Route thru
             #3
Store.
            L=0.647
Rain
Store.
     #4
             T_1=0.724
Rain
Get.
Get.
Route thru
            #4
                   L=0.615
                   L=0.648
Route thru
             #6
Store.
Rain #5
            L=0.566
            #6 L=0.776
#6 L=0.461
Route thru
Add Rain
Store.
Rain
             L=0.947
Get.
Get.
             #7
Route thru
                   L=0.498
Route thru
            #10
                  L=0.645
Store.
      #10
             L=0.765
Rain
Get.
            #9
                   T=0.586
Route thru
Add Rain
             #9
                   L=0.379
Store.
             L=0.850
Rain
            #9
                    T=0.695
Route thru
Get.
             #12 L=0.639
Route thru
Store.
     #11
            L=1.007
Rain
Route thru
            #12
                   L=0.093
Get.
Route thru
             #12
                   L=0.508
              #12
                    L=0.750
Add Rain
Route thru
             #13
                    L=0.894
Store.
Rain #13
            L=0.548
Store.
Rain #14
           T_i=0.928
Get.
Get.
                   L=0.622
L=0.405
Route thru
             #14
Route thru
             #15
Add Rain
              #15
                   L=0.633
Route thru
             #17
                    L=0.501
```

Add Rain	#17	L=0.638
Route thru	#18	L=0.504
Store.		
Rain #16	L=0.6	32
Route thru	#18	L=0.385
Get.		
Add Rain	#18	L=0.634
Route thru	#19	L=0.696
Add Rain	#19	L=1.335
Print. POINT-	1	
end of catchm	ent det	ails.

APPENDIX E Flood Hazard Overlay Code Response

Table 8.2.8.3.1 Development outcomes for assessable development and requirements for accepted development

Fitzroy River – H1 or H2 or North Rockhampton flood management area or Creek catchment planning area 2

Performance outcomes	Acceptable outcomes	Response
Development in Fitzroy River flood areas – H1 Creek catchment flood - planning area 2 Editor's note—Refer to overlay maps OM-8A and OM-8C	(low hazard area) or H2 (medium hazard area) or	North Rockhampton flood management area or
PO1 Development (including extensions) for non-residential purposes is able to provide a safe refuge for people and for the storage of goods during times of flood inundation.	AO1.1 For non-residential development, at least thirty (30) per cent of the gross floor area of all new buildings and structures is located a minimum of 500 millimetres above the defined flood level. Editor's note—Areas less than those nominated above may be supported where accompanied by a flood impact report in accordance with SC6.10—Flood hazard planning scheme policy.	Minimum design level recommended is 14.9 m AHD. This level provides 500 mm of freeboard above the 1% AEP flood level.
	AO1.2 A report from a registered professional engineer of Queensland certifies that the development in the flood area will not result in a material increase in flood level or flood hazard on upstream, downstream or adjacent properties.	The proposed development would not result in any material worsening on adjoining properties.
PO2 Development is located to minimise susceptibility to and potential impacts of flooding.	AO2.1 For residential uses the finished floor levels of all habitable rooms shall be constructed a minimum of 500 millimetres above the defined flood level.	Not applicable.
	AO2.2 A report from a registered professional engineer of Queensland certifies that the development in the flood area will not result in a material increase in flood level or flood hazard on upstream,	Refer AO1.2 response.

	downstream or adjacent properties.	
	Editor's note—Report to be prepared in accordance with <u>SC6.10—Flood hazard planning scheme policy</u> .	
PO3 Development avoids the release of hazardous materials into floodwaters.	AO3.1 All hazardous materials and hazardous manufacturing equipment and hazardous containers are located and stored a minimum of 500 millimetres above the defined flood level.	Not applicable.
	Editor's note—Refer to the Work Health and Safety Act 2011 and associated regulation, the Environmental Protection Act 1994 and the relevant building assessment provisions under the Building Act 1975 for requirements related to the manufacture and storage of hazardous substances.	

<u>Table 8.2.8.3.2 Development outcomes for assessable development</u>

Fitzroy River – all hazard areas, North Rockhampton flood management area or Creek catchment – all planning areas

Performance outcomes	Acceptable outcomes	Response
Development in Fitzroy River flood area – a all planning areas Editor's note—Refer to overlay maps OM-8A and OM-8C	ill hazard areas, North Rockhampton flood r	management area or Creek catchment flood –
PO8 Development is located to minimise susceptibility to and potential impacts of flooding.	No acceptable outcome is nominated.	The development is located to minimise susceptibility to and potential impacts of flooding by maintaining the overland flow path through the development and designing the development around the overland flow path.
PO9 Underground car parks are designed to prevent the intrusion of floodwaters.	AO9.1 Development with underground car parking is designed to prevent the intrusion of floodwaters by the incorporation of a bund or similar barrier a minimum of 500 millimetres above the defined flood level	Not applicable.
PO10 Development: 1. does not result in any reduction of onsite flood storage capacity; or 2. does not result in any change to depth, duration or velocity of floodwaters within the premises; and 3. does not change flood characteristics outside the premises, including but not limited to causing: 1. loss of flood storage; or 2. loss of or changes to flow paths; or 3. acceleration or retardation of flows; or	No acceptable outcome is nominated.	The location of the proposed supermarket building is in a flood conveyance area and not a storage area, as identified by the TUFLOW model results presented in the report. The proposed works would not create any material worsening on properties external to the site.

any reduction in flood warning times elsewhere on the floodplain. Editor's note—Council may require the applicant to submit a site-based flood study that investigates the impact of the development on the floodplain and demonstrates compliance with the relevant performance outcome.		
PO11 Essential community infrastructure and community facilities are protected from, and able to function effectively during and immediately after, a defined flood event.	AO11.1 A use for a purpose listed in Table 8.2.8.3.3: 1. is not located within the flood hazard area; and 2. has at least one (1) flood free access road.	The proposed development is not located within the flood hazard area and only within the creek catchment area as denoted in the Flood Hazard overlay. There is at least 1 flood free access road.
PO12 Development provides safe and trafficable access to the local evacuation centres and evacuation services and have regard to:	AO12.1 Trafficable access to and from the development complies with the Capricorn Municipal Guidelines.	The development maintains the same entrance and exit for the site. This access would be safe during the 1% AEP flood event and would provide a safe point of egress for vehicles and pedestrians.
 evacuation time; number of persons affected; types of vehicles necessary for evacuation purposes; the distance to flood free land; and the evacuation route. 	AO12.2 Trafficable access to and from the development within the creek catchment planning areas are in accordance with the Queensland Urban Drainage Manual. Note—Trafficable access for emergency services or community related uses is obtained from at least one (1) route (minor collector or higher) for emergency services purposes. The development is to ensure that safe	The development maintains the same entrance and exit for the site. This access would be safe during the 1% AEP flood event and would provide a safe point of egress for vehicles and pedestrians.

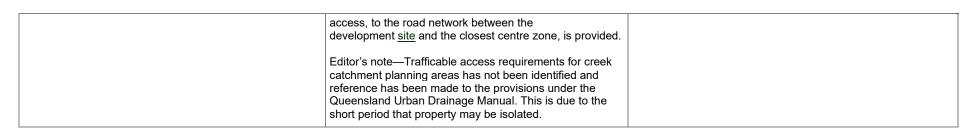


Table 8.2.8.3.3 Essential community infrastructure and community facilities and public assets

Use	Flood event level per cent annual exceedance probability
Emergency services	0.2
Emergency/evacuation shelters	0.5
Fire and police stations	0.5
Hospitals and associated facilities	0.2
Stores of valuable record or items of historic/cultural significance	0.2
Air services	0.5
Telecommunications facilities	0.5
Power stations	0.2
Major electricity infrastructure	0.2
Substations	0.5
Sewage treatment plants	1.0
Water treatment plants	0.2
Retirement facility, residential care facility and community residence	0.5
Community related uses (including child care centres and educational establishments)	0.5
Regional fuel storage	0.5
Food storage warehouse	0.5

STORMWATER MANAGEMENT PLAN

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/66-2022

Dated: 2 November 2022

STOCKLAND ROCKHAMPTON SUPERMARKET 120-331 YAAMBA ROAD, NORTH ROCKHAMPTON

Prepared By:

MPN CONSULTING PTY LTD

Level 5 39 Sherwood Road Toowong Queensland 4066 • Australia

REVISION STATUS

MPN Reference No: 9180

Client: Stockland

Site Address: 120-331 Yaamba Road, North Rockhampton

Report Title: Stormwater Management Plan

DOCUMENT CONTROL

Version	Date	Author	Reviewer	Approved	RPEQ
Draft	11/02/2022	Ben Tarrant	Lachlan Stephenson	4	16903
Issue A	25/03/2022	Ben Tarrant	Lachlan Stephenson		16903

EXECUTIVE SUMMARY

This report has been commissioned by Stockland in support of the Development Application for the proposed supermarket development at the existing shopping centre on land located at 120-331 Yaamba Road, North Rockhampton.

This report addresses the following Engineering aspects of the proposed development:

- Topography
- Flooding
- Stormwater Quality Management
- Stormwater Quantity Management
- Erosion and Sediment Control.

TABLE OF CONTENTS

EXI	ECUT	IVE SUMMARY	2
1	PUI	RPOSE	5
2	INT	RODUCTION	5
	2.1	Project description	5
3	SITI	E CHARACTERISTICS	6
	3.1	Site Location	6
	3.2	Topography and Existing Site Drainage	7
4	SITI	E DATA	8
5	STC	DRMWATER	8
	5.1	Lawful Point of Discharge	8
	5.2	Flooding	8
	5.3	Site Based Stormwater Management Plan	8
	5.4	Operational Phase	9
	5.5	Proposed Stormwater Quality Treatment Devices	14
	5.6	Construction Phase (Sediment and Erosion Control)	14
6	CO	NCLUSION	17
7	LIM	IITATIONS OF REPORT	17

Table of Figures

Figure 1 – Proposed Development	5
Figure 2 – Site Location	6
Figure 3 – Existing site topography	7
Figure 4 – Treatment Plan	12
Table of Tables	
Table 1 – Rational Method Calculations	10
Table 2 – MUSIC Rainfall Runoff Parameters (Commercial)	11
Table 3 – Pollutant Export Parameters (Commercial)	11
Table 4 – Water Quality Objectives	12
Table 5 – Percentage Based Load Reduction Results	13
Table of Appendices	
Appendix 1 Architectural Plans	18
Appendix 2 Survey Plan	19
Appendix 3 MPN Plans	20
Appendix 4 Rational Method Calculations	21
Appendix 5 Ocean Protect General Arrangement Plans and Maintenance Manuals	22

1 PURPOSE

This Stormwater Management Plan has been prepared in support of the Development Application for the proposed supermarket development at the existing shopping centre on land located at 120-331 Yaamba Road, North Rockhampton.

2 INTRODUCTION

2.1 Project description

The current proposal involves the demolition of the existing carpark occupying the site west of the existing shopping centre, and the construction of a new, single-storey supermarket. The development will include landscaping, loading and service dock, and interface pedestrian access to the existing Stockland shopping centre's open-air carpark to the north.

As part of the development works, adjacent open-air carpark will include proposed shade sails, loading standby zone, and a traffic access reconfiguration from High Street into the Stockland shopping centre internal carpark. This access point will be modified for improved vehicle manoeuvrability.

The proposed development is depicted on the architectural plans prepared by Stockland, attached in Appendix 1, with excerpt below.

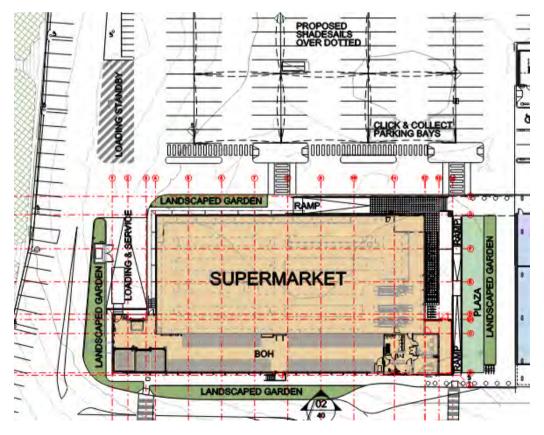


Figure 1 - Proposed Development

3 SITE CHARACTERISTICS

3.1 Site Location

The site is located at the southern perimeter of property 331 Yaamba Road, North Rockhampton, and is formally known to be part of Lot 201 on SP236447.

The site fronts Stockland shopping centre to the East, and internal carparking in each surrounding direction. High Street is the primary access point to the south, and Moores Creek is situated to the west.

Figure 2 - Site Location

3.2 Topography and Existing Site Drainage

The site is currently occupied by on grade car parking and generally slopes from the North-East with a high point of RL14.40m, to the South West with a low point of RL13.2m. See Figure 3 for general existing site topography.

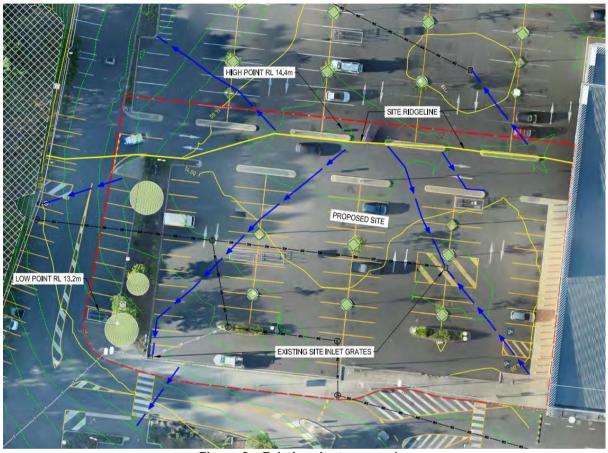


Figure 3 - Existing site topography

The balance of the site runoff is collected by field inlet pits throughout the carpark and the shopping centre road network. The runoff is then collected and conveyed by a network of pipes running East to West along the existing site, eventually discharging into Moores Creek, West of the site.

A copy of a survey plan for the site prepared by Vision Surveys (QLD) is attached in Appendix 2.

4 SITE DATA

Site data has been obtained from the following sources of information:

- Dial Before You Dig (DBYD)
- Discussions with relevant authorities
- Relevant reports
- Rockhampton Regional Council
- Rockhampton Regional Council Interactive Mapping
- Satellite imagery
- Site survey

5 STORMWATER

5.1 Lawful Point of Discharge

The lawful point of discharge for the site is the stormwater network within the internal carpark discharge point into Moores Creek.

5.2 Flooding

The flooding related aspects of the proposed development are addressed in the flood investigation prepared by Storm Water Consulting under separate cover.

The building floor level has been set at 14.9m AHD with the appropriate immunity from the designated flood level of 14.4m AHD.

5.3 Site Based Stormwater Management Plan

The aim of the Stormwater Management Plan outlined below is to:

- Prevent or minimise adverse social or environmental impacts from stormwater runoff originating from the proposed development.
- Achieve acceptable levels of stormwater runoff quality and quantity.

The Stormwater Management Plan aims to identify Stormwater Quantity and Quality Best Management Practice for the site and demonstrate that water quantity and quality impacts will be minimised in receiving waters.

The Stormwater Management Plan outlines the site in two sections; the operational phase and the construction phase. The operational phase addresses treatment of contaminated runoff from the developed site by mechanical methods before discharging into receiving waters, whilst the construction phase of the Stormwater Management Plan addresses erosion and sediment control to prevent contamination of water sources by stormwater runoff during construction of the site.

5.4 Operational Phase

5.4.1 Proposed Site Drainage

Stormwater runoff from the proposed development roof, landscape and pavement areas will be collected and conveyed in a new internal pit and pipe network. The site runoff will be directed through an Ocean Protect Jellyfish manhole for site stormwater quality treatment. The Jellyfish Filter will be located in an offline arrangement from the main drainage line and will be situated across the internal road to the west of the site. The existing drainage line which currently runs under the location of the proposed building will be diverted around the location of the new building via a new stormwater line.

Treated stormwater and bypass flows will discharge from site via a new piped connection to the existing manhole along the western kerb line fronting Moores Creek, which is the site's designated Lawful Point of Discharge.

Ocean Protect OceanGuards will also be fitted to each stormwater pit within the car park and landscape areas to capture gross pollutants.

Roofwater will outlet to the underground Jellyfish Filter manhole via a connection depicted on MPN Plan 9180-DA.01. The design of the roof drainage system will be undertaken as part of the hydraulic detailed design.

Major design storm flows will be conveyed through the site as per the existing condition. When the capacity of the stormwater network in Stockland carpark is exceeded, stormwater will enter the site via north-east corner of the site, overland flow through the landscaped strip, toward the car park and into the drainage network in the internal road to the South of the site. Refer to the Flood Hazard Overlay Report prepared by Storm Water Consulting, lodged under separate cover, for further information on the major storm overland flow through the site.

The proposed stormwater infrastructure is shown on MPN Plan 9180-DA.01 attached in Appendix 3

5.4.2 Stormwater Quantity Management Strategy

The existing site is fully developed and largely impervious with the existing car parking area.

The proposed development will incorporate landscape areas which will increase the site's pervious area.

A Rational Method calculation was undertaken to compare the pre- and post-development discharge into the Stockland carpark stormwater network west of the site. The results are depicted below in Table 1 with the full calculations attached in Appendix 4.

ARI	Peak Disch	arge (m³/s)	Change in Peak Flow (m³/s)	
ANI	Pre-development	Post-development		
2	0.109	0.107	-0.002	
5	0.163	0.159	-0.004	
10	0.201	0.196	-0.005	
20	0.242	0.237	-0.005	
50	0.301	0.301	0.000	
100	0.336	0.336	0.000	

Table 1 - Rational Method Calculations

As can be seen in Table **1**, there is a reduction in peak flows in the post-development condition due to the reduction in impervious area.

As the proposed development provides a non-worsening effect to the existing stormwater infrastructure in Stockland carpark network, no further assessment of the network capacity has been undertaken as part of this report.

5.4.3 Stormwater Quality Management Strategy

In order to satisfy the requirements of the State Planning Policy July 2017 for the adequate treatment of stormwater runoff, mechanical treatment solutions have been provided to remove hydrocarbons, suspended solids and nutrients prior to being discharged from site.

5.4.3.1 Potential Pollutants Generated

The pollutants that could be potentially generated as a result of the development use are as follows:

- Litter
- Sediment
- Nutrients (Nitrogen and Phosphorous)
- Hydrocarbons (oils and grease)
- Surfactants
- Pathogens/Faecal Coliforms (bacteria and viruses).

The MUSIC computer modelling program developed by the Co-operative Research Centre for Catchment Hydrology was used to predict the performance of the proposed stormwater treatment train.

At this stage the pollutants modelled in MUSIC are Total Suspended Solids (TSS), Total Phosphorous (TP) and Total Nitrogen (TN).

5.4.3.2 Rainfall

The rainfall data used in the model was based on the Bureau of Meteorology data from rainfall station 039083 Rockhampton Aero. The model was run for a 10-year period from 1 January 1999 to 31 December 2008. The modelling time step was 6 minutes.

5.4.3.3 Rainfall Runoff Properties

In accordance with the recommendations of Water By Design's MUSIC Modelling Guidelines for South East Queensland rainfall runoff properties for commercial areas have been used. These are listed in Table 2 below.

Parameter	Value
Rainfall Threshold (mm)	1
Soil Storage Capacity (mm)	18
Initial Storage (% of capacity)	10
Field Capacity (mm)	80
Infiltration Capacity Co-efficient a	243
Infiltration Capacity Co-efficient b	0.6
Initial Depth (mm)	50
Daily Recharge Rate (%)	0
Daily Base Flow Rate (%)	31
Deep Seepage (%)	0

Table 2 - MUSIC Rainfall Runoff Parameters (Commercial)

5.4.3.4 Pollutant Export Parameters

Specific Pollutant Export Parameters must be applied to each node type as cited in the Water By Design MUSIC Modelling Guidelines. The values shown in Table 3 are for split catchment commercial areas.

Runoff pollutant concentrations are generated stochastically from the defined mean and standard deviation.

Land Use – Commercial		Log10 TSS (mg/L)		Log10 TP (mg/L)		Log10 TN (mg/L)	
		Base Flow	Storm Flow	Base Flow	Storm Flow	Base Flow	Storm Flow
	Mean	0	1.30	0	-0.89	0	0.37
Roof	Std. Dev.	0	0.38	0	0.31	0	0.34
	Mean	0.78	2.43	-0.60	-0.30	0.32	0.37
Roads	Std. Dev.	0.39	0.38	0.50	0.34	0.30	0.34
	Mean	0.78	2.16	-0.60	-0.39	0.32	0.37
Landscaping	Std. Dev.	0.39	0.38	0.50	0.34	0.30	0.34

Table 3 - Pollutant Export Parameters (Commercial)

5.4.3.5 Water Quality Objectives

The Water Quality Objectives of the receiving waters for the proposed development have been obtained from State Planning Policy July 2017. The State Planning Policy load reduction targets are summarised in Table 4 below.

WATER QUALITY OBJECTIVES							
Total Suspended Solids (TSS) % Reduction	Total Nitrogen (TN) % Reduction	Total Phosphorous (TP) % Reduction	Litter/ Gross Pollutants % Reduction	Oils/ Grease			
85	45	60	90	No visible films or odours			

Table 4 - Water Quality Objectives

5.4.3.6 Treatment Plan

To achieve the pollutant load reduction targets for the development, it is proposed to use mechanical treatment methods to treat the runoff prior to discharge from the site.

Stormwater runoff from the site will be treated in a Jellyfish Filter manhole located under the Stockland internal road on the Western perimeter of the site.

OceanGuards will be fitted to each stormwater pit in the car park and landscape areas.

The treatment plan for the site is depicted on MPN Plan 9180-DA.01 attached in Appendix 3, with MUSIC excerpt shown below.

Figure 4 - Treatment Plan

5.4.3.7 MUSIC Results

The resulting percentage-based load reductions at the site outlet are shown in Table 5 below, together with the Water Quality Objectives for the receiving waters.

	Sources	Residual Load	% Reduction	Target %
Total Suspended Solids (kg/yr)	444	17.8	96	85
Total Phosphorous (kg/yr)	0.925	0.342	63.1	60
Total Nitrogen (kg/yr)	6.96	3.44	50.6	45
Gross Pollutants (kg/yr)	55.8	1.18	97.9	90

Table 5 - Percentage Based Load Reduction Results

5.4.3.8 POD Pollutant Reduction

5.4.3.8.1 Litter

Rubbish bins will be located within the shopping centre for use by staff and customers. As a result of this and with the installation of the Ocean Protect OceanGuards and the Jellyfish Filter, levels of litter exiting the site via stormwater are expected to be negligible.

5.4.3.8.2 Sediment

The TSS outflow is identified in Table **5** above. As can be seen the pollutant load reduction achieves the Water Quality Objectives. The TSS level is therefore considered acceptable.

5.4.3.8.3 Nitrogen and Phosphorous

The TN and TP loads are identified in the above Table 5. As can be seen the TN and TP loads leaving the site achieve the Water Quality Objectives. Significant reductions in Nitrogen and Phosphorous have been achieved. The Nitrogen and Phosphorous residual loads are therefore considered acceptable.

5.4.3.8.4 Hydrocarbons

Hydrocarbons will become trapped within the Ocean Protect OceanGuards and the Jellyfish Filter.

When there is a build-up of hydrocarbons within the Ocean Protect OceanGuards and the Jellyfish Filter, the oils can be vacuumed, ensuring that no hydrocarbons are discharged from the site.

5.4.3.8.5 Surfactants

If car or truck washing occurs on site it will be within a bunded area where surfactants will be captured and treated prior to discharging into the stormwater network.

5.4.3.8.6 Heavy Metals

Heavy metals in stormwater runoff generally become attached to fine sediment. The Ocean Protect OceanGuards and the Jellyfish Filter will remove the majority of this fine sediment. The removal of the fine sediment should effectively remove most of the heavy metals in the runoff.

5.4.3.8.7 Pathogen/ Faecal Coliforms

Domestic animals within the development will be under the control of their owners at all times and the owners will be expected to clean up after them.

5.5 Proposed Stormwater Quality Treatment Devices

5.5.1 Locations

The location of the proposed stormwater quality treatment device is shown on MPN Plan 9180-DA.01 attached in Appendix 3.

5.5.2 Device and Size

The device type and sizes are shown on MPN Plan 9180-DA.01 attached in Appendix 3.

General arrangement plans for the Ocean Protect OceanGuards and the Jellyfish Filter are attached in Appendix 5.

5.5.3 Operation

The Ocean Protect Jellyfish Filters operate by using a high flow membrane cartridge filtration at low driving head with a large surface area to effectively filter stormwater. As the stormwater percolates through the cartridges, pollutants, particulates, surface scums and floating oil and greases are captured within the filter media. Once filtered through the media, the treated stormwater is directed to a collection pipe.

The Ocean Protect OceanGuards consist of a screening bag supported by a filter box and structural cage. Modular plastic deflector panels attach to the filter box and guide the flow of water to the screening bag. The screening bag captures pollutants and allows water to pass through to the outlet pipe. Openings in the filter box allow water to bypass the screening bag during high flow conditions.

5.5.4 Maintenance

For the OceanGuards and the Jellyfish Filter, maintenance can be performed with a vacuum truck to remove captured soil, sediment and floatables. Detailed maintenance techniques can be found in the Ocean Protect Operations and Maintenance Manual attached in Appendix 5.

5.6 Construction Phase (Sediment and Erosion Control)

5.6.1 Intent of Erosion and Sediment Control Management Plan

To prevent stormwater contamination (of watercourses) and the release of contaminated stormwater and wastewater by ensuring compliance with the Environmental Protection Act 1994 and Environmental Protection (Water) Policy 2009.

5.6.2 Implementation Strategy

Establish control measures and best practice approaches to prevent stormwater contamination and minimise the risk and adverse effects of erosion and sedimentation. All Erosion and Sediment Control measures must be designed, constructed and maintained in a manner that is commensurate with the site's erosion risk.

5.6.3 Erosion and Sediment Control Measures

- Obtain a license or approval to operate activities that are classed as environmental relevant activities (i.e. they have the potential to cause environmental harm).
- Implement and maintain appropriate control measures to prevent sediment laden wastewater and other potential pollutants such as oil, paint and wet concrete from entering the stormwater system via stormwater drains and gullies. The control measures which must be considered to be adopted are:
 - Limitation of site access during construction to minimise disruption to traffic.
 Install a temporary construction entry/ exit sediment trap at all site accesses to minimise mud and sediment from the site being tracked onto public road, particularly during wet weather or when the site is muddy.
 - o Install and maintain appropriate sediment fences around construction areas.
 - o Divert clean stormwater runoff, using catch drains, around construction areas to existing or new stormwater drainage system.
 - Install sandbags and other pollution containment devices around stormwater drains and any other locations where required to prevent sediment entering the trunk stormwater system.
 - Cover open earth/ soil areas progressively (with concrete slabs and pavements or mulch) to minimise areas of bare earth/ soil.
 - Any stockpiles of excavated soil and demolition/ construction waste must be located where risk of erosion and sedimentation is minimal, and must be protected from wind and water erosion.
 - Implement and maintain appropriate control measures such as catch drains and sediment fences to prevent ponding of stormwater or discharge of stormwater from the site to adjacent properties.
 - Provision of spill/ pollution control equipment that is readily accessible to clean up spills and leaks.
 - Ensure spill/ pollution control measures are available and maintained in working condition
 - Sediment contained by the sediment control devices such as sandbags, sediment fences and containment bunds must be frequently removed and placed in a controlled area.
 - o Implement an inspection schedule for any spill or leaks of any potential polluting areas or activities.

5.6.4 Erosion and Sediment Control Management Goals

- Licenses, approvals, permits and inspection reports are in order.
- Sediment or pollution control devices such as sandbags, sediment fences and containment bunds are in place, maintained and effective.
- Spill/pollution control equipment is readily accessible at designated locations.
- No accumulated sediment is contained by the sediment control devices such as hay bales, sediment fences and containment bunds.
- No sediment exceeding a depth of 300mm in the pollution control devices (e.g. silt trap).

5.6.5 Erosion and Sediment Control Implementation Program

- Licenses, permits or approvals for each environmentally relevant activity must be obtained prior to the commencement of the particular activity.
- Appropriate control measures such as sediment fences, temporary construction entry/ exit sediment traps, pollution containment devices (e.g. sandbags), stormwater diversion and administrative controls must be installed and established prior to commencement of the earthworks and construction activities.
- Pollution control devices such as spill control equipment must be inspected on a regular basis (at least weekly).
- Other sediment and pollution control equipment such as containment bunds, hay bales and sediment fences must be inspected on a regular basis (at least daily).
- Inspection for any leaks, spills or potential contaminating activity must be performed on a regular basis (at least daily).
- Remove accumulated sediment or other contaminants from sediment/ pollution control devices on a regular basis.
- All erosion and sediment control measures must be inspected within 24 hours of expected rain and within 18 hours of a rainfall event

5.6.6 Responsible Person or Organisation

The contractor shall be responsible for the implementation and maintenance of the Erosion and Sediment Control Measures.

5.6.7 Reporting/Review

Records such as licenses, approvals, permits and inspection reports must be reviewed on a regular basis (e.g. at least monthly) to ensure that legal compliance is met, complaints are reviewed and systems are working to prevent contamination.

5.6.8 Corrective Actions

- Perform clean-up of any spills immediately.
- Any mud or sediment which is tracked onto public roads is to be immediately removed using dry clean-up methods (i.e. shovel and broom).
- Remove or relocate any stockpiles of waste where there is a reasonable risk of erosion and sedimentation.
- Replace or repair sediment or pollution control devices if they are not maintained in good working condition.

6 CONCLUSION

This Stormwater Management Plan demonstrates that under the proposed concept plan, stormwater quality and quantity treatment is achievable to the levels required by State Planning Policy July 2017.

The development site runoff will discharge to the existing stormwater network within the Stockland internal carpark stormwater network, which is considered the site's lawful point of discharge. The existing internal drainage network will be diverted around the location of the new building with the new supermarket drainage connecting to the diverted line.

No stormwater detention or rainwater tanks are proposed on site as the development will slightly reduce the site's imperviousness and peak stormwater discharge, with the increase in site landscape areas. This is considered a no worsening impact on the site peak discharge when compared to the existing runoff flows.

Stormwater runoff quality from the site will be improved by the stormwater treatment train for the site which will include Ocean Protect OceanGuards fitted to the field inlets and a treatment precast manhole fitted with Jellyfish filters. These treatment devices will ensure compliance with the requirements of the State Planning Policy.

The site flood assessment will be lodged under separate cover, with the building floor levels set to ensure immunity from the sites Designated Flood Level.

7 LIMITATIONS OF REPORT

MPN have prepared this report for the proposed shopping centre development at 331 Yaamba Road, North Rockhampton in accordance with MPN's proposal to Stockland Development Pty Ltd. This report is provided for the exclusive use of Stockland Development Pty Ltd for this specific project and its requirements. It should not be used or relied upon by a third party and MPN accept no responsibility for the use of this report by any party other than Stockland Development Pty Ltd.

Appendix 1
Architectural Plans

DRAWING SCHEDULE

Document Title
COVER SHEET

DA001 EXISTING OVERALL SITE PLAN

DA002 OVERALL SITE PLAN DA003 GROUND FLOOR PLAN DA004 ROOF PLAN DA005

Document Title
DETAIL FLOOR PLAN
LANDSCAPING PLAN

DA030 SUNSHADING DIAGRAM PLAN DA031 MATERIALS PALETTE

DA040 DA041 ELEVATIONS
DA041 ELEVATIONS

SECTION

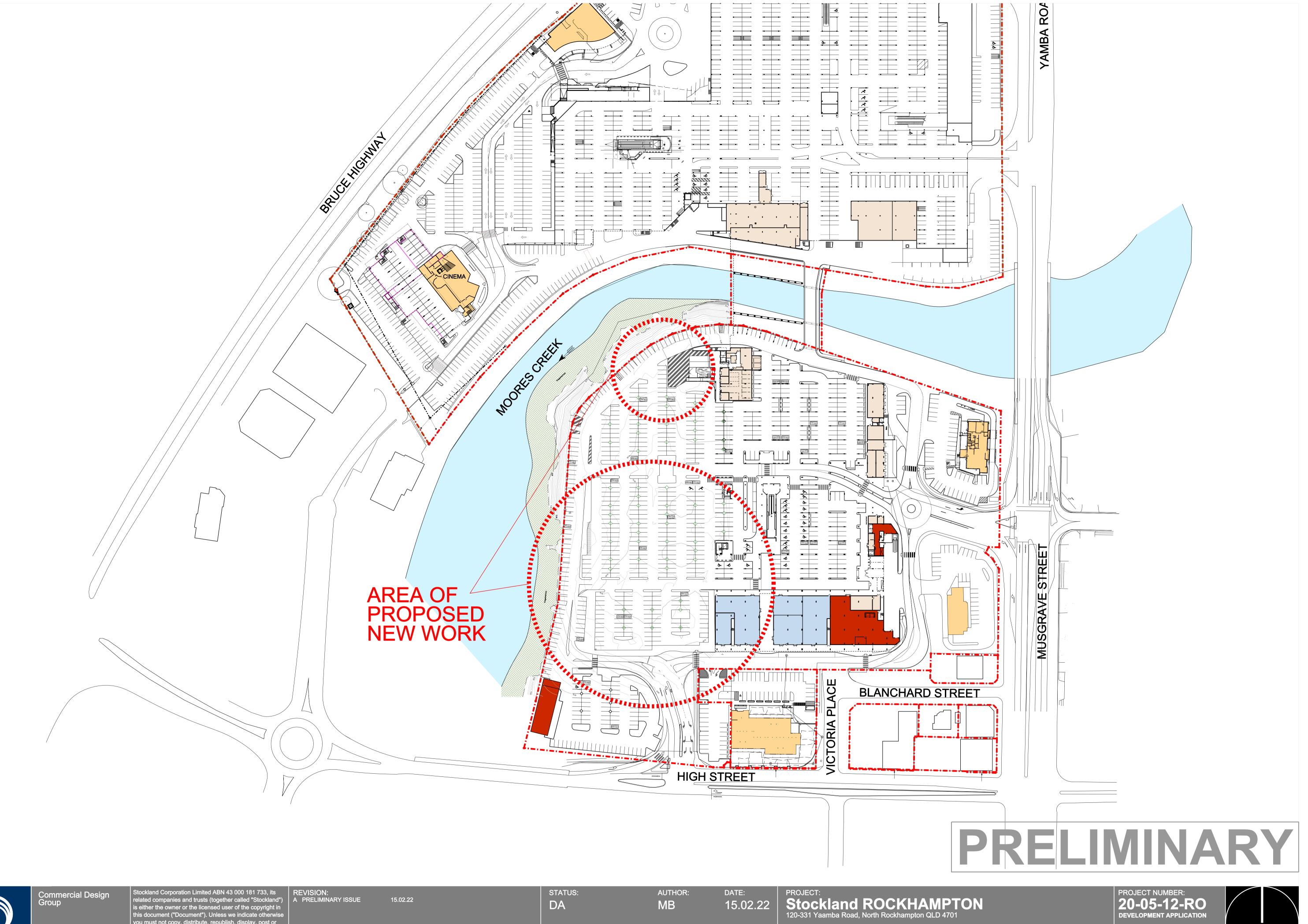
Document Title
DA050 PERSPECTIVES
DA051 PERSPECTIVES
DA052 PERSPECTIVES
DA053 PERSPECTIVES
PERSPECTIVES
PERSPECTIVES

INARY

is either the owner or the licensees this document ("Document"). Unit you must not copy, distribute, represent the Content in any formout the Content in any

A PRELIMINARY ISSUI

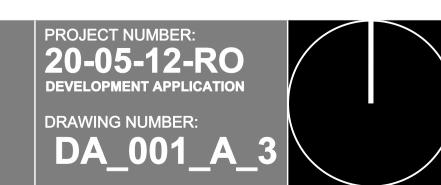
02.22

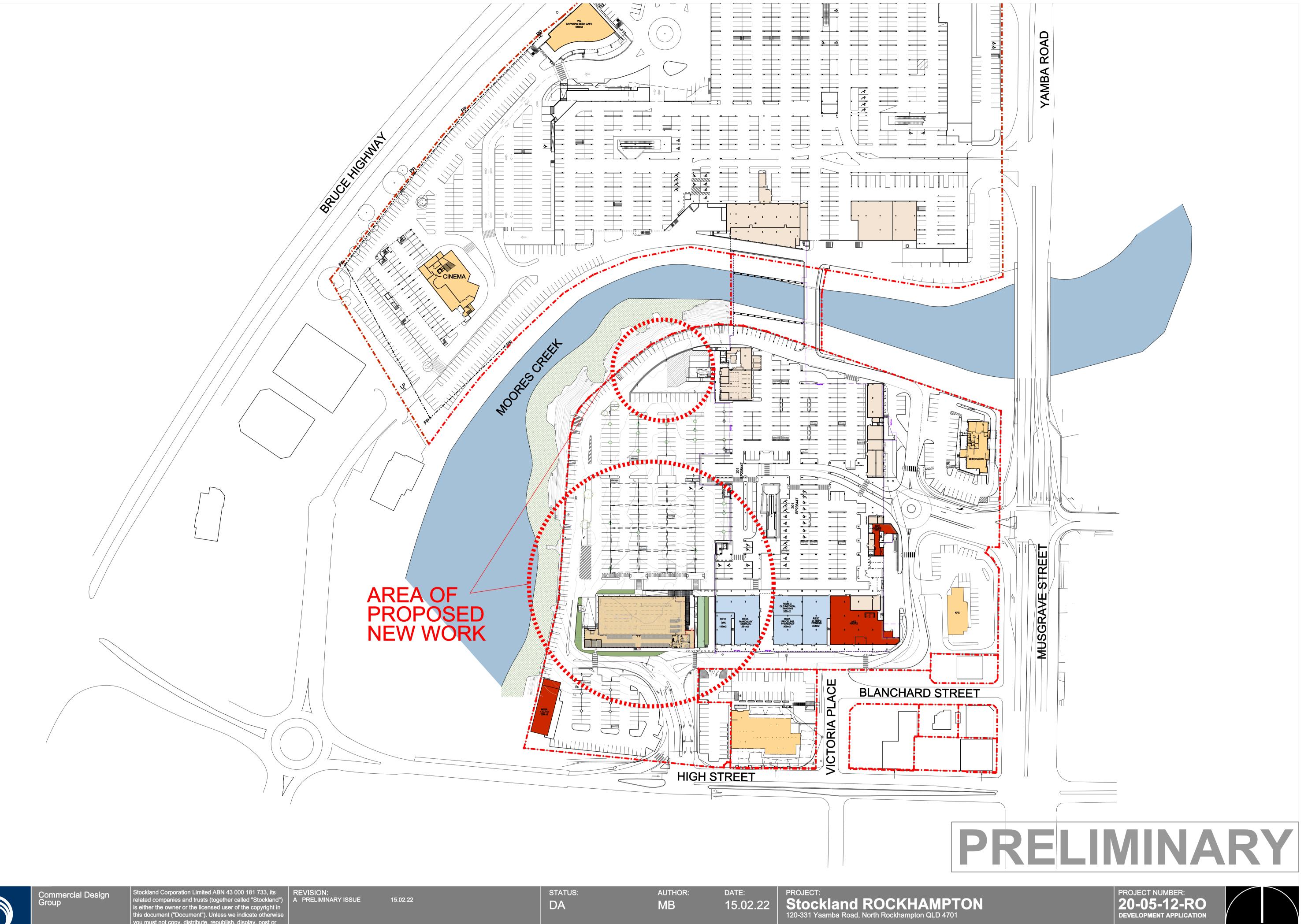

Sketch

DA042

UTHOR: DAT MB 15 PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

COVER SHEET

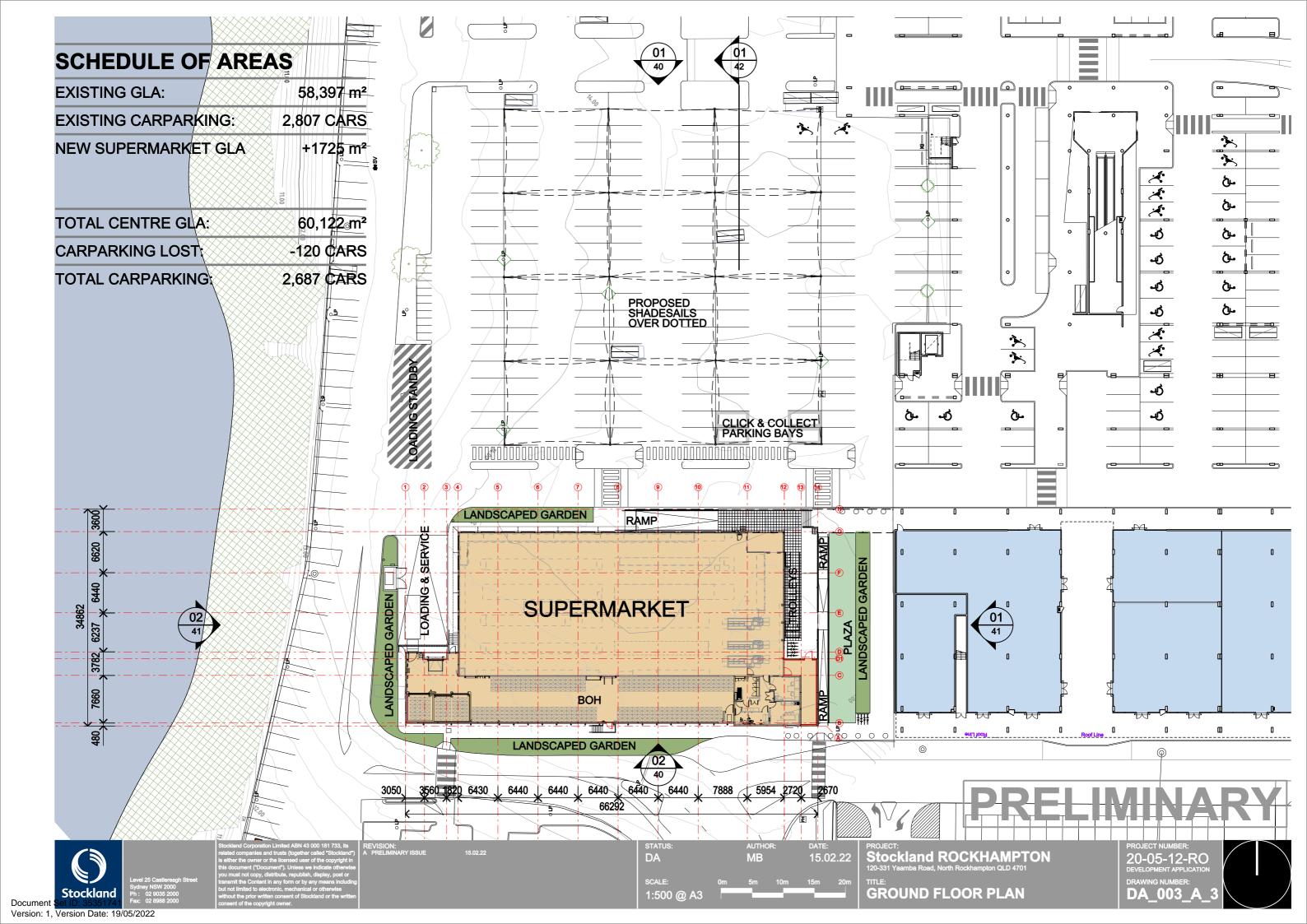


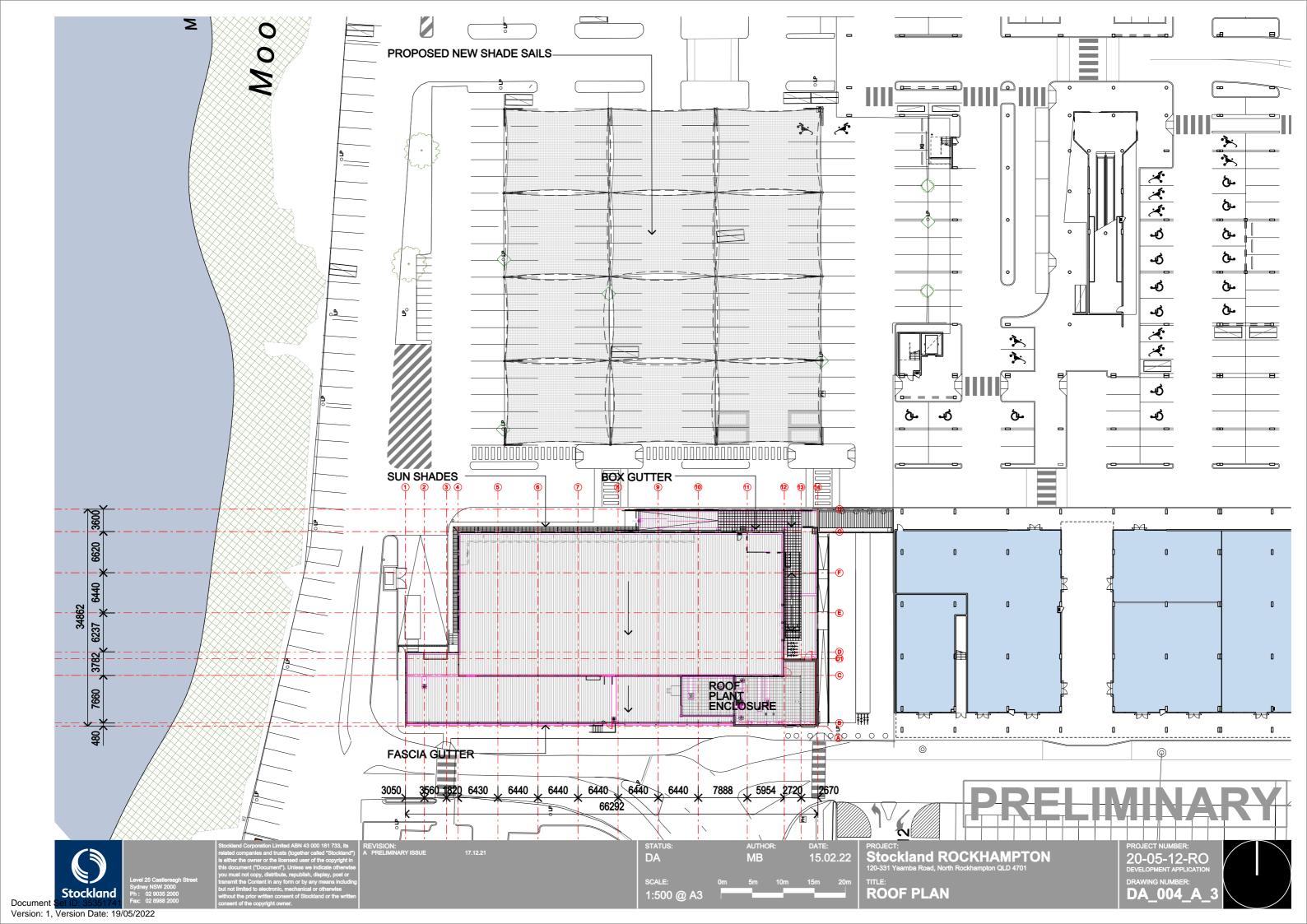

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000

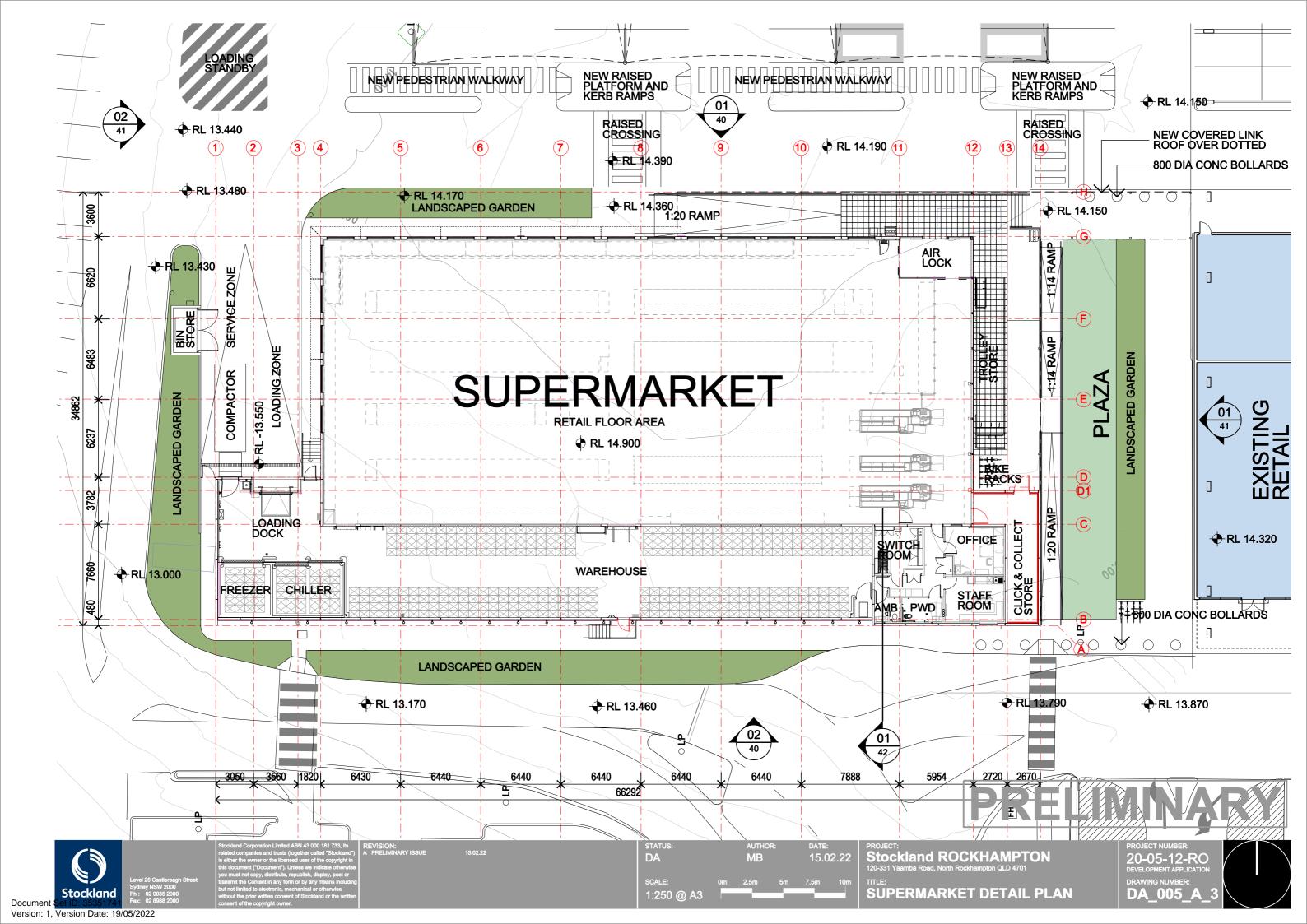
transmit the Content in any form or by any means includ without the prior written consent of Stockland or the writte consent of the copyright owner. SCALE:

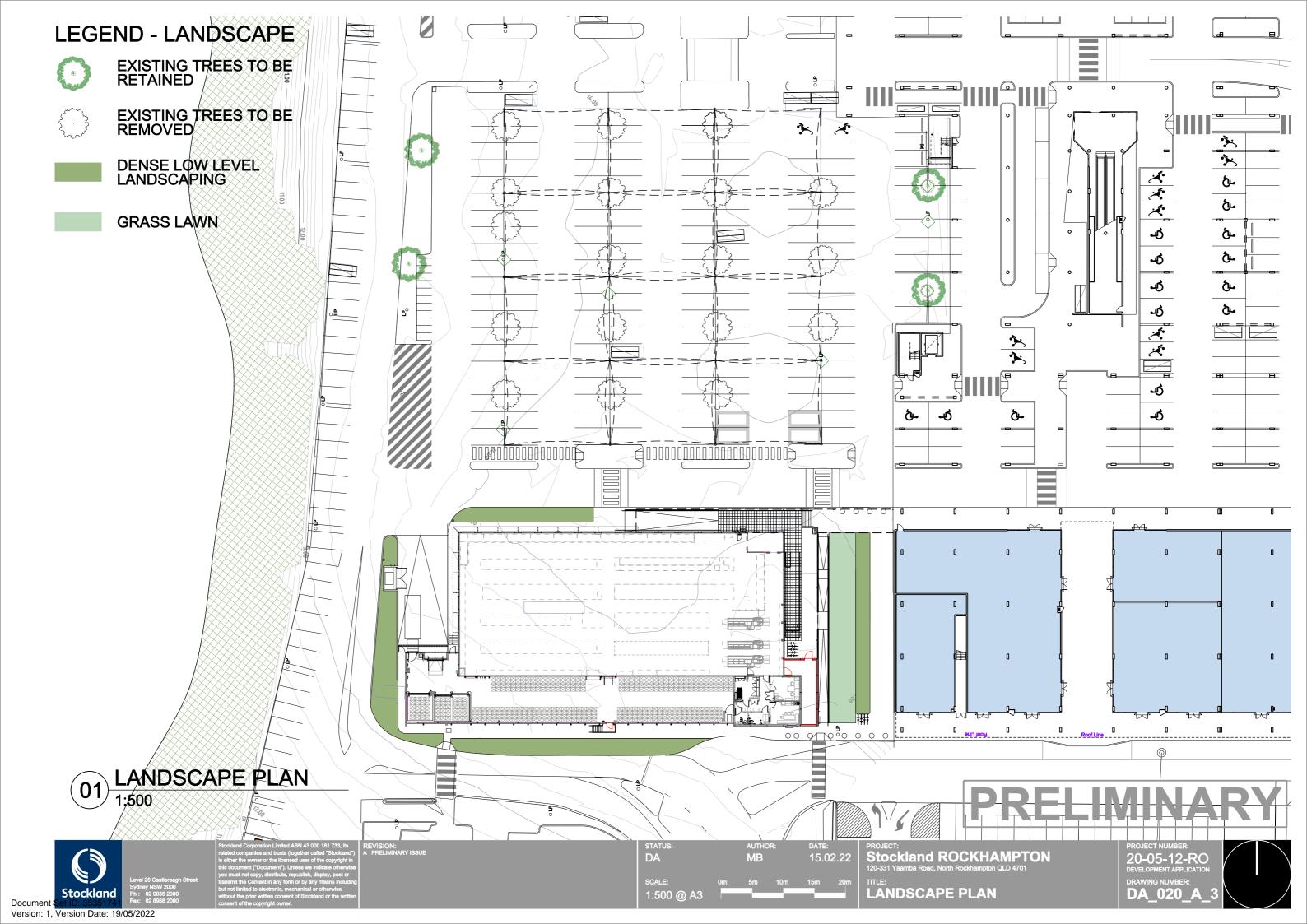
1:1000 @ A1

EXISTING OVERALL SITE PLAN

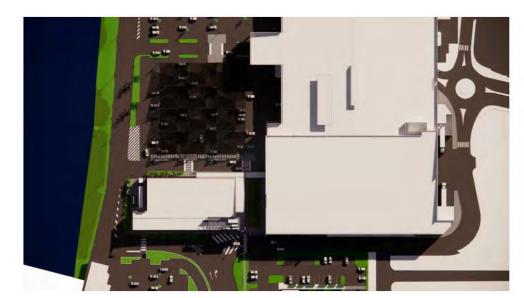

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000


transmit the Content in any form or by any means includ without the prior written consent of Stockland or the writte consent of the copyright owner. SCALE:

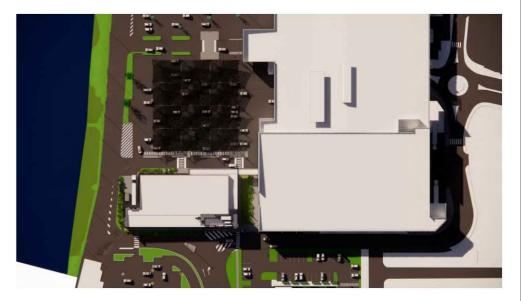

1:1000 @ A1


OVERALL SITE PLAN

DRAWING NUMBER: DA_002_A_3



SUMMER 12.00PM


03 SUMMER 3.00PM

WINTER 9.00AM

WINTER 12.00PM

SCALE: NTS @ A3

DATE: 15.02.20

Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 SUNSHADING DIAGRAMS

DA_030_A_3

LANDSCAPED PLAZA

PAINTED PRECAST PANELS

CUSTOM ORB

GRASS LAWN

CLIMBING PLANTS

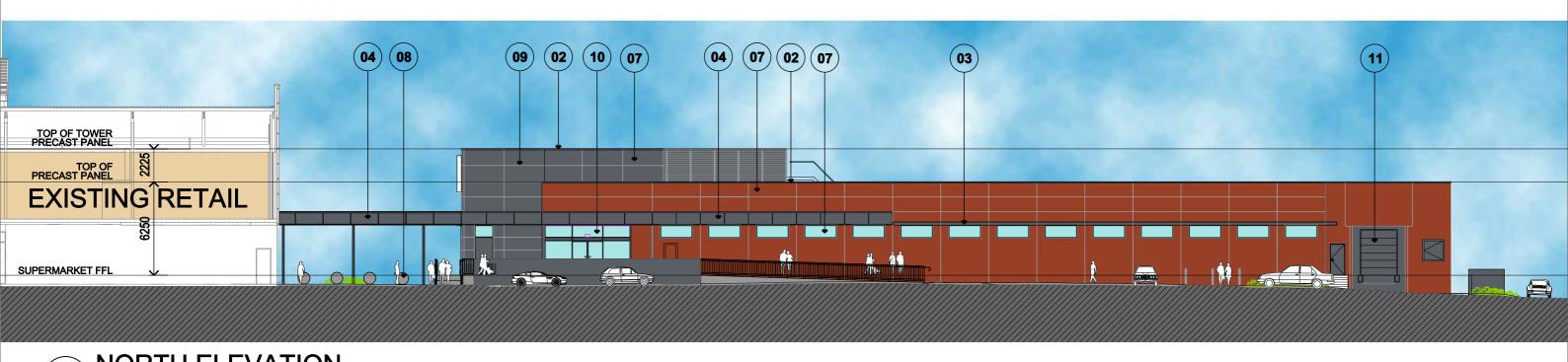
DEEP LANDSCAPING

PRELIMINARY

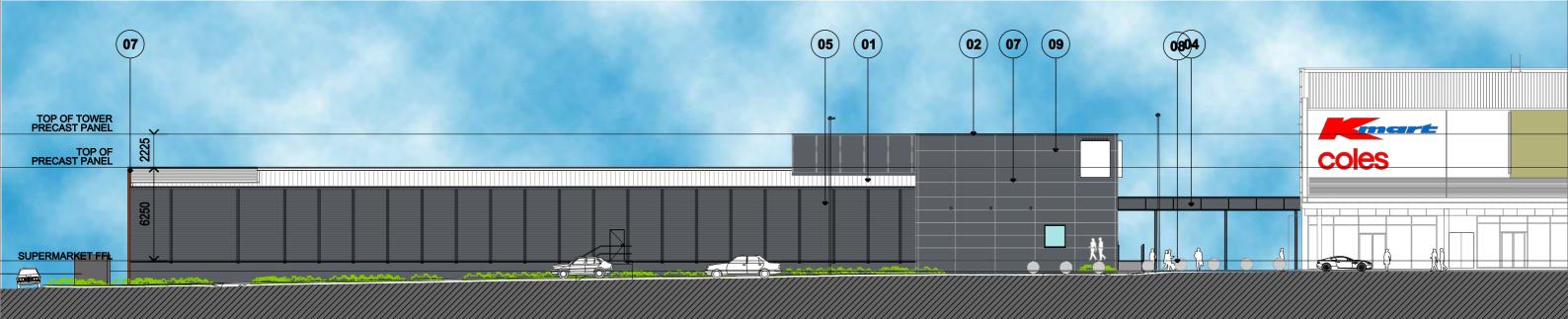
Stockland Corporation Limited ABN 43 000 181 733, its related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

REVISION: A PRELIMINARY ISSUE

15.02.22


STATUS:
DA

SCALE:
NTS @ A3


JTHOR: IB ATE: 5.02.20

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
MATERIAL PALETTE

ROOF SHEETING - COULOURBOND SURFMIST ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED 05 EXTERNAL WALL LINING (MINIORB) LEGEND 01 (09) SIGN PANEL 02 SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED (06 03 07 PRECAST ON F TE PATEIN SH **SUN SHADE AWNING - PREFINISHED** DL EL NUTEL PRE INISTEL 12 HYPER SHAUE SAIL AWNING FACIA - FC PANEL PAINT FINISH 800 DIA METER CONCRETE BULLARUS

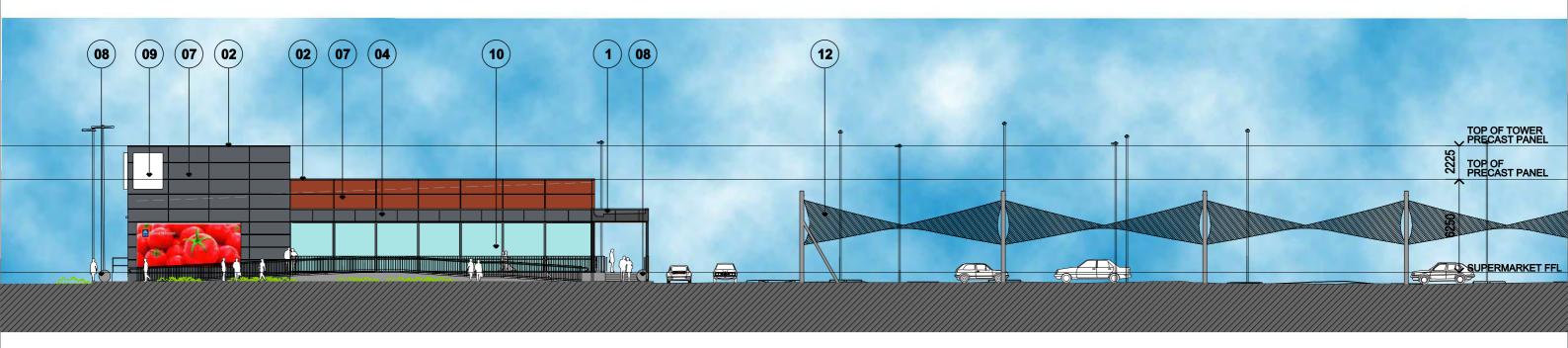
Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Stockland Corporation Limited ABN 43 000 181 733, its related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any meens including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

15.02

DA MB 15.02.22

SCALE: 0m 2.5m 5m 7.5m 10m

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701


TITLE:
ELEVATIONS

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:

DA_040_A_3

Version: 1, Version Date: 19/05/2022

01 EAST ELEVATION
1:250

WEST ELEVATION
1:250

01 ROOF SHEETING - COULOURBOND SURFMIST

02 ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS OF PREFINISHED

03 SUN SHADE AWNING - PREFINISHED

04 AWNING FACIA - FC PANEL OS BOOD PANEL

05 EXTERNAL WALL LINING (MINIORB) OS SIGN PANEL

10 SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES

10 SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES

11 SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES

12 HYPER SHADE SAIL

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Stockland Corporation Limited ABN 43 000 181 733, its related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

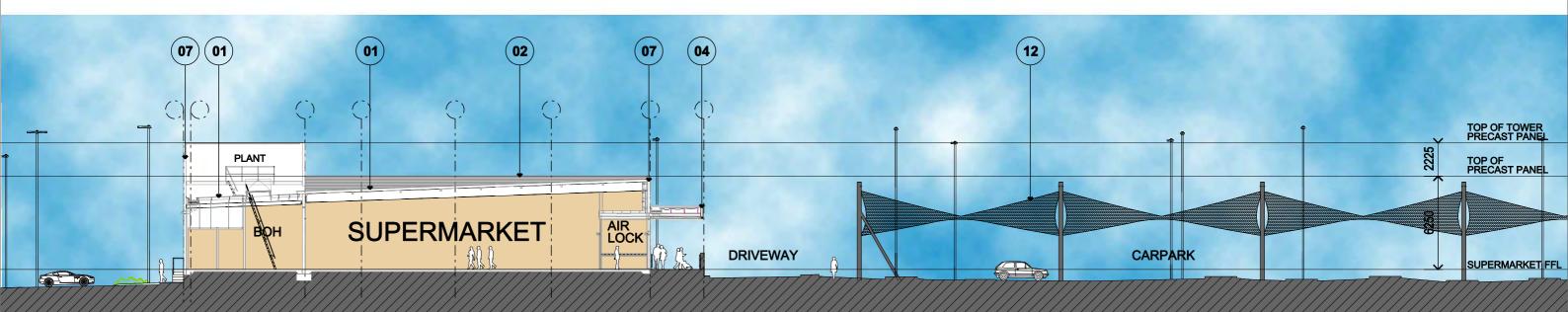
SUE 15.02.22

STATUS: AUTHOR: DATE:

DA MB 15.02.22

SCALE: 0m 2.5m 5m 7.5m 10m

1:250 @ A3


PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

TITLE:
ELEVATIONS

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:

DA_041_A_3

01 SECTION A 1:250

01	ROOF SHEETING - COULOURBOND SURFMIST	05	EXTERNAL WALL LINING (MINIORB) - PREFINISHED	09	SIGN PANEL
02	ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED	06	LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED	10	SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES
03	SUN SHADE AWNING - PREFINISHED	07	PRECAST ON F TE PARTEIN SH		·)L EI . YL TE' · 'PRE INIS IEL
04	AWNING FACIA - FC PANEL PAINT FINISH	08	800 DIA METER CONCRETE BULLARUS	12	HYPER SHADE SAIL

related companies and trusts (together called "Stockland")
Is either the owner or the licensed user of the copyright in
this document ("Document"). Unless we indicate otherwise
you must not copy, distribute, republish, display, post or
transmit the Content in any form or by any means including
but not limited to electronic, mechanical or otherwise
without the prior written consent of Stockland or the written

11.10.21

STATUS: AUTHOR: DATE:
DA MB 15.02.22

SCALE: 0m 2.5m 5m 7.5m 10m
1:250 @ A3

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
SECTION

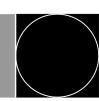
PROJECT NUMBER:
20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:
DA_042_A

PRELIMINARY

related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

VISION: PRELIMINARY ISSUE

15.02.22


STATUS:
DA

SCALE:
NTS @ A3

THOR: B ATE: 5.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
PERSPECTIVES

20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:
DA_050_3

VEIW FROM EARLY LEARNING CENTRE CROSSING

SCALE: NTS @ A3

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

PERSPECTIVES

VEIW FROM EARLY LEARNING CENTRE CROSSING

PRELIMINARY

vel 25 Castlereagh Street dney NSW 2000 : 02 9035 2000

Stockland Corporation Limited ABN 43 000 181 733, its related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written consent of the countrible tower.

PRELIMINARY ISSUE

5.02.22

DA

SCALE:

NTS @ A3

MB

DATE: 15.02.22 PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

120-331 Yaamba Road, North Rockhampton QLD 4701

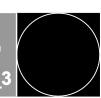
TITLE:

PERSPECTIVES

DA_05

PROJECT NUMBER:
20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:
DA_052_A_3

PRELIMINARY


SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
PERSPECTIVES

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION DA_053_A_3

SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

PERSPECTIVES

PROJECT NUMBER:
20-05-12-RO
DEVELOPMENT APPLICATION

VEIW FROM NORTHERN CARPARK

PRELIMINARY

SCALE: NTS @ A3

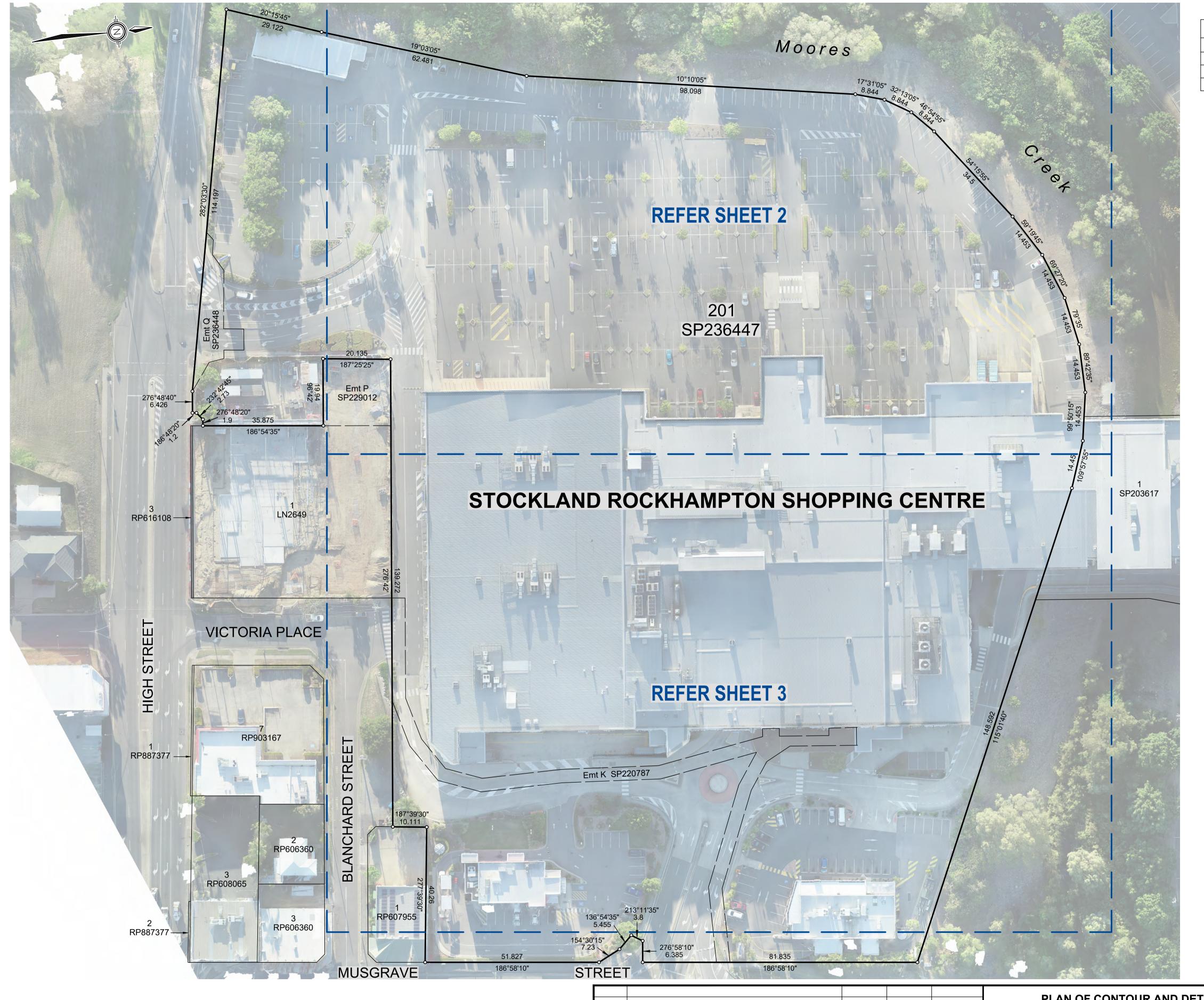
DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 PERSPECTIVES

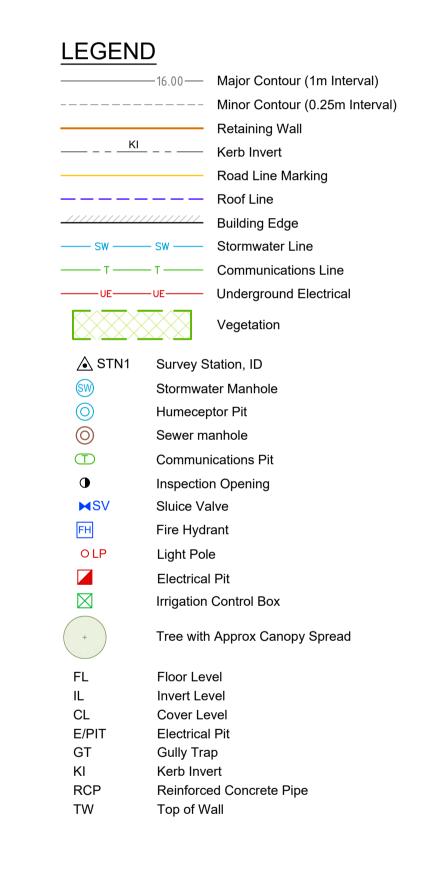
PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION DA_055_A_3

(01) AERIAL VEIW FROM SOUTH WEST

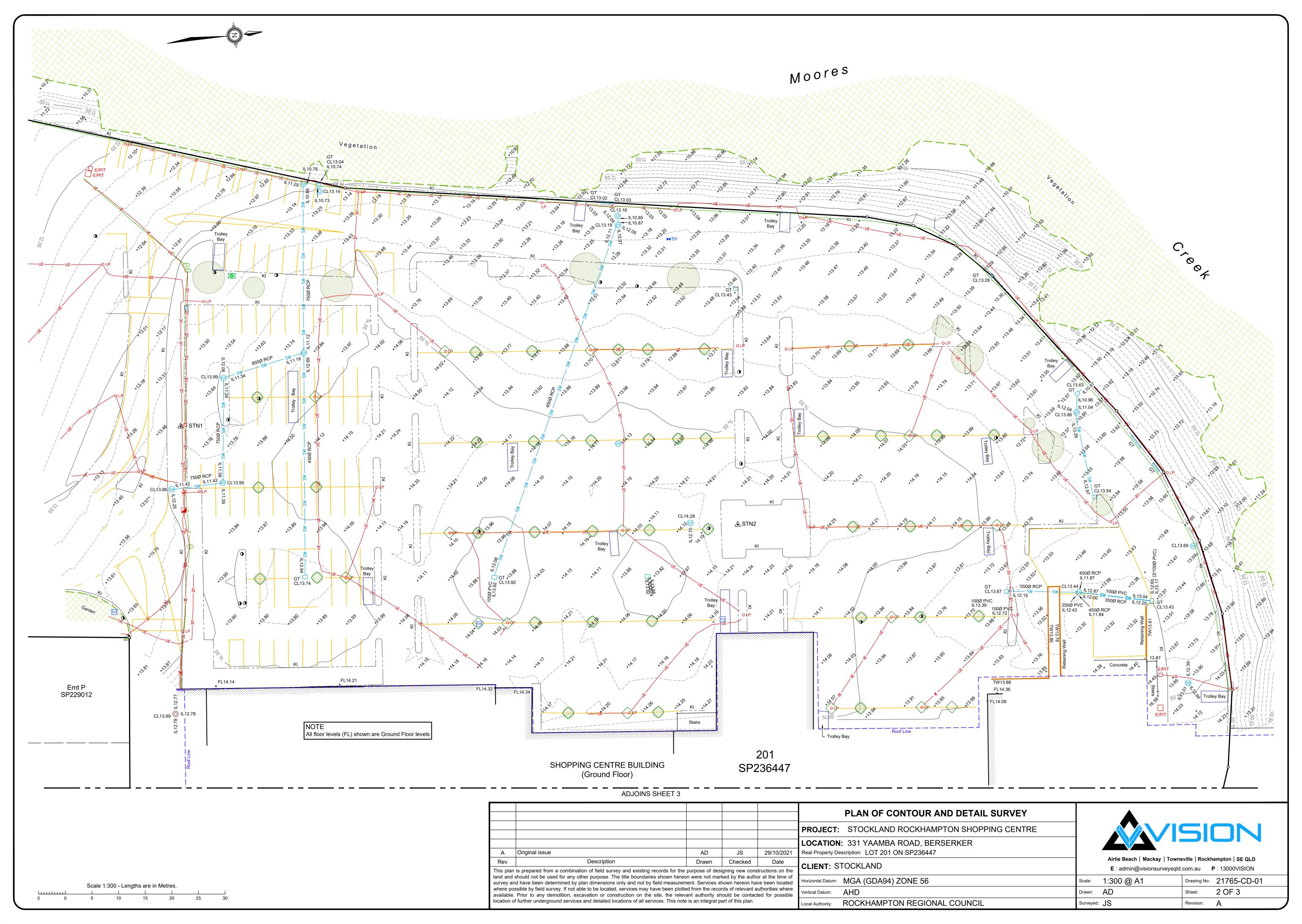

SCALE: NTS @ A3

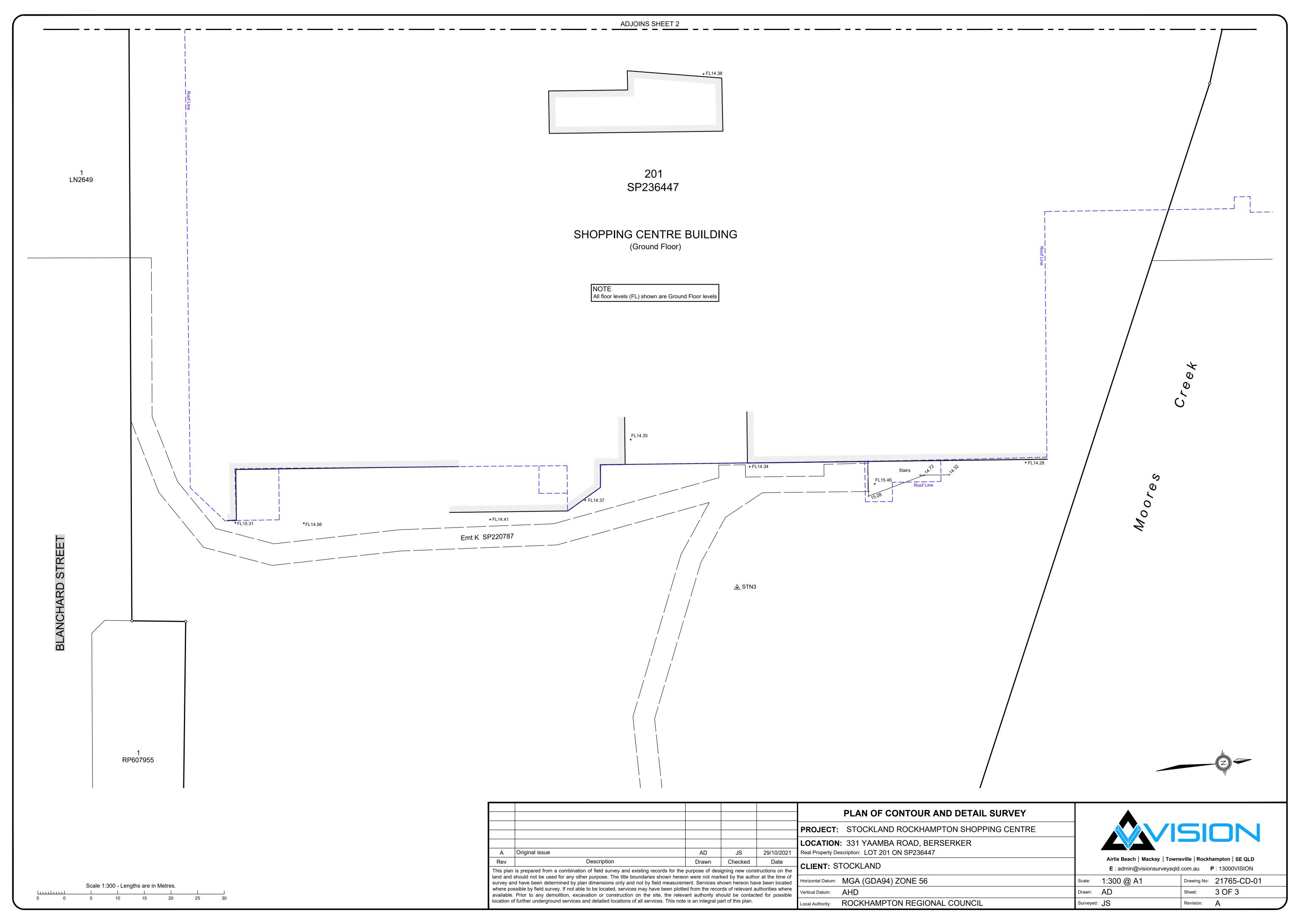
DATE: 15.02.22


PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 PERSPECTIVES

Appendix 2 Survey Plan

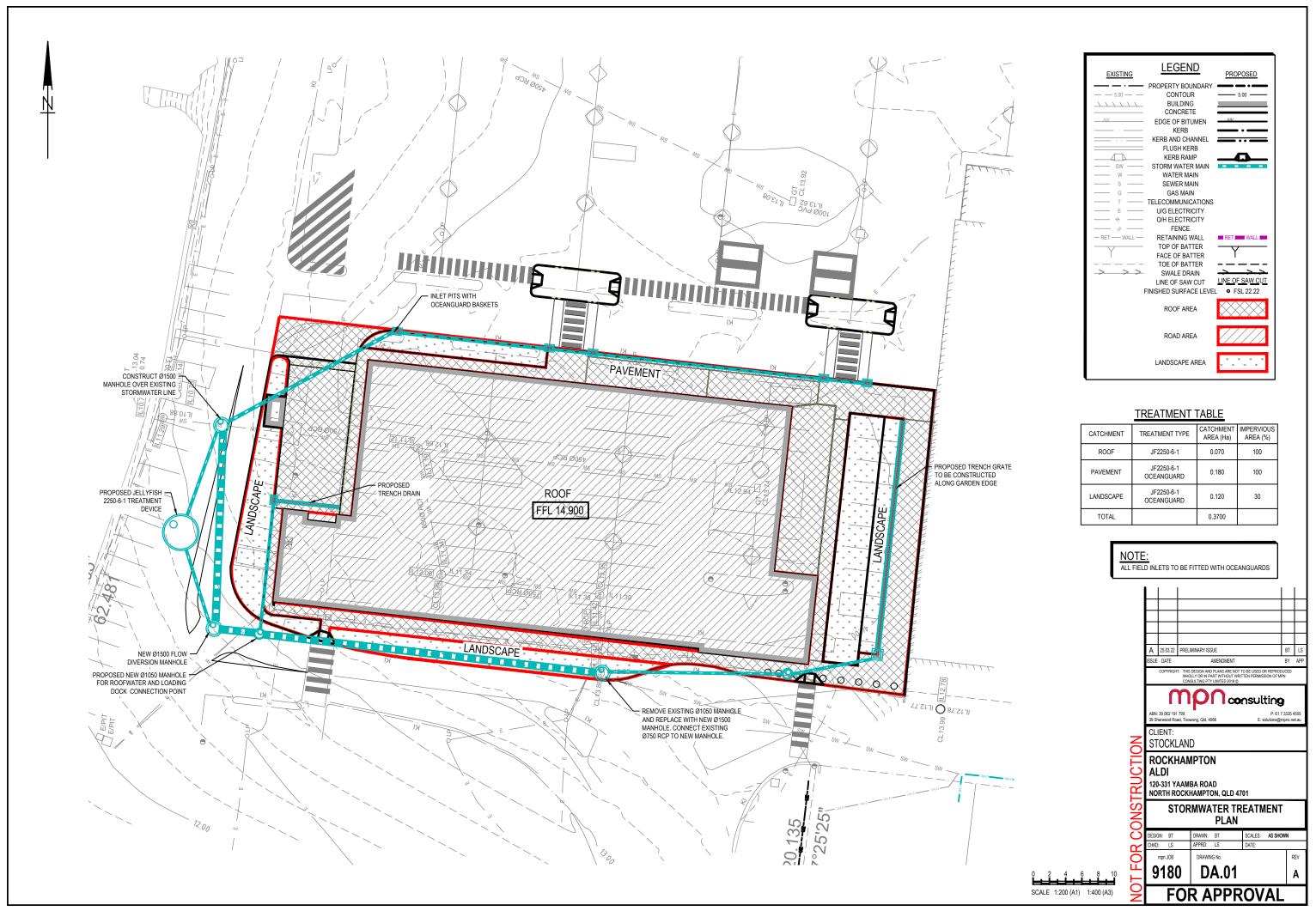
SURVEY CONTROL									
Station No. Easting Northing Elevation Descrip									
STN1	246593.917	7414769.301	13.650	Nail in Concrete					
STN2	246624.895	7414870.874	14.432	Nail in Concrete					
STN3	246778.040	7414852.225	14.702	Nail in Concrete					

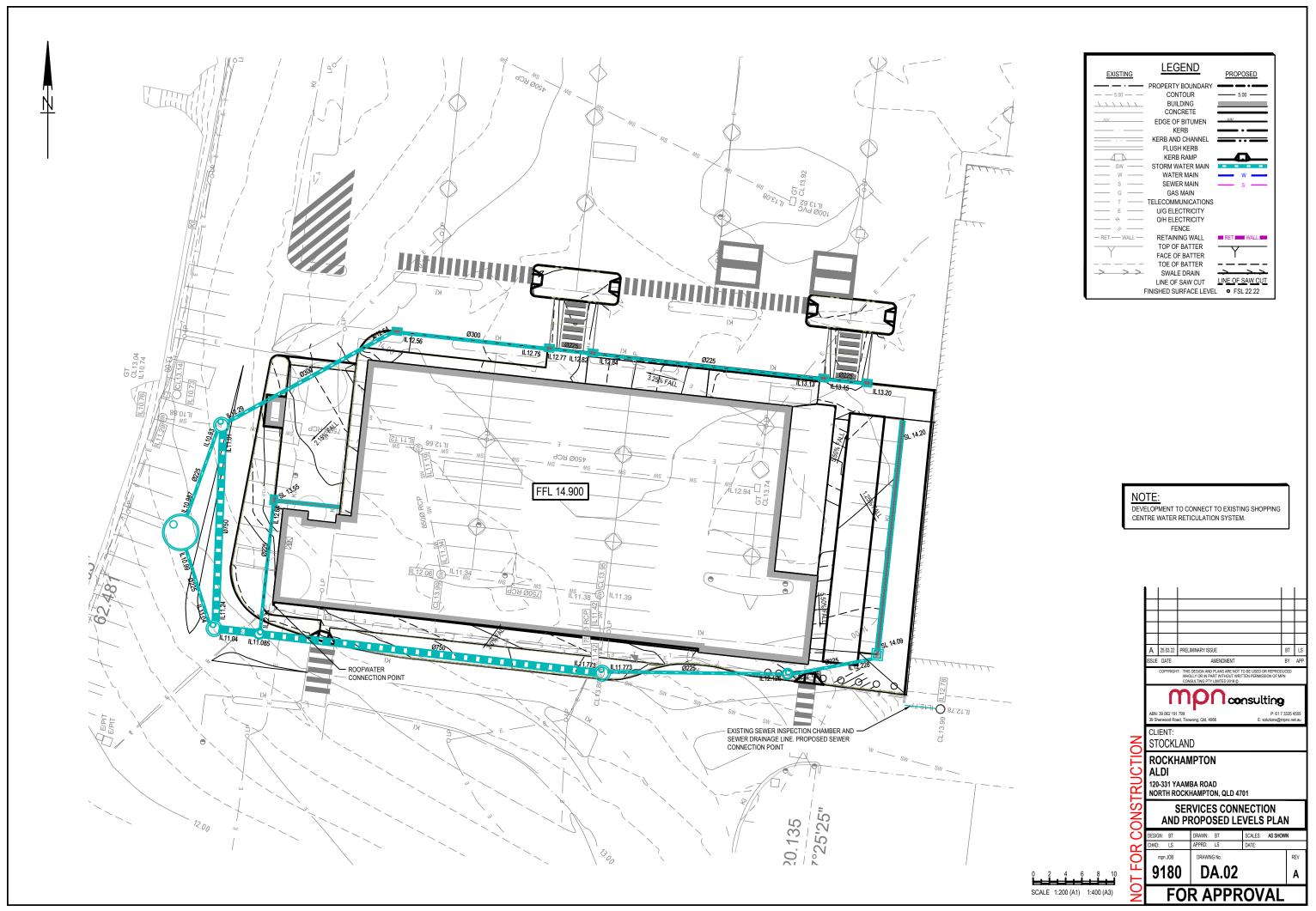

NOTES

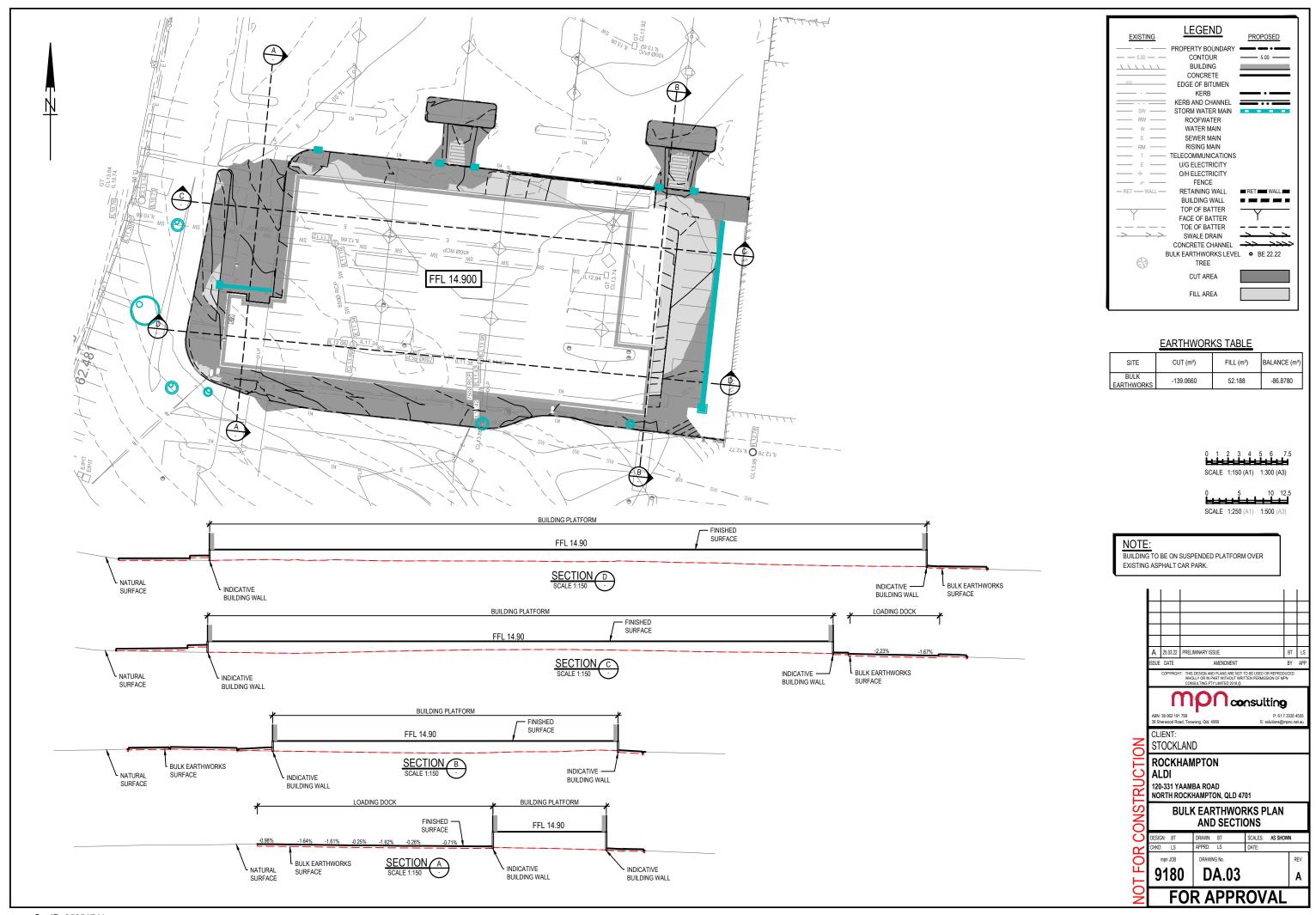

- 1. The title boundaries shown hereon were not marked at the time of survey, and have been determined by plan dimensions only and not by field measurement.
- 2. No Service As-Constructed information was received for this plan at time of survey. Services shown hereon
- have been located where possible by field survey.

 3. Some underground services have also been plotted utilising GPR or Potholing techniques provided by Va
- 3. Some underground services have also been plotted utilising GPR or Potholing techniques provided by Vac Group. Vision Surveys (QLD) accepts no responsibility for the searching, accuracy or locations of these services. Prior to any demolition, excavation or construction on the site, the relevant authority should be contacted for possible location of further underground services and detailed locations of all services prior to construction on this site.
- 4. For presentation purposes some information has not been represented on this plan. For complete information refer to digital CAD (*dwg*) file.

					PLAN OF CONTOUR AND DETAIL SURVEY						
					PROJECT: STOCKLAND ROCKHAMPTON SHOPPING CENTRE						
A	Original issue	AD	JS	29/10/2021	LOCATION: 331 YAAMBA ROAD, BERSERKER Real Property Description: LOT 201 ON SP236447						
Rev	Rev Description Drawn Checked Date			CLIENT: STOCKLAND		Airlie Beach Mackay Townsville Rockhampton SE QLD E : admin@visionsurveysqld.com.au P : 13000VISION					
This plan is prepared from a combination of field survey and existing records for the purpose of designing new constructions on the land and should not be used for any other purpose. The title boundaries shown hereon were not marked by the author at the time of survey and have been determined by plan dimensions only and not by field measurement. Services shown hereon have been located			Horizontal Datum: MGA (GDA94) ZONE 56	Scale:	1:600 @ A1	Drawing No: 21765-CD-01					
where possible by field survey. If not able to be located, services may have been plotted from the records of relevant authorities where available. Prior to any demolition, excavation or construction on the site, the relevant authority should be contacted for possible					Vertical Datum: AHD	Drawn:	AD	Sheet: 1 OF 3			
location	of further underground services and detailed locations of all services. This note	e is an integral p	art of this plan.		Local Authority: ROCKHAMPTON REGIONAL COUNCIL	Surveyed	: JS	Revision: A			


Scale 1:600 - Lengths are in Metres.





Appendix 3 MPN Plans

Appendix 4 Rational Method Calculations

120-331 Yaamba Rd, North Rockhampton Rational Method Calculations

File: 9180

Date: 11/02/2022

Stormwater Drainage Runoff - Calculations	Unit	Value						Reference / Comments
Existing condition								
Average Recurrence Interval (ARI)	Years	2	5	10	20	50	100	
Area	ha	0.40	0.40	0.40	0.40	0.40	0.40	
f_i		0.94	0.94	0.94	0.94	0.94	0.94	
C ₁₀		0.90	0.90	0.90	0.90	0.90	0.90	QUDM Table 4.5.3
F _y		0.85	0.95	1.00	1.05	1.15	1.20	QUDM Table 4.5.2
$C_y = F_y * C_{10}$		0.77	0.86	0.90	0.95	1.00	1.00	
Time of Concentration (t _{c)}	mins	5.00	5.00	5.00	5.00	5.00	5.00	QUDM Section 4.6.4
Rainfall Intensity (I)	mm / hr	128.00	171.00	200.00	230.00	270.00	301.00	
$Q_{pre}(Peak Runoff) = (C*I*A)/360$	m³/s	0.109	0.163	0.201	0.242	0.301	0.336	

Stormwater Drainage Runoff - Calculations	Unit	Value						Reference / Comments
Developed Condition								
Average Recurrence Interval (ARI)	Years	2	5	10	20	50	100	
Area	ha	0.40	0.40	0.40	0.40	0.40	0.40	
f _i		0.88	0.88	0.88	0.88	0.88	0.88	
C ₁₀		0.88	0.88	0.88	0.88	0.88	0.88	QUDM Table 4.5.3
F _y		0.85	0.95	1.00	1.05	1.15	1.20	QUDM Table 4.5.2
$C_{y} = F_{y} * C_{10}$		0.75	0.84	0.88	0.92	1.00	1.00	
Time of Concentration (t _{c)}	mins	5.00	5.00	5.00	5.00	5.00	5.00	QUDM Section 4.6.4
Rainfall Intensity (I)	mm / hr	128.00	171.00	200.00	230.00	270.00	301.00	
Q_{post} (Peak Runoff) = (C*I*A)/360	m³/s	0.107	0.159	0.196	0.237	0.301	0.336	

Document Set ID: 35351741 Version: 1, Version Date: 19/05/2022

Appendix 5
Ocean Protect General Arrangement Plans and Maintenance Manuals

Jellyfish Filter Operations & Maintenance Manual

Document Set ID: 35351741 Version: 1, Version Date: 19/05/2022

Table of Contents

Indua du adia a	7
Introduction	
Why do I need to perform maintenance?	2
Health and Safety	3
Personnel health and safety	3
How does it Work?	4
Maintenance Procedures	5
Primary Types of Maintenance	5
Minor Service	5
Major Service (Filter Cartridge Replacement)	6
Additional Types of Maintenance	7
Hazardous Material Spill	7
Blockages	7
Major Storms and Flooding	7
Disposal of Waste Materials	7
Maintenance Services	7
Appendix 1 – Jellyfish Cartridge Schematic	8

Introduction

The primary purpose of stormwater treatment devices is to capture and prevent pollutants from entering waterways, maintenance is a critical component of ensuring the ongoing effectiveness of this process. The specific requirements and frequency for maintenance depends on the treatment device and pollutant load characteristics of each site. This manual has been designed to provide details on the cleaning and maintenance processes for the Jellyfish Filter as recommended by the manufacturer.

The Jellyfish Filter is a stormwater quality treatment technology featuring high surface area and high flow rate membrane filtration at low driving head. By incorporating pre-treatment with light-weight membrane filtration, the Jellyfish Filter removes floatables, trash, oil, debris, TSS and a high percentage of particulate-bound pollutants; including phosphorus and nitrogen, metals and hydrocarbons.

Why do I need to perform maintenance?

Adhering to the maintenance schedule of each stormwater treatment device is essential to ensuring that it functions properly throughout its design life.

During each inspection and clean, details of the mass, volume and type of material that has been collected by the device should be recorded. This data will assist with the revision of future management plans and help determine maintenance interval frequency. It is also essential that suitably qualified and experienced personnel carry out all maintenance (including inspections, recording and reporting) in a systematic manner.

Maintenance of your stormwater management system is essential to ensuring ongoing at-source control of stormwater pollution. Maintenance also helps prevent structural failures (e.g. prevents blocked outlets) and aesthetic failures (e.g. debris build up), but most of all ensures the long term effective operation of the Jellyfish.

Page **2** of **8**

Health and Safety

Access to a Jellyfish unit requires removing heavy access covers/grates, and entry into a confined space. Pollutants collected by the Jellyfish will vary depending on the nature of your site. There is potential for these materials to be harmful. For example, sediments may contain heavy metals, carcinogenic substances or objects such as broken glass and syringes. For these reasons, all aspects of maintaining and cleaning your Jellyfish require careful adherence to Occupational Health and Safety (OH&S) guidelines.

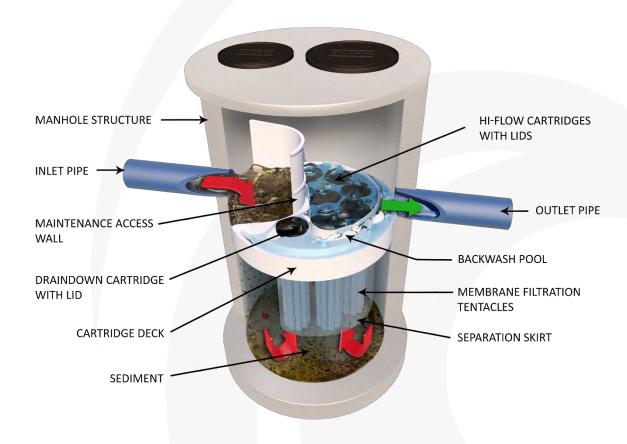
It is important to note that the same level of care needs to be taken to ensure the safety of non-work personnel. As a result, it may be necessary to employ traffic/pedestrian control measures when the device is situated in, or near areas with high vehicular/pedestrian activity.

Personnel health and safety

Whilst performing maintenance on the Jellyfish, precautions should be taken in order to minimise (or, if possible, prevent) contact with sediment and other captured pollutants by maintenance personnel. The following personal protective equipment (PPE) is subsequently recommended:

- Puncture resistant gloves
- Steel capped safety boots
- Long sleeve clothing, overalls or similar skin protection
- Eye protection
- · High visibility clothing or vest

During maintenance activities, it may be necessary to implement traffic control measures. Ocean Protect recommend that a separate site-specific traffic control plan is implemented as required to meet the relevant governing authority guidelines.


Whilst some aspects of Jellyfish maintenance can be performed from surface level, there will be a need to enter the Jellyfish pit (confined space) for both minor and major services. It is recommended that all maintenance personnel evaluate their own needs for confined space entry and compliance with relevant industry regulations and guidelines. Ocean Protect maintenance personnel are fully trained and carry certification for confined space entry applications.

Page 3 of 8

How does it Work?

Stormwater enters the Jellyfish system through the inlet pipe where floatable pollutants are captured behind the maintenance access wall. As stormwater enters the treatment chamber a separation skirt ensures the retention of oils whilst simultaneously protecting the filtration cartridges and allowing coarse particles to settle below on the chamber floor. Stormwater then passes through the Jellyfish cartridges and onto the Jellyfish deck, at this point the backwash pool will fill and overflow allowing treated stormwater to exit via the outlet pipe.

Jellyfish Filter and Components

As the storm event subsides, the treated water held in the backwash pool passes back through the high flow cartridges into the treatment chamber. This passive backwash helps to clear the cartridge surface by dislodging sediment onto the chamber floor. The drain down cartridge(s) located outside the backwash pool enables water levels to balance, leaving the cartridge deck level free of standing water.

Maintenance Procedures

To ensure optimal performance, it is advisable that regular maintenance is performed. Typically the Jellyfish requires a service every 6 months, additionally as the Jellyfish cartridges capture pollutants they will need to be replaced (expected cartridge life is 2-5 years with a maximum cartridge life of 5 years).

Primary Types of Maintenance

The table below outlines the primary types of maintenance activities that typically take place as part of an ongoing maintenance schedule for the Jellyfish.

	Description of Typical Activities	Frequency
Minor Service	Removal & rinsing of cartridges Wash down of deck level Removal of large floatable pollutants Removal of accumulated sediment (if required)	Every 6 Months
Major Service	Replacement of Jellyfish cartridges	As required

Maintenance requirements and frequencies are dependent on the pollutant load characteristics of each site. The frequencies provided in this document represent what the manufacturer considers to be best practice to ensure the continuing operation of the device is in line with the original design specification.

Minor Service

This service is designed to assess the condition of the Jellyfish cartridges and record necessary information that will establish whether a major service is required.

- 1. Establish a safe working area around the access point
- 2. Remove access covers
- 3. Using a vacuum unit or net remove any floatable gross pollutants contained behind the maintenance access wall
- 4. Using a vacuum unit decant the water until the level drops below the base of the cartridges
- 5. Remove Jellyfish cartridges*
 - a. Remove cartridge lid
 - b. Remove cartridges vertically from chamber, lifting from eye nut lifting points only
 - c. Replace and secure cartridge lid back into deck to reduce trip hazards during maintenance
- 6. Unscrew all 11 tentacles from the cartridge head plate, keep all components for reassembly*
- 7. Rinse each tentacle individually NOTE: excessive water pressure may damage the tentacles
 - a. Position tentacle in a container (to capture runoff) with the open end facing down
 - b. Rinse entire length of cartridge using only low pressure water source (e.g. garden hose).
 - c. Evaluate and note the condition of the tentacles
 - d. Ensure runoff is disposed appropriately
 - e. Re-assemble cartridges ready for reinstallation*
- 8. Wash down deck level to remove any built up sediment (if required)
- 9. Measure the level of accumulated sediment in the chamber if depth is greater than 300mm use vacuum unit to remove sediment.
- 10. Re-install Jellyfish cartridges
 - a. Remove cartridge lid
 - b. Lower cartridge into chamber, lifting from eye nut lifting points only
 - c. Insert cartridge vertically into cartridge receptacle, and secure cartridge lid back in place
- 11. Replace access covers

*Refer appendix 1 for Jellyfish Cartridge Schematic

Major Service (Filter Cartridge Replacement)

For the Jellyfish system a major service is a reactionary process based on the outcomes from the minor service.

Trigger Event	Maintenance Action
Rinsing does not remove accumulated sediment from the tentacles	Replace Jellyfish tentacles ^[1]
Jellyfish tentacles are damaged	Replace Jellyfish tentacles ^[1]
Jellyfish cartridges have been in operation for 5 years	Replace Jellyfish tentacles ^[1]

[1] Replacement filter tentacles and components are available for purchase from Ocean Protect.

This service is designed to return the Jellyfish device back to optimal operating performance

- 1. Establish a safe working area around the access point
- 2. Remove access covers
- 3. Using a vacuum unit or net remove any floatable gross pollutants contained behind the maintenance access wall
- 4. Using a vacuum unit decant the water until the level drops below the base of the cartridges
- 5. Remove Jellyfish cartridges*
 - a. Remove cartridge lid
 - b. Remove cartridges vertically from chamber, lifting from eye nut lifting points only
 - c. Replace and secure cartridge lid back into deck to reduce trip hazards during maintenance
- 6. Unscrew all 11 tentacles from the cartridge head plate for disposal, keep all components for fixing of new tentacles to existing head plate*
- 7. Wash down deck level to remove any built up sediment (if required)
- 8. Use vacuum unit to remove accumulated sediment and pollutants in the chamber
- 9. Install replacement tentacles into each head plate*
- 10. Install Jellyfish cartridges
 - a. Remove cartridge lid
 - b. Lower cartridge into chamber, lifting from eye nut lifting points only
 - c. Insert cartridge vertically into cartridge receptacle, and secure cartridge lid back in place
- 11. Replace access covers

*Refer appendix 1 for Jellyfish Cartridge Schematic

Page 6 of 8

Additional Types of Maintenance

Occasionally events on site can make it necessary to perform additional maintenance to ensure the continuing performance of the device.

Hazardous Material Spill

If there is a spill event on site, the Jellyfish unit should be inspected and serviced accordingly. Specifically, all captured pollutants and liquids from within the unit should be removed and disposed in accordance with any additional requirements that may relate to the type of spill event. Additionally, it will be necessary to inspect the filter cartridges and assess their contamination, depending on the type of spill event it may be necessary to replace the filtration cartridges.

Blockages

The Jellyfish treatment system is designed to operate in an offline arrangement, where an upstream high flow bypass structure is in used. In the unlikely event that flooding occurs upstream of the Jellyfish system, the following steps should be undertaken to assist in diagnosing the issue and determining the appropriate response.

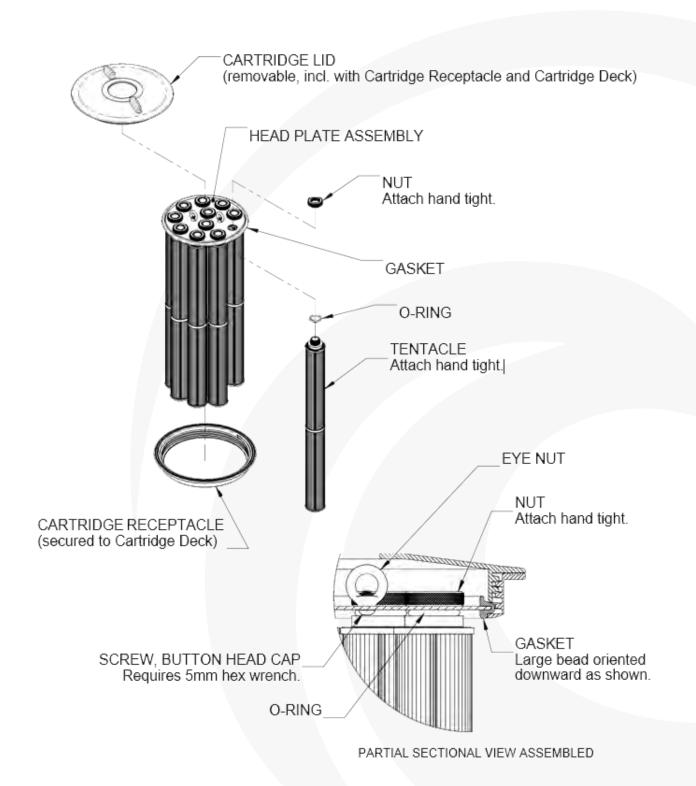
- 1. Inspect the upstream diversion structure to ensure that it is free of debris and pollutants
- 2. Inspect the Jellyfish unit checking both the inlet and outlet pipes for obstructions (e.g. pollutant build-up, blockage), which if present, should be removed.

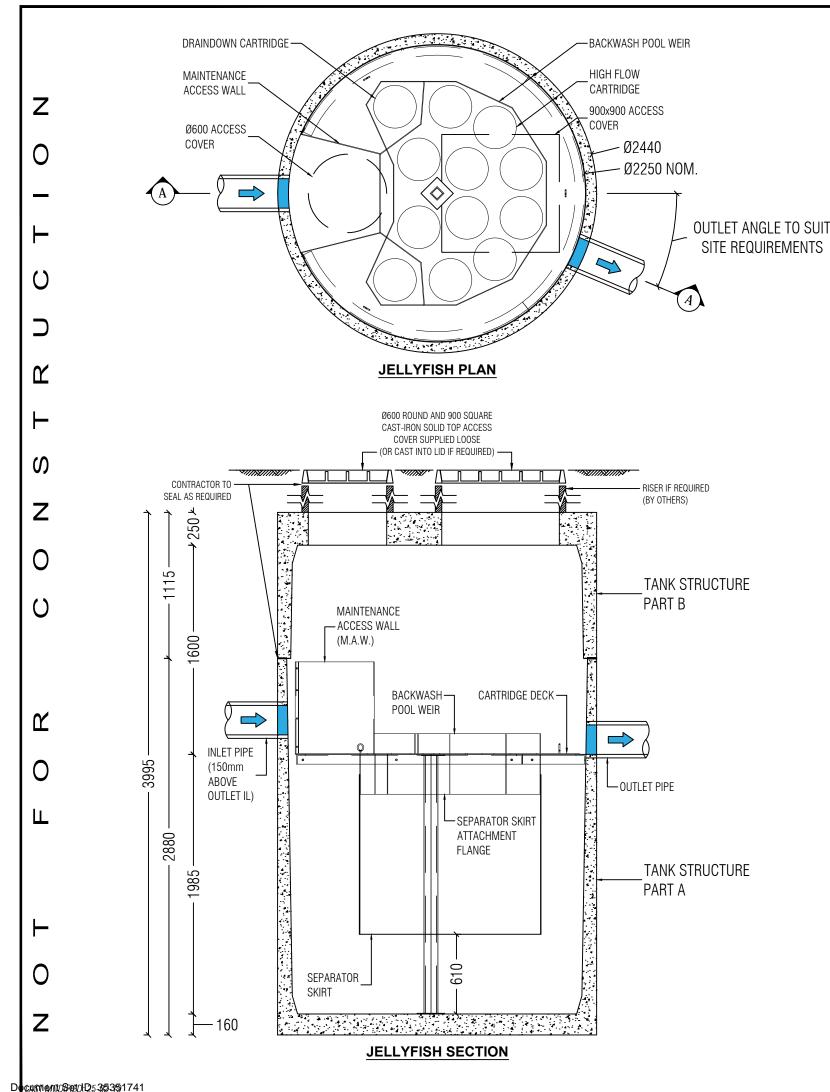
Major Storms and Flooding

In addition to the scheduled activities, it is important to inspect the condition of the Jellyfish after a major storm event. The focus is to inspect for damage and higher than normal sediment accumulation that may result from localised erosion. Where necessary, damaged components should be replaced and accumulated pollutants should be removed and disposed.

Disposal of Waste Materials

The accumulated pollutants found in the Jellyfish must be handled and disposed of in a manner that is in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. If the filter cartridges have been contaminated with any unusual substance, there may be additional special handling and disposal methods required to comply with relevant government/authority/industry regulations.


Maintenance Services


With over a decade and a half of maintenance experience Ocean Protect has developed a systematic approach to inspecting, cleaning and maintaining a wide variety of stormwater treatment devices. Our fully trained and professional staff are familiar with the characteristics of each type of system, and the processes required to ensure its optimal performance.

Ocean Protect has several stormwater maintenance service options available to help ensure that your stormwater device functions properly throughout its design life. In the case of our Jellyfish system we offer long term pay-as-you-go contracts, pre-paid once off servicing and replacement cartridges.

For more information please visit www.OceanProtect.com.au

Appendix 1 – Jellyfish Cartridge Schematic

JELLYFISH DESIGN TABLE

JELLYFISH TREATMENT FLOW IS A FUNCTION OF THE NUMBER OF CARTRIDGES AND THE DEVICE TOTAL HEAD DIFFERENTIAL. IF THE PIPE FLOW EXCEEDS THE TREATMENT FLOW THEN AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

REQUIRED DEVICE TOTAL HEAD DIFFERENTIAL [mm]	460	230
CARTRIDGE FLOW RATE FOR HIGH-FLOW / DRAINDOWN [L/s]	5 / 2.5	2.5 / 1.25
CARTRIDGE LENGTH [mm]	1375	1375
OUTLET INVERT TO STRUCTURE INVERT [mm])	1985	1985

SITE SPECIFIC DATA REQUIREMENTS

STRUCTURE ID]
WATER QUALITY FLOW RATE (L/S)]
# OF CARTRIDGES REQUIRED (HF - DD)			[-]
CARTRIDGE SIZE				1375	
PIPE DATA:	I.L.	MATERI	AL	DIAMET	ER
INLET PIPE	[]	[]	[]
OUTLET PIPE [][]]
LIDDED TANK MEIOL			1 (2501.0	
UPPER TANK WEIGHT			4,ι	050kg	
LOWER TANK WEIGH	HT		6,3	350kg	

NOTE: TANK SUPPLIED IN TWO PARTS; PARTS A & B TO BE JOINED ON SITE

GENERAL NOTES

- JELLYFISH WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF THE PROJECT.
- 2. PRECAST STRUCTURE SUPPLIED WITH CORE HOLES TO SUIT OUTER DIAMETER OF NOMINATED PIPE SIZE / MATERIAL.
- PRECAST STRUCTURE SHALL MEET W80 WHEEL LOAD RATING ASSUMING A MAXIMUM EARTH COVER OF 2.0m AND A GROUND WATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER TO CONFIRM ACTUAL GROUNDWATER ELEVATION.PRECAST STRUCTURE SHALL BE IN ACCORDANCE WITH AS3600.
- 4. IF THE PEAK FLOW RATE, AS DETERMINED BY THE SITE CIVIL ENGINEER, EXCEEDS THE TREATMENT FLOW RATE OF THE SYSTEM, AN UPSTREAM BYPASS STRUCTURE IS REQUIRE.
- 5. ALL WATER QUALITY TREATMENT DEVICES REQUIRE PERIODIC MAINTENANCE. REFER TO OPERATION AND MAINTENANCE MANUAL FOR GUIDELINES AND ACCESS REQUIREMENTS.
- 6. SITE SPECIFIC PRODUCTION DRAWING WILL BE PROVIDED ON PLACEMENT OF ORDER
- 7. DRAWING NOT TO SCALE.

INSTALLATION NOTES

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE SPECIFIC DESIGN CONSIDERATION AND SHALL BE SPECIFIED BY THE SITE CIVIL ENGINEER.
- B. CONTRACTOR TO PROVIDE ALL EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE STRUCTURE (LIFTING DETAIL PROVIDED SEPARATELY).
- C. CONTRACTOR TO INSTALL AND LEVEL THE STRUCTURE, APPLY SEALANT TO ALL JOINTS AND TO PROVIDE, INSTALL AND GROUT INLET AND OUTLET PIPES.
- D. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO PROTECT CARTRIDGES FROM CONSTRUCTION-RELATED EROSION RUNOFF.
- E. CARTRIDGE INSTALLATION, BY OCEANPROTECT, SHALL OCCUR ONLY AFTER SITE HAS BEEN STABILIZED AND THE JELLYFISH UNIT IS CLEAN AND FREE OF DEBRIS. CONTACT OCEAN PROTECT TO COORDINATE CARTRIDGE INSTALLATION WITH SITE COMPLETION.

OCEAN PROTECT
JELLYFISH 2250
STANDARD PRODUCT DRAWING

OceanGuard™ Operations & Maintenance Manual

Document Set ID: 35351741 Version: 1, Version Date: 19/05/2022

Table of Contents

ntroduction 2	
Why do I need to perform maintenance?	. 2
Health and Safety3	
· · · · · · · · · · · · · · · · · · ·	
Personnel health and safety	. 3
How does it Work?4	
Maintenance Procedures	
Primary Types of Maintenance	
Minor Service	
Hand Maintenance	
Vacuum Maintenance	
Major Service (Filter Bag Replacement)	. 5
Additional Reasons of Maintenance	. 6
Hazardous Material Spill	. 6
Blockages	. 6
Major Storms and Flooding	. 6
Disposal of Waste Materials	. 6
Maintenance Services	

Rev: 1 Last Updated: March 2019

Introduction

The primary purpose of stormwater treatment devices is to capture and prevent pollutants from entering waterways, maintenance is a critical component of ensuring the ongoing effectiveness of this process. The specific requirements and frequency for maintenance depends on the treatment device and pollutant load characteristics of each site. This manual has been designed to provide details on the cleaning and maintenance processes as recommended by the manufacturer.

The OceanGuard technology is a gully pit basket designed to fit within new and existing gully pits to remove pollution from stormwater runoff. The system has a choice of Filtration liners, designed to remove gross pollutants, total suspended solids and attached pollutants as either a standalone technology or as part of a treatment train with our StormFilter or Jellyfish Filtration products. OceanGuard pit baskets are highly effective, easy to install and simple to maintain.

Why do I need to perform maintenance?

Adhering to the maintenance schedule of each stormwater treatment device is essential to ensuring that it functions properly throughout its design life.

During each inspection and clean, details of the mass, volume and type of material that has been collected by the device should be recorded. This data will assist with the revision of future management plans and help determine maintenance interval frequency. It is also essential that qualified and experienced personnel carry out all maintenance (including inspections, recording and reporting) in a systematic manner.

Maintenance of your stormwater management system is essential to ensuring ongoing at-source control of stormwater pollution. Maintenance also helps prevent structural failures (e.g. prevents blocked outlets) and aesthetic failures (e.g. debris build up), but most of all ensures the long term effective operation of the OceanGuard.

Page **2** of **6**

Health and Safety

Access to pits containing an OceanGuard typically requires removing (heavy) access covers/grates, but typically it is not necessary to enter into a confined space. Pollutants collected by the OceanGuard will vary depending on the nature of your site. There is potential for these materials to be harmful. For example, sediments may contain heavy metals, carcinogenic substances or sharp objects such as broken glass and syringes. For these reasons, there should be no primary contact with the waste collect and all aspects of maintaining and cleaning your OceanGuard require careful adherence to Occupational Health and Safety (OH&S) guidelines.

It is important to note that the same level of care needs to be taken to ensure the safety of non-work personnel, as a result it may be necessary to employ traffic/pedestrian control measures when the device is situated in, or near areas with high vehicular/pedestrian activity.

Personnel health and safety

Whilst performing maintenance on the OceanGuard pit insert, precautions should be taken in order to minimise (or when possible prevent) contact with sediment and other captured pollutants by maintenance personnel. In order to achieve this the following personal protective equipment (PPE) is recommended:

- Puncture resistant gloves
- Steel capped safety boots,
- Long sleeve clothing, overalls or similar skin protection
- Eye protection
- High visibility clothing or vest


During maintenance activities it may be necessary to implement traffic control measures. Ocean Protect recommend that a separate site specific traffic control plan is implemented as required to meet the relevant governing authority guidelines.

The OceanGuard pit insert is designed to be maintained from surface level, without the need to enter the pit. However depending on the installation configuration, location and site specific maintenance requirements it may be necessary to enter a confined space occasionally. It is recommended that all maintenance personnel evaluate their own needs for confined space entry and compliance with relevant industry regulations and guidelines. Ocean Protect maintenance personnel are fully trained and carry certification for confined space entry.

Page 3 of 6

How does it Work?

OceanGuard is designed to intercept stormwater as it enters the stormwater pits throughout a site. The OceanGuard has diversion panels that sit flush with the pit walls, this ensures that as stormwater enters at the top of the pit it is directed to the middle of the insert where the Filtration bag is situated. The filtration bag allows for screening to occur removing 100% of pollutants greater than the opening of the filtration material (200micron, 1600micron bags available).

During larger rain events the large flows overflow slots in the flow diverter of the OceanGuard ensure that the conveyance of stormwater is not impeded thus eliminating the potential for surface flooding. As the flow subsides, the captured pollutants are held in the OceanGuard Filtration bag dry. The waste then starts to dry which reduces the magnitude of organic material decomposition transitioning between maintenance intervals.

Maintenance Procedures

To ensure that each OceanGuard pit insert achieves optimal performance, it is advisable that regular maintenance is performed. Typically the OceanGuard requires 2-4 minor services annually, pending the outcome of these inspections additional maintenance servicing may be required.

Primary Types of Maintenance

The table below outlines the primary types of maintenance activities that typically take place as part of an ongoing maintenance schedule for the OceanGuard.

	Description of Typical Activities	Frequency
Minor Service	Filter bag inspection and evaluation Removal of capture pollutants Disposal of material	2-4 Times Annually
Major Service	Filter Bag Replacement Support frame rectification	As required

Ocean Protect | OceanGuard Operations & Maintenance Manual

Maintenance requirements and frequencies are dependent on the pollutant load characteristics of each site. The frequencies provided in this document represent what the manufacturer considers to be best practice to ensure the continuing operation of the device is in line with the original design specification.

Minor Service

This service is designed to return the OceanGuard device back to optimal operating performance. This type of service can be undertaken either by hand or with the assistance of a Vacuum unit.

Hand Maintenance

- 1. Establish a safe working area around the pit insert
- 2. Remove access cover/grate
- 3. Use two lifting hooks to remove the filtration bag
- 4. Empty the contents of the filtration bag into a disposal container
- 5. Inspect and evaluate the filtration bag
- 6. Inspect and evaluate remaining OceanGuard components (i.e. flow diverter, filtration cage and supporting frame)
- 7. Rejuvenate filtration bag by removing pollutant build up with a stiff brush, additionally the filtration bag can be washed using high pressure water
- 8. Re-install filtration bag and replace access cover/grate

Vacuum Maintenance

- 1. Establish a safe working area around the pit insert
- 2. Remove access cover/grate
- 3. Vacuum captured pollutants from the filtration bag
- 4. Remove filtration bag
- 5. Inspect and evaluate the filtration bag
- 6. Inspect and evaluate remaining OceanGuard components (i.e. flow diverter, filtration cage and supporting frame)
- 7. Rejuvenate filtration bag by removing pollutant build up with a stiff brush, additionally the filtration bag can be washed using high pressure water
- 8. Re-install filtration bag and replace access cover/grate

Major Service (Filter Bag Replacement)

For the OceanGuard system, a major service is a reactionary process based on the outcomes from the minor service.

Trigger Event from Minor Service	Maintenance Action
Filtration bag inspection reveals damage	Replace the filtration bag ^[1]
Component inspection reveals damage	Perform rectification works and if necessary replace components ^[1]

[1] Replacement filtration bags and components are available for purchase from Ocean Protect.

Additional Reasons of Maintenance

Occasionally, events on site can make it necessary to perform additional maintenance to ensure the continuing performance of the device.

Hazardous Material Spill

If there is a spill event on site, all OceanGuard pits that potentially received flow should be inspected and cleaned. Specifically all captured pollutants from within the filtration bag should be removed and disposed in accordance with any additional requirements that may relate to the type of spill event. All filtration bags should be rejuvenated (replaced if required) and re-installed.

Blockages

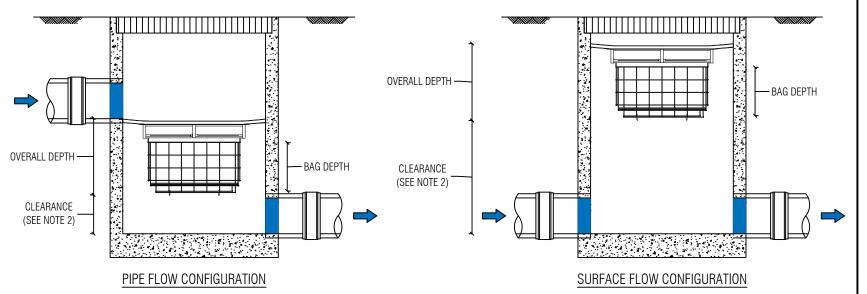
The OceanGuards internal high flow bypass functionality is designed to minimise the potential of blockages/flooding. In the unlikely event that flooding occurs around the stormwater pit the following steps should be undertaken to assist in diagnosing the issue and implementing the appropriate response.

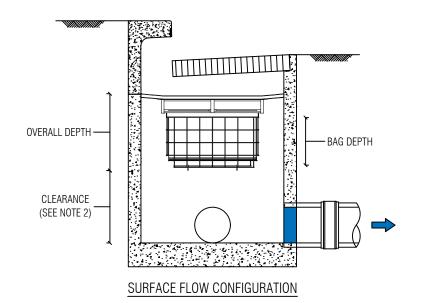
- 1. Inspect the OceanGuard flow diverter, ensuring that they are free of debris and pollutants
- 2. Perform a minor service on the OceanGuard
- 3. Remove the OceanGuard insert to access the pit and inspect both the inlet and outlet pipes, ensuring they are free of debris and pollutants

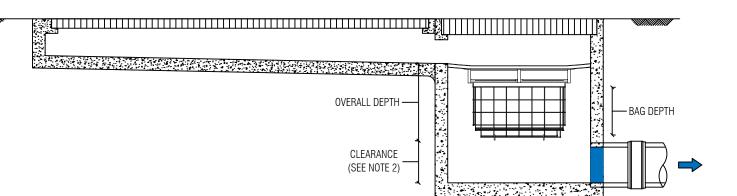
Major Storms and Flooding

In addition to the scheduled activities, it is important to inspect the condition of the OceanGuard pit insert after a major storm event. The inspection should focus on checking for damage and higher than normal sediment accumulation that may result from localised erosion. Where necessary damaged components should be replaced and accumulated pollutants disposed.

Disposal of Waste Materials

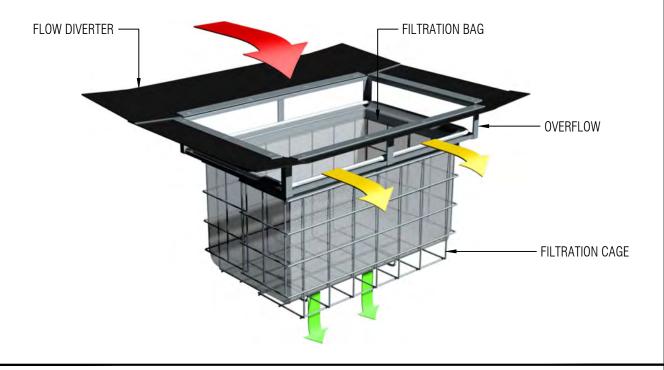

The accumulated pollutants found in the OceanGuard must be handled and disposed of in a manner that is in accordance with all applicable waste disposal regulations. When scheduling maintenance, consideration must be made for the disposal of solid and liquid wastes. If the filtration bag has been contaminated with any unusual substance, there may be additional special handling and disposal methods required to comply with relevant government/authority/industry regulations.


Maintenance Services


With over a decade and a half of maintenance experience Ocean Protect has developed a systematic approach to inspecting, cleaning and maintaining a wide variety of stormwater treatment devices. Our fully trained and professional staff are familiar with the characteristics of each type of system, and the processes required to ensure its optimal performance.

Ocean Protect has several stormwater maintenance service options available to help ensure that your stormwater device functions properly throughout its design life. In the case of our OceanGuard system we offer long term pay-as-you-go contracts, pre-paid once off servicing and replacement filter bags.

For more information please visit www.OceanProtect.com.au



GRATED STRIP DRAIN CONFIGURATION

PLAN ID	MAXIMUM PIT PLAN DIMENSIONS
S	450mm x 450mm
M	600mm x 600mm
L	900mm x 900mm
XL	1200mm x 1200mm

DEPTH ID	BAG DEPTH	OVERALL DEPTH
1	170	270
2	300	450
3	600	700

		DEPTH ID		
		1 2 3		
	S			
Ω N	М			
)[A]	L			
<u>. </u>	XL			

GENERAL NOTES

- 1. THE MINIMUM CLEARANCE DEPENDS ON THE CONFIGURATION (SEE NOTE 2) AND THE LOCAL COUNCIL REQUIREMENTS.
- 2. CLEARANCE FOR ANY PIT WITHOUT AN INLET PIPE (ONLY USED FOR SURFACE FLOW) CAN BE AS LOW AS 50mm. FOR OTHER PITS, THE RECOMMENDED CLEARANCE SHOULD BE GREATER OR EQUAL TO THE PIPE OBVERT SO AS NOT TO INHIBIT HYDRAULIC CAPACITY.
- 3. OCEAN PROTECT PROVIDES TWO FILTRATION BAG TYPES:- 200 MICRON BAGS FOR HIGHER WATER QUALITY FILTERING AND A COARSE BAG FOR TARGETING GROSS POLLUTANTS.
- 4. DRAWINGS NOT TO SCALE.

OCEAN PROTECT
OCEANGUARD
TYPCIAL ARRANGEMENTS
SPECIFICATION DRAWING

CIVIL ENGINEERING REPORT

ROCKHAMPTON REGIONAL COUNCIL

APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/66-2022

Dated: 2 November 2022

STOCKLAND ROCKHAMPTON SUPERMARKET 120-331 YAAMBA ROAD, NORTH ROCKHAMPTON

MPN CONSULTING PTY LTD

Level 5 39 Sherwood Road Toowong Queensland 4066 • Australia

Document Set ID: 35351740 Version: 1, Version Date: 19/05/2022

REVISION STATUS

MPN Reference No: 9180

Client: Stockland

Site Address: 120-331 Yaamba Road, North Rockhampton

Report Title: Civil Engineering Report

DOCUMENT CONTROL

Version	Date	Author	Reviewer	Approved	RPEQ
Draft	11/02/2022	Ben Tarrant	Lachlan Stephenson	B	16903
Issue A	24/03/2022	Ben Tarrant	Lachlan Stephenson		16903

EXECUTIVE SUMMARY

This report has been commissioned by Stockland in support of the Development Application for the proposed supermarket development at the existing shopping centre on land located at 120-331 Yaamba Road, North Rockhampton.

This report addresses the following Engineering aspects of the proposed development:

- Topography
- Water
- Sewer
- Roadworks
- Earthworks
- Electricity and Telecommunications
- Gas
- Codes

TABLE OF CONTENTS

EXE	ECUTIVE SUMMARY	2
1	PURPOSE	5
2	INTRODUCTION	5
	2.1 Project description	5
3	SITE CHARACTERISTICS	6
	3.1 Site Location3.2 Topography and Existing Site Drainage	6 7
4	SITE DATA	8
5	STORMWATER	8
6	WATER SUPPLY	8
7	SEWER	8
8	ROADWORKS	9
9	EARTHWORKS	9
10	ELECTRICITY AND COMMUNICATIONS	10
11	GAS	10
12	CODES	10
13	CONCLUSION	11
14	LIMITATIONS OF REPORT	11

24 March 2022

Table of Figures

Figure 1 – Proposed Development Figure 2 – Site Location Figure 3 – Existing site topography	5 6 7
Table of Appendices	
Appendix 1 Architectural Plans	12
Appendix 2 Survey Plan	13
Appendix 3 MPN Plans	14
Appendix 4 Ergon DBYD Plans	15
Appendix 5 Telstra DBYD Plans	16
Appendix 6 NBN DBYD Plans	17
Appendix 7 APA DBYD Plans	18
Appendix 8 Codes	19

1 PURPOSE

This Civil Engineering Report has been prepared in support of the Development Application for the proposed supermarket development at the existing shopping centre on land located at 120-331 Yaamba Road, North Rockhampton.

2 INTRODUCTION

2.1 Project description

The current proposal involves the demolition of the existing carpark occupying the site west of the existing shopping centre, and the construction of a new, single-storey supermarket. The development will include landscaping, loading and service dock, and interface pedestrian access to the existing Stockland shopping centre's open-air carpark to the north.

As part of the development works, adjacent open-air carpark will include proposed shade sails, loading standby zone, and a traffic access reconfiguration from High Street into the Stockland shopping centre internal carpark. This access point will be modified for improved vehicle manoeuvrability.

The proposed development is depicted on the architectural plans prepared by Stockland, attached in Appendix 1, with excerpt below.

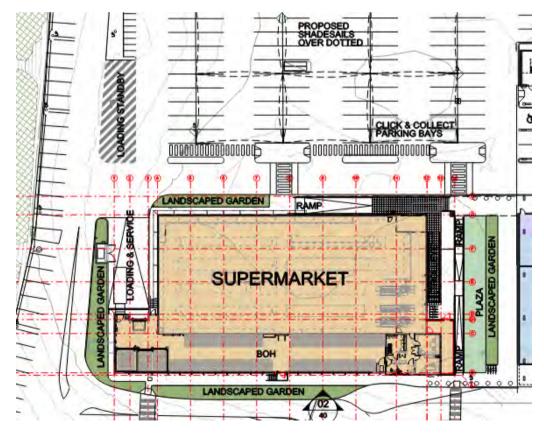


Figure 1 - Proposed Development

3 SITE CHARACTERISTICS

3.1 Site Location

The site is located at the southern perimeter of property 331 Yaamba Road, North Rockhampton, and is formally known to be part of Lot 201 on SP236447.

The site fronts Stockland shopping centre to the East, and internal carparking in each surrounding direction. High Street is the primary access point to the south, and Moores Creek is situated to the west.

Figure 2 - Site Location

3.2 Topography and Existing Site Drainage

The site is currently occupied by on grade car parking and generally slopes from the North-East with a high point of RL14.40m, to the South West with a low point of RL13.2m. See Figure 3 for general existing site topography.

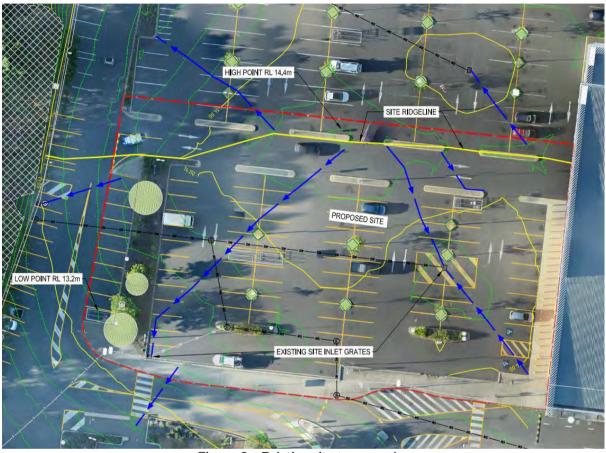


Figure 3 - Existing site topography

The balance of the site runoff is collected by field inlet pits throughout the carpark and the shopping centre road network. The runoff is then collected and conveyed by a network of pipes running East to West along the existing site, eventually discharging into Moores Creek, West of the site.

A copy of a survey plan for the site prepared by Vision Surveys (QLD) is attached in Appendix 2.

4 SITE DATA

Site data has been obtained from the following sources of information:

- Dial Before You Dig (DBYD)
- Discussions with relevant authorities
- Relevant reports
- Rockhampton Regional Council
- Rockhampton Regional Council Interactive Mapping
- Satellite imagery
- Site survey

5 STORMWATER

A site-based stormwater management plan has been completed for the development and will be lodged under separate cover.

6 WATER SUPPLY

Inspection of the water network from RRC GIS Mapping and the site survey indicate there are no reticulation water mains within proximity of the proposed site that are located outside of the main shopping centre footprint.

It is proposed to provide a new connection to the internal Stockland shopping centre reticulation water main. The connection will be sized by the hydraulic consultant during the detailed design stage.

The existing and proposed water infrastructure in the vicinity of the site is shown on MPN Plan 9180–DA.02 attached in Appendix 3. Additionally, refer to the Building Services Due Diligence Report prepared by WSP, lodged under separate cover, for further information on the water supply proposal.

7 SEWER

Inspection of the sewer network from RRC GIS Mapping and the site survey show the following services in the vicinity of the site:

- An existing 150mm dia earthenware reticulation sewer main running North to South starting on the southern boundary of Lot 201. This sewer main diverts south east across High Street and is not within the proposed site footprint.
- An existing internal connection to the sewer main outside the south-eastern corner of the proposed site.

It is proposed to provide a new connection to the Stockland private sewer manhole located at the south-east corner of the proposed site. The connection will be sized by the hydraulic consultant during the detailed design stage.

As the connection point is not within any proposed works, loading onto sewer main is not an assessment requirement.

The existing and proposed sewer infrastructure in the vicinity of the site is shown on MPN Plan 9180–DA.02 attached in Appendix 3. Additionally, refer to the Building Services Due Diligence Report prepared by WSP, lodged under separate cover, for further information on the sewer supply proposal.

8 ROADWORKS

The development will be accessed via the High Street intersection and the internal shopping centre road network surrounding the site.

The internal carpark road to the north of the site will include two raised pedestrian crossovers and a pedestrian walkway connection, which will interface into the existing asphalt surface. The proposed car park levels will be designed to ensure smooth transitions to the existing shopping centre car park.

The loading and service dock will be designed in accordance with the supermarket specifications, and will include a loading standby zone in the northern carpark area. The loading standby zone will involve the demolition of kerb and carparks, and the construction of new line marking set-out.

The proposed pedestrian and loading standby zone layout are shown on the Architectural Plans prepared by Stockland, attached in Appendix 1. Additionally, refer to the Traffic Assessment plans prepared by Cardno, lodged under separate cover, for further information on roadwork proposed set-out changes.

All roadworks and carparks will be designed and constructed in accordance with the relevant RRC and Australian Standards.

9 EARTHWORKS

The proposed development will involve earthworks to construct the building apron interface, loading dock and landscaped areas along with trenching for underground services and utilities.

The proposed building will be suspended with the undercroft enclosed. No filling operations are proposed on site under the building envelope.

The design and construction of the earthworks will be undertaken in accordance with the recommendations of AS 3798 – Guidelines on Earthworks for Commercial and Residential Developments.

Any excavated material not suitable for reuse as fill will be removed from the site and disposed of appropriately in an approved landfill.

All filling operations will be completed under level 1 geotechnical supervision.

A preliminary bulk earthworks layout and sections are shown on MPN Plans 9180-DA.03 attached in Appendix 3.

As no excavation is proposed to expose subsoil at or below RL 5.0m, the development would not be subject to the State Planning Policy July 2017 and consequently there is no requirement for an Acid Sulfate Soil investigation to be undertaken as part of the Development Application.

10 ELECTRICITY AND COMMUNICATIONS

The proposed development will be serviced for electricity and telecommunications from new connections to the existing underground infrastructure within the shopping centre internal road network. The electricity and telecommunications services will need to be connected to the internal network to provide the required level of service in accordance with the appropriate authority and Australian Standards.

Refer to the site survey for location of existing infrastructure, as well as the DBYD plans in Appendix 4, 5 and 6 for the existing Ergon Energy, Telstra and NBN underground infrastructure locations, respectively. Additionally, refer to the Building Services Due Diligence Report prepared by WSP, lodged under separate cover, for further information on the electricity and communications proposal.

11 GAS

If gas is required to service the development, APA will need to be contacted to confirm the connection is suitable or whether any upgrade works are required.

The existing APA infrastructure in the vicinity of the site is shown on the APA DBYD Plans attached in Appendix 7. Additionally, refer to the Building Services Due Diligence Report prepared by WSP, lodged under separate cover, for further information on gas supply proposals.

12 CODES

The following Rockhampton Regional Council Planning Codes have been addressed as part of this development. The code responses are attached in Appendix 8.

- Filling and Excavation Code
- Stormwater Management Code
- Water and Sewer Code

13 CONCLUSION

New sewer and water connections are proposed to internal Stockland reticulation mains to service the development. The connections will be sized by the hydraulic consultant during the detailed design stage.

The development will be accessed via the existing High Street intersection and the internal shopping centre road network surrounding the site.

Minor works are proposed to the adjacent shopping centre carpark. This will include raised pedestrian crossings and a loading standby zone to the north of the loading and service dock. The proposed site footpath crossings will be designed to ensure smooth transitions to the existing shopping centre car park road.

As no excavation is proposed to expose subsoil at or below RL 5.0m, the development would not be subject to the State Planning Policy July 2017 and consequently there is no requirement for an Acid Sulfate Soil investigation to be undertaken as part of the Development Application.

The development will be serviced for electricity and telecommunications via new connections to the existing overhead and underground infrastructure in the surrounding internal roads.

If gas is required to service the development, APA will need to be contacted to confirm the connection is suitable or whether any upgrade works are required.

14 LIMITATIONS OF REPORT

MPN have prepared this report for the proposed shopping centre development at 120-331 Yaamba Road, North Rockhampton in accordance with MPN's proposal to Stockland Development Pty Ltd. This report is provided for the exclusive use of Stockland Development Pty Ltd for this specific project and its requirements. It should not be used or relied upon by a third party and MPN accept no responsibility for the use of this report by any party other than Stockland Development Pty Ltd.

Appendix 1
Architectural Plans

DRAWING SCHEDULE

Document Title COVER SHEET

EXISTING OVERALL SITE PLAN DA001

OVERALL SITE PLAN DA002 **GROUND FLOOR PLAN** DA003

ROOF PLAN

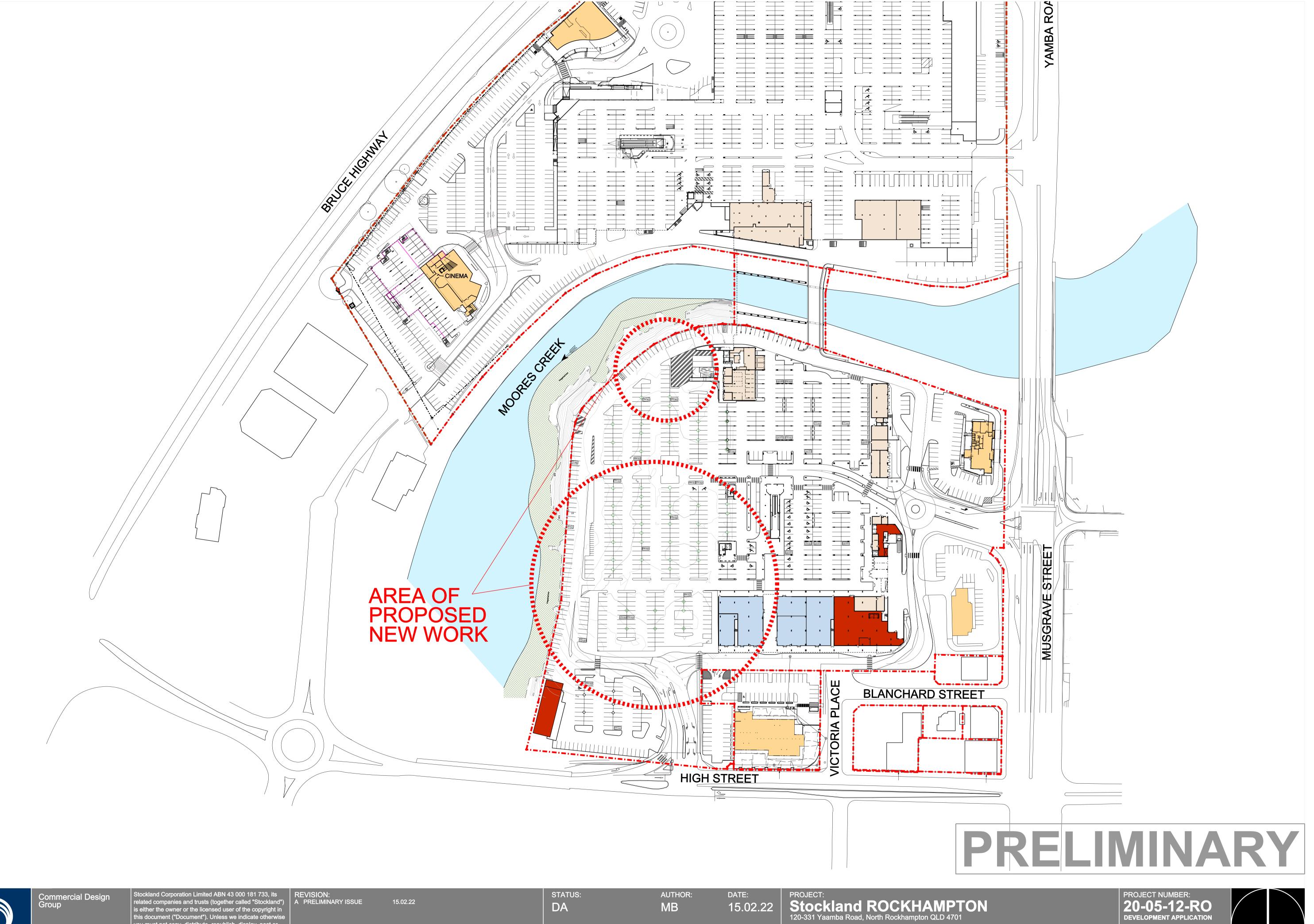
Document Title DA005

DETAIL FLOOR PLAN LANDSCAPING PLAN

DA030 SUNSHADING DIAGRAM PLAN **DA031 MATERIALS PALETTE**

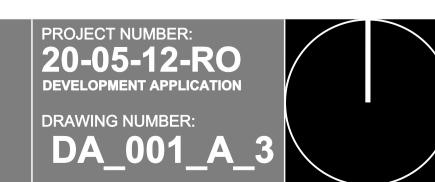
Document Title

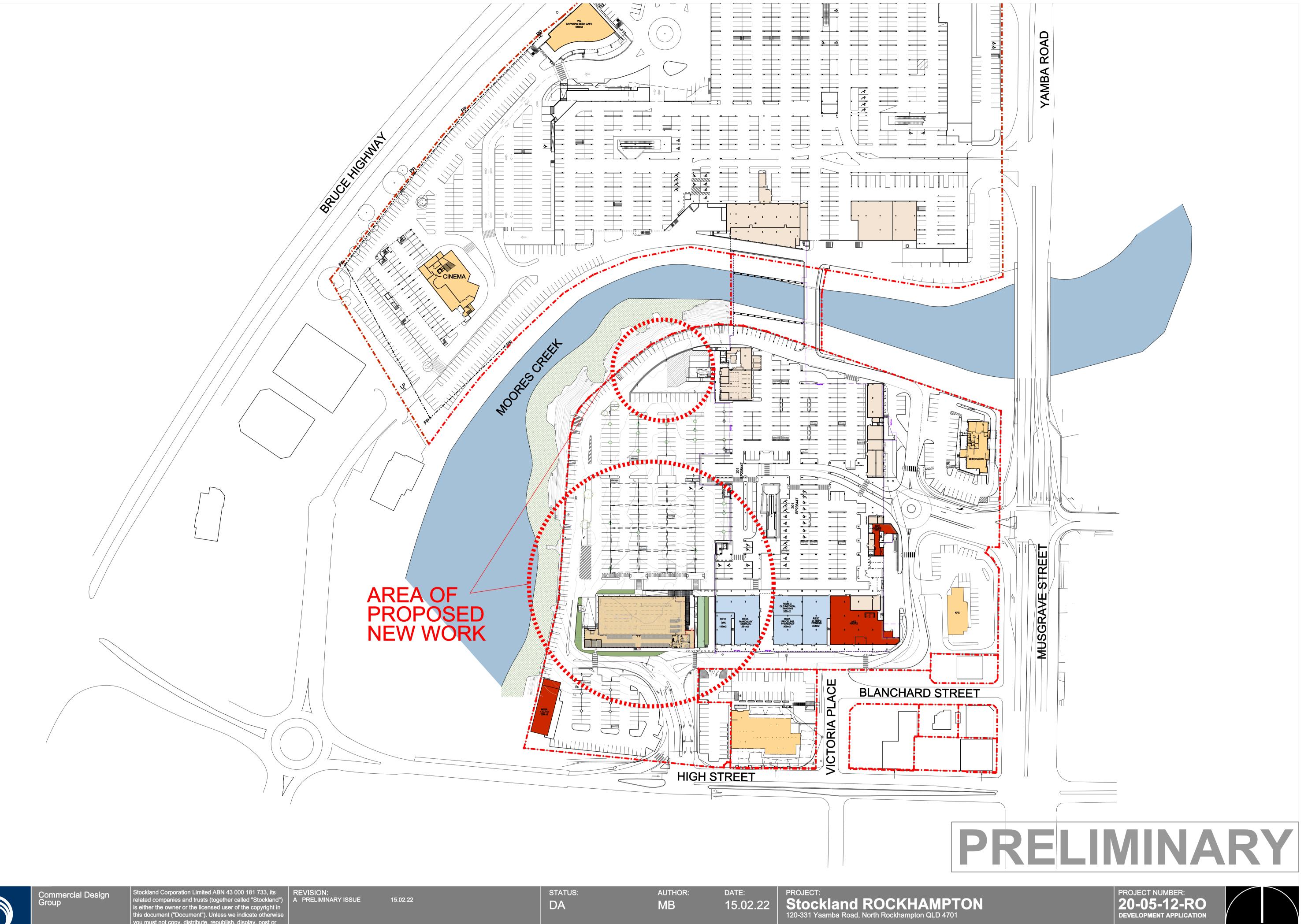
ELEVATIONS ELEVATIONS DA041 DA042 **SECTION**


Document Title PERSPECTIVES PERSPECTIVES DA051 DA052

Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

COVER SHEET

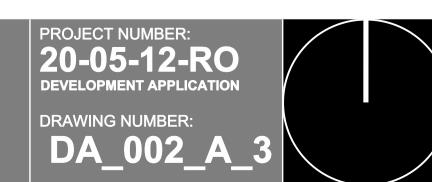


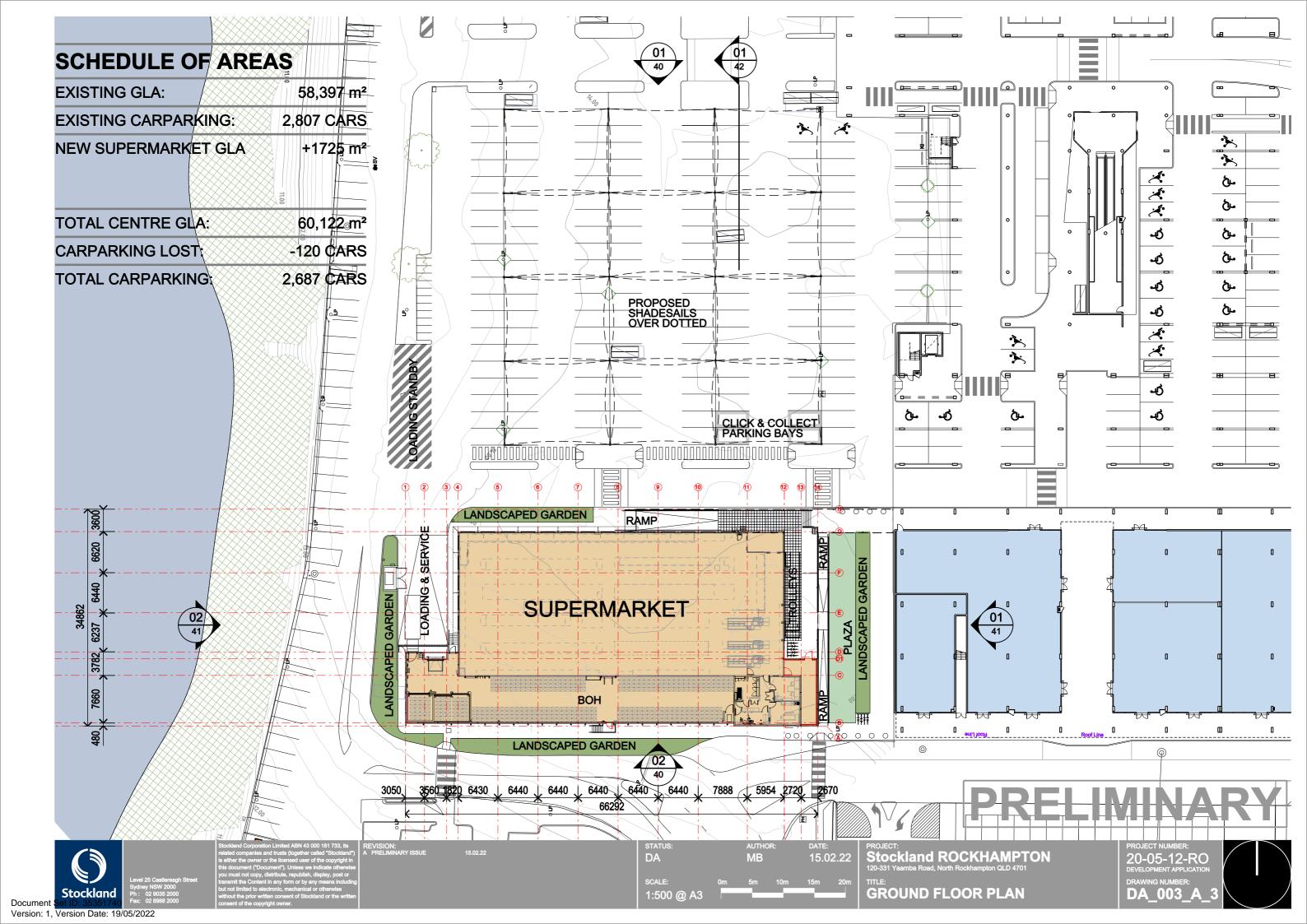

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000

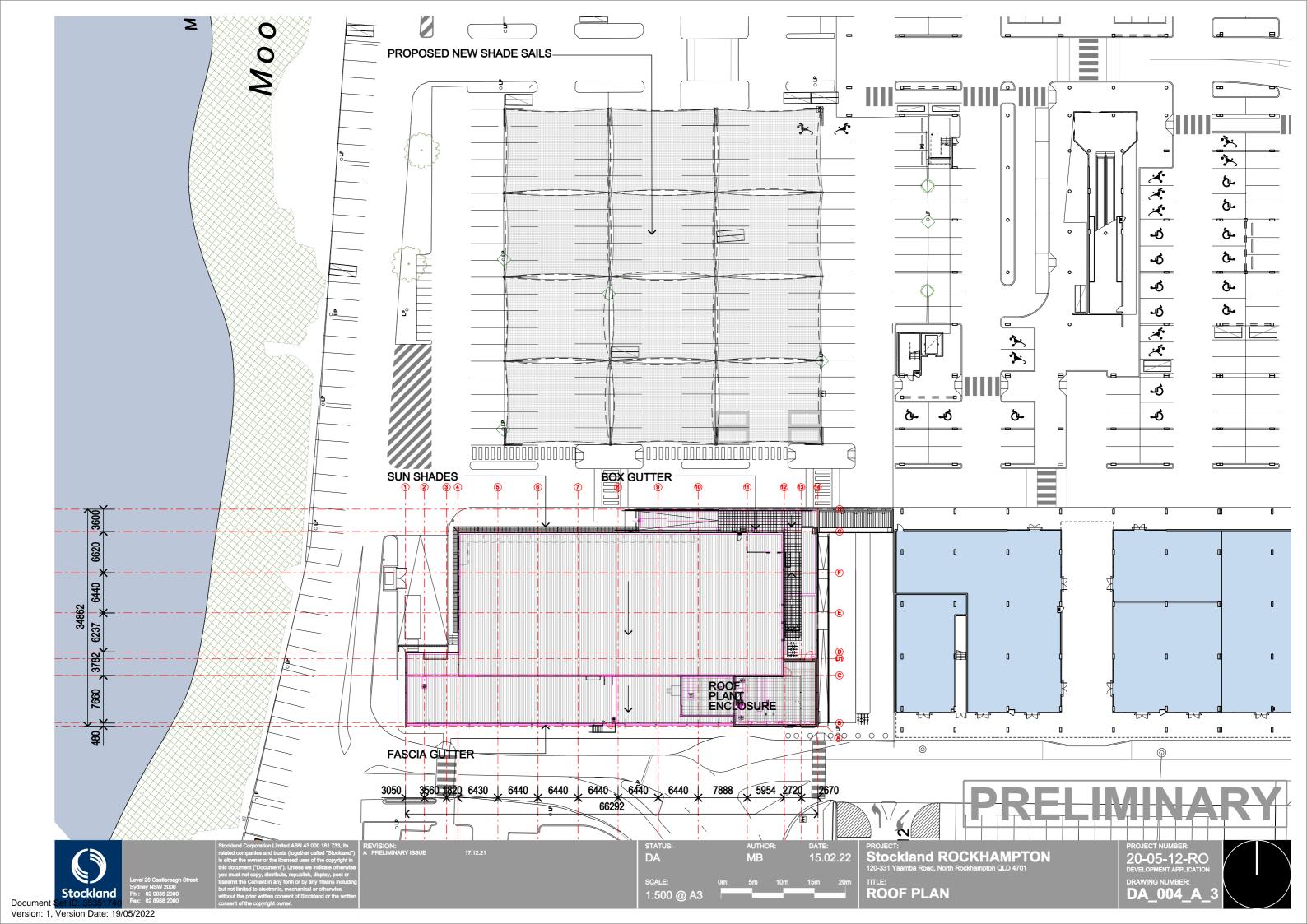
transmit the Content in any form or by any means includ without the prior written consent of Stockland or the writte consent of the copyright owner. SCALE:

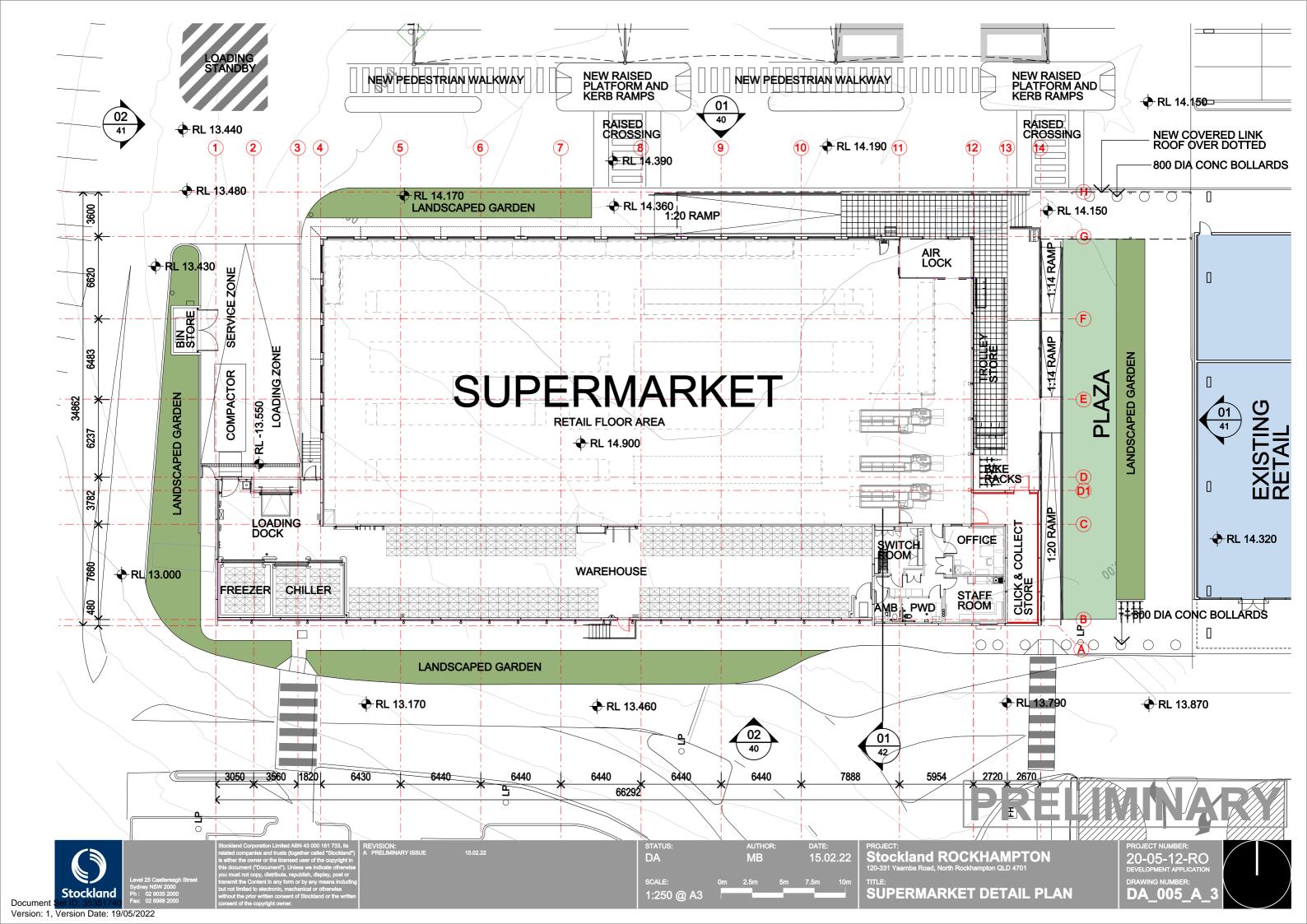
1:1000 @ A1

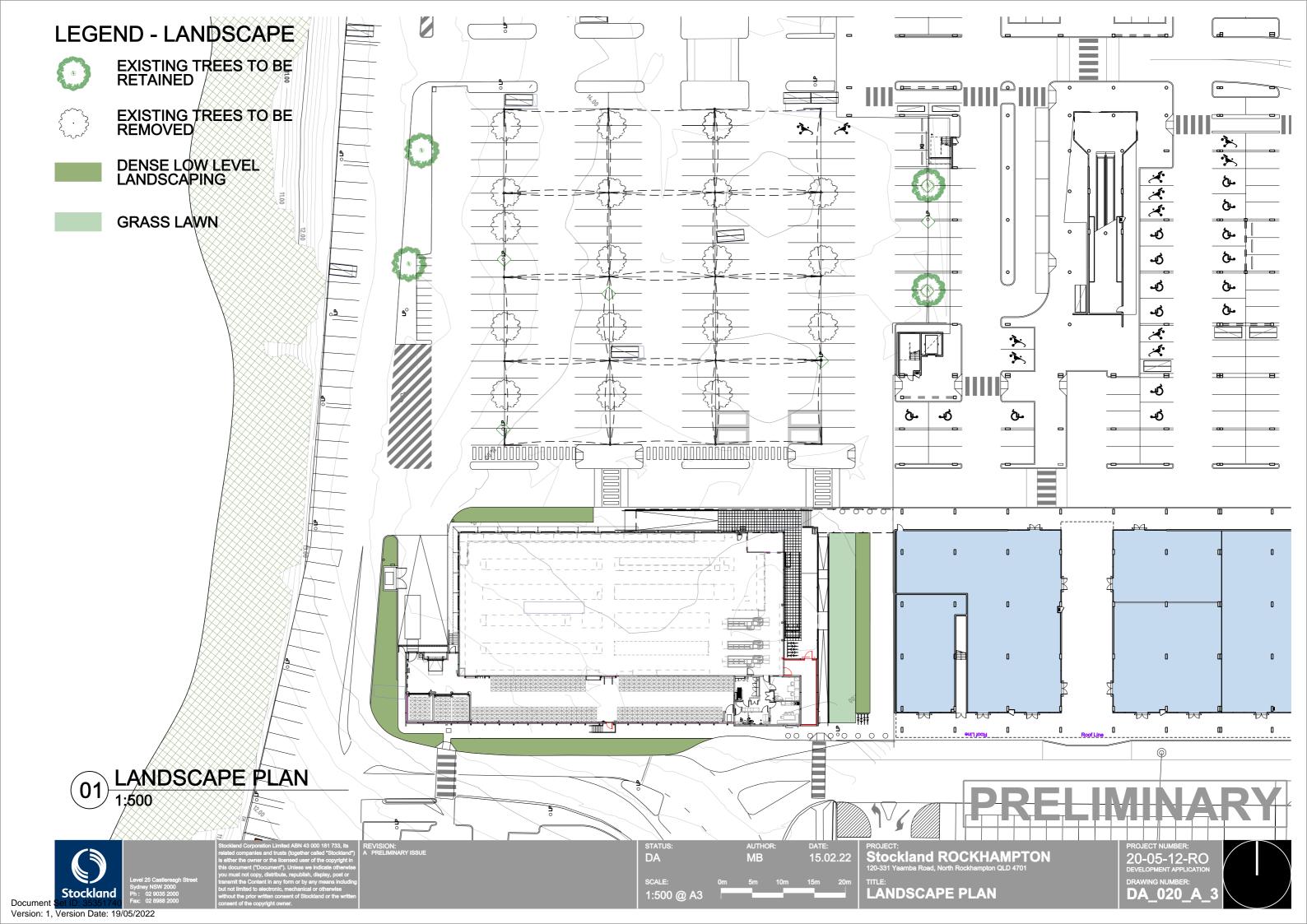
EXISTING OVERALL SITE PLAN

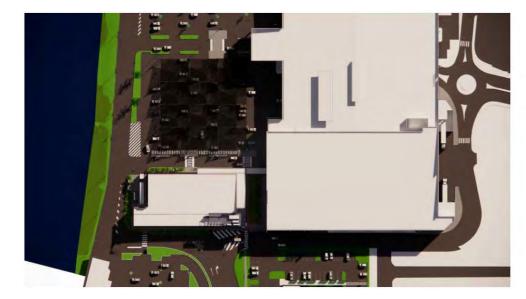

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000 Fax: 02 8988 2000


transmit the Content in any form or by any means includ without the prior written consent of Stockland or the writte consent of the copyright owner.


SCALE:


1:1000 @ A1


OVERALL SITE PLAN




SUMMER 12.00PM


03 SUMMER 3.00PM

WINTER 9.00AM

WINTER 12.00PM

SCALE: NTS @ A3

DATE: 15.02.20

Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 SUNSHADING DIAGRAMS

DA_030_A_3

LANDSCAPED PLAZA

PAINTED PRECAST PANELS

CUSTOM ORB

GRASS LAWN

CLIMBING PLANTS

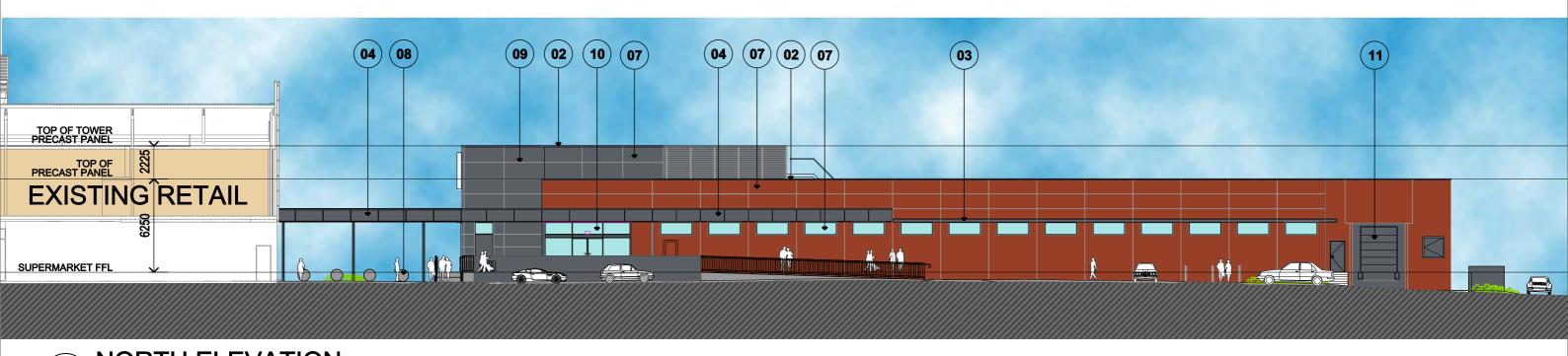
DEEP LANDSCAPING

PRELIMINARY

Stockland Corporation Limited ABN 43 000 181 733, its related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

REVISION: A PRELIMINARY ISSUE

15.02.22


STATUS:
DA

SCALE:
NTS @ A3

JTHOR: IB E: PROJECT .02.20 **Stoc**

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
MATERIAL PALETTE

ROOF SHEETING - COULOURBOND SURFMIST ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED 05 EXTERNAL WALL LINING (MINIORB) LEGEND 01 (09) SIGN PANEL 02 SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED (06 03 07 PRECAST ON F TE PATEIN SH **SUN SHADE AWNING - PREFINISHED** DL EL NUTEL PRE INISTEL 12 HYPER SHAUE SAIL AWNING FACIA - FC PANEL PAINT FINISH 800 DIA METER CONCRETE BULLARUS

Level 25 Castlereagh Street Sydney NSW 2000 Ph: 02 9035 2000

related companies and trusts (together called "Stockland") is either the owner or the licensed user of the copyright in this document ("Document"). Unless we indicate otherwise you must not copy, distribute, republish, display, post or transmit the Content in any form or by any means including but not limited to electronic, mechanical or otherwise without the prior written consent of Stockland or the written

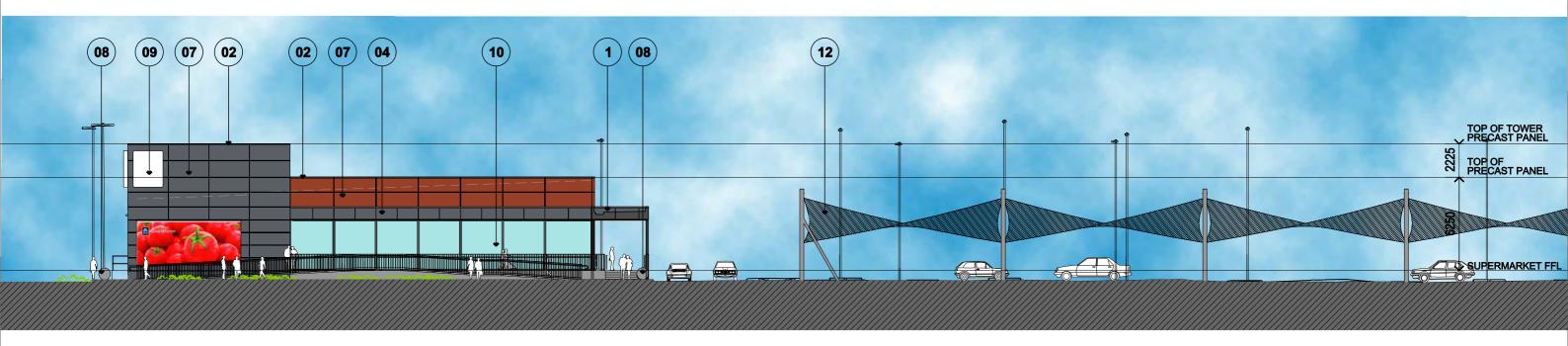
15.02.22

 STATUS:
 AUTHOR:
 DATE:

 DA
 MB
 15.02.22

 SCALE:
 0m
 2.5m
 5m
 7.5m
 10m

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701


TITLE:
ELEVATIONS

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:

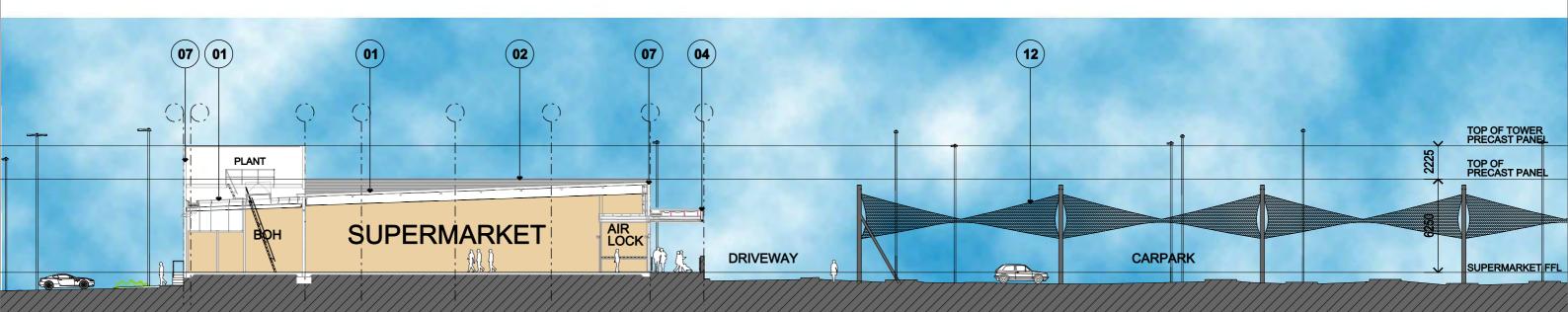
DA_040_A_3

Version: 1, Version Date: 19/05/2022

EAST ELEVATION

DA

ROOF SHEETING - COULOURBOND SURFMIST 05 EXTERNAL WALL LINING (MINIORB)
- PREFINISHED (09) SIGN PANEL ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED (06 07 PRECAST OF F TE PATEIN SH DL EL . IL TE' . PRE INIS IEL SUN SHADE AWNING - PREFINISHED 12 HYPER SHADE SAIL AWNING FACIA - FC PANEL PAINT FINISH 800 DIA METER CONCRETE BULLARUS



15.02.22 1:250 @ A3

Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 ELEVATIONS

20-05-12-RO DEVELOPMENT APPLICATION DA_041_A_3

Document Version: 1, Version Date: 19/05/2022

SECTION A 1:250

01	ROOF SHEETING - COULOURBOND SURFMIST	05	EXTERNAL WALL LINING (MINIORB) - PREFINISHED	09	SIGN PANEL
02	ROOF FLASHING/ CAPPING / GUTTERS/ DOWNPIPES / OVERFLOWS - PREFINISHED	06	LOUVRE SCREEN(S) & DOOR(S) - PREFINISHED	10	SHOPFRONT ENTRY / WINDOWS / GLAZING - PREFINISHED FRAMES
03	SUN SHADE AWNING - PREFINISHED	07	PRECAST ON F TE PARTEIN SH)) L EI , YL TE' , 'PRE INIS IEL
04	AWNING FACIA - FC PANEL PAINT FINISH	08	800 DIA METER CONCRETE BULLARUS	12	HYPER SHADE SAIL

STATUS DA

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 SECTION

PROJECT NUMBER:
20-05-12-RO
DEVELOPMENT APPLICATION
DRAWING NUMBER:
DA_042_A

PRELIMINARY

SCALE: NTS @ A3

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 PERSPECTIVES

20-05-12-RO
DEVELOPMENT APPLICATION DA_050_3

VEIW FROM EARLY LEARNING CENTRE CROSSING

is either the owner or the licens
this document ("Document"). It
you must not copy, distribute, re
transmit the Content in any for
but not limited to electronic, me
without the prior written conserv

A PRELIMINARY ISSUE

1:

JS:

SCALE: NTS @ A3 THOR: 1B ATE: |5.02.22 PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

TITLE:
PERSPECTIVES

VEIW FROM EARLY LEARNING CENTRE CROSSING

PRELIMINARY

SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

PERSPECTIVES

20-05-12-RO
DEVELOPMENT APPLICATION DA_052_A_3

PRELIMINARY

SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701
TITLE:
PERSPECTIVES

PROJECT NUMBER:

20-05-12-RO
DEVELOPMENT APPLICATION DA_053_A_3

SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

PERSPECTIVES

PROJECT NUMBER:
20-05-12-RO
DEVELOPMENT APPLICATION

VEIW FROM NORTHERN CARPARK

SCALE: NTS @ A3

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701

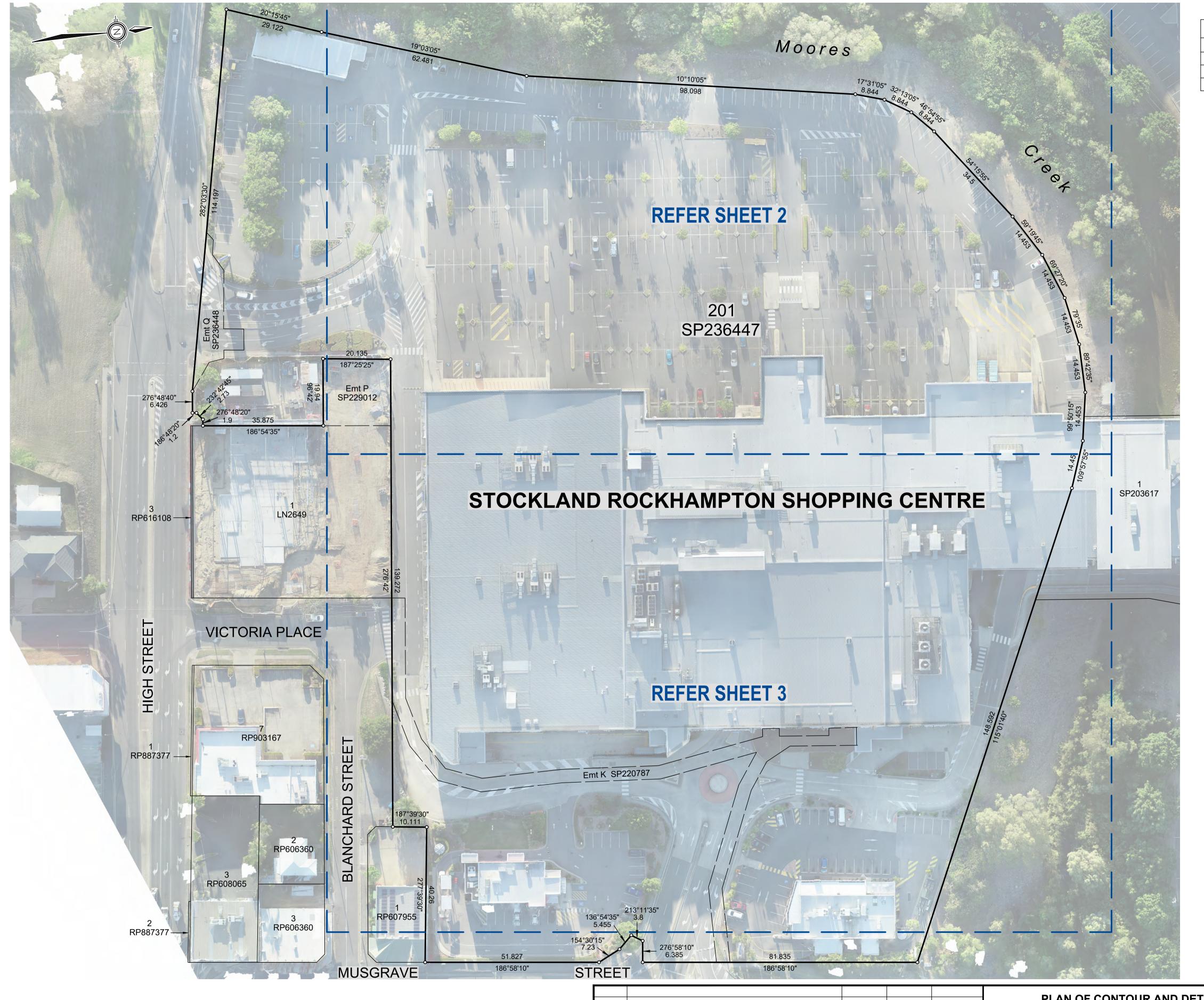
PERSPECTIVES

PROJECT NUMBER:

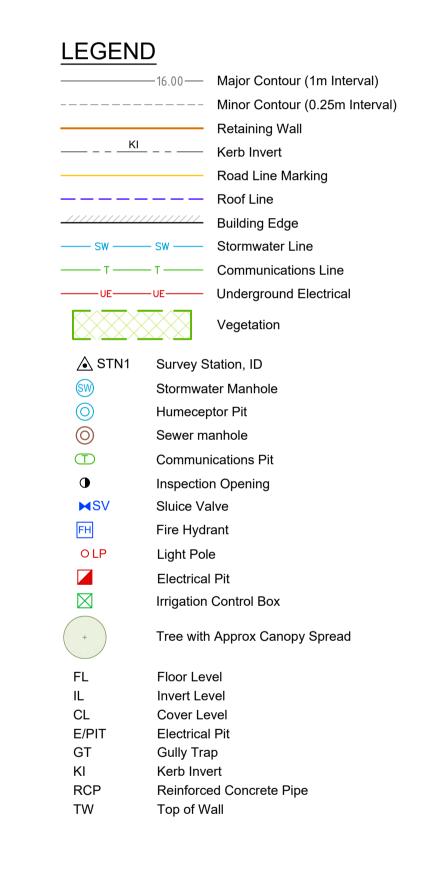
20-05-12-RO
DEVELOPMENT APPLICATION DA_055_A_3

(01) AERIAL VEIW FROM SOUTH WEST

SCALE: NTS @ A3

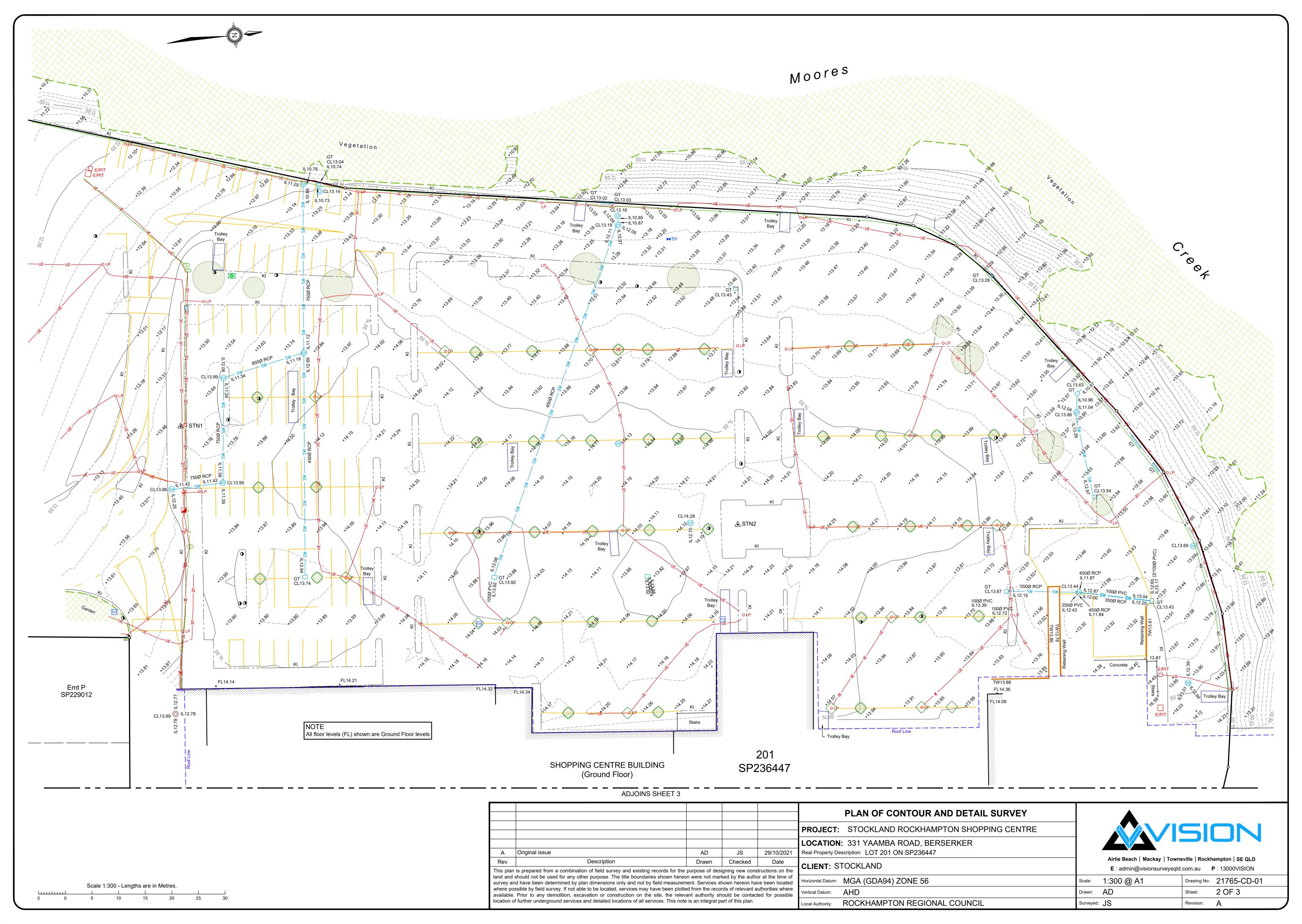

DATE: 15.02.22

PROJECT:
Stockland ROCKHAMPTON
120-331 Yaamba Road, North Rockhampton QLD 4701 PERSPECTIVES



Appendix 2 Survey Plan

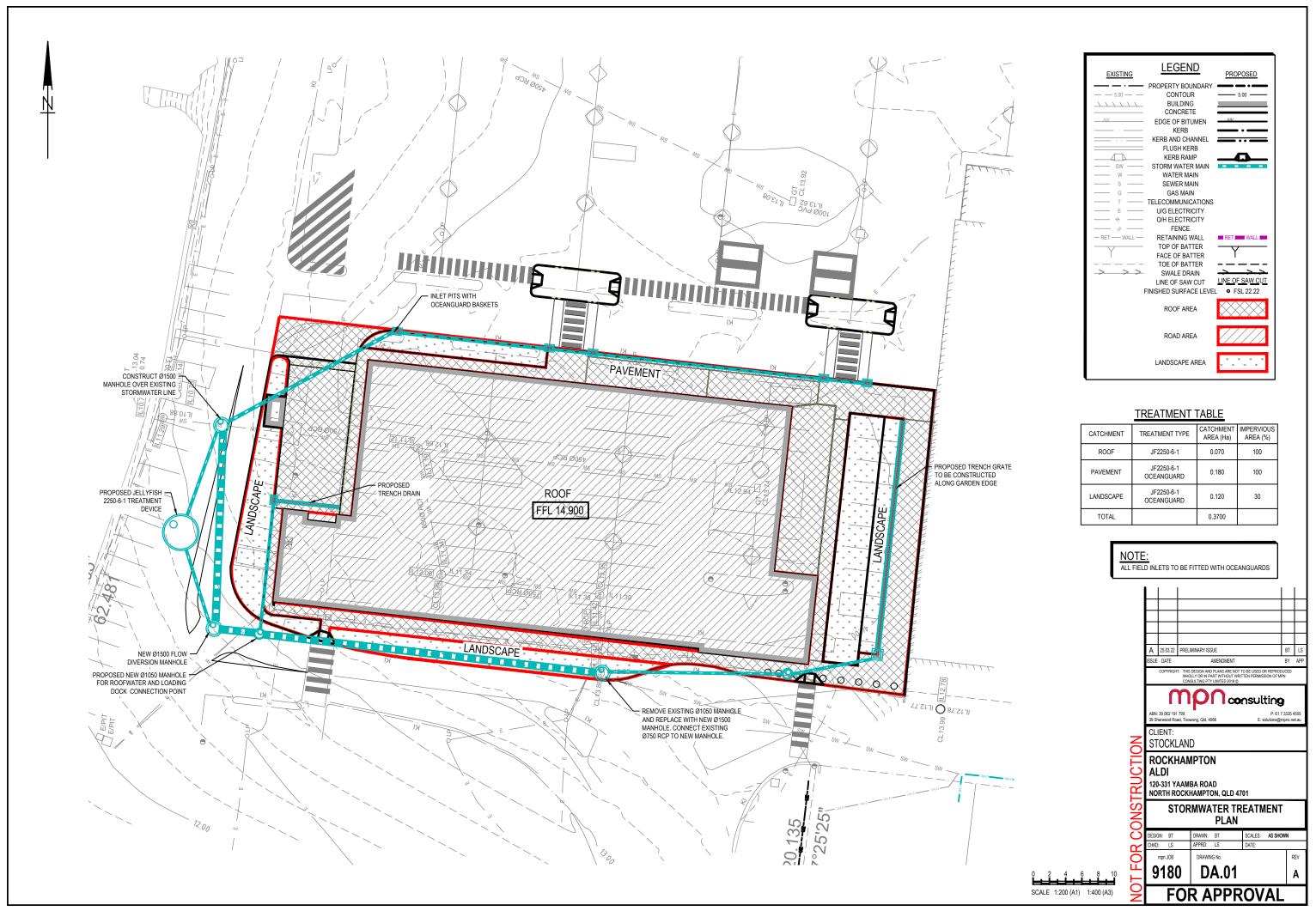
SURVEY CONTROL								
Station No.	Easting	Northing	Elevation	Description				
STN1	246593.917	7414769.301	13.650	Nail in Concrete				
STN2	246624.895	7414870.874	14.432	Nail in Concrete				
STN3	246778.040	7414852.225	14.702	Nail in Concrete				

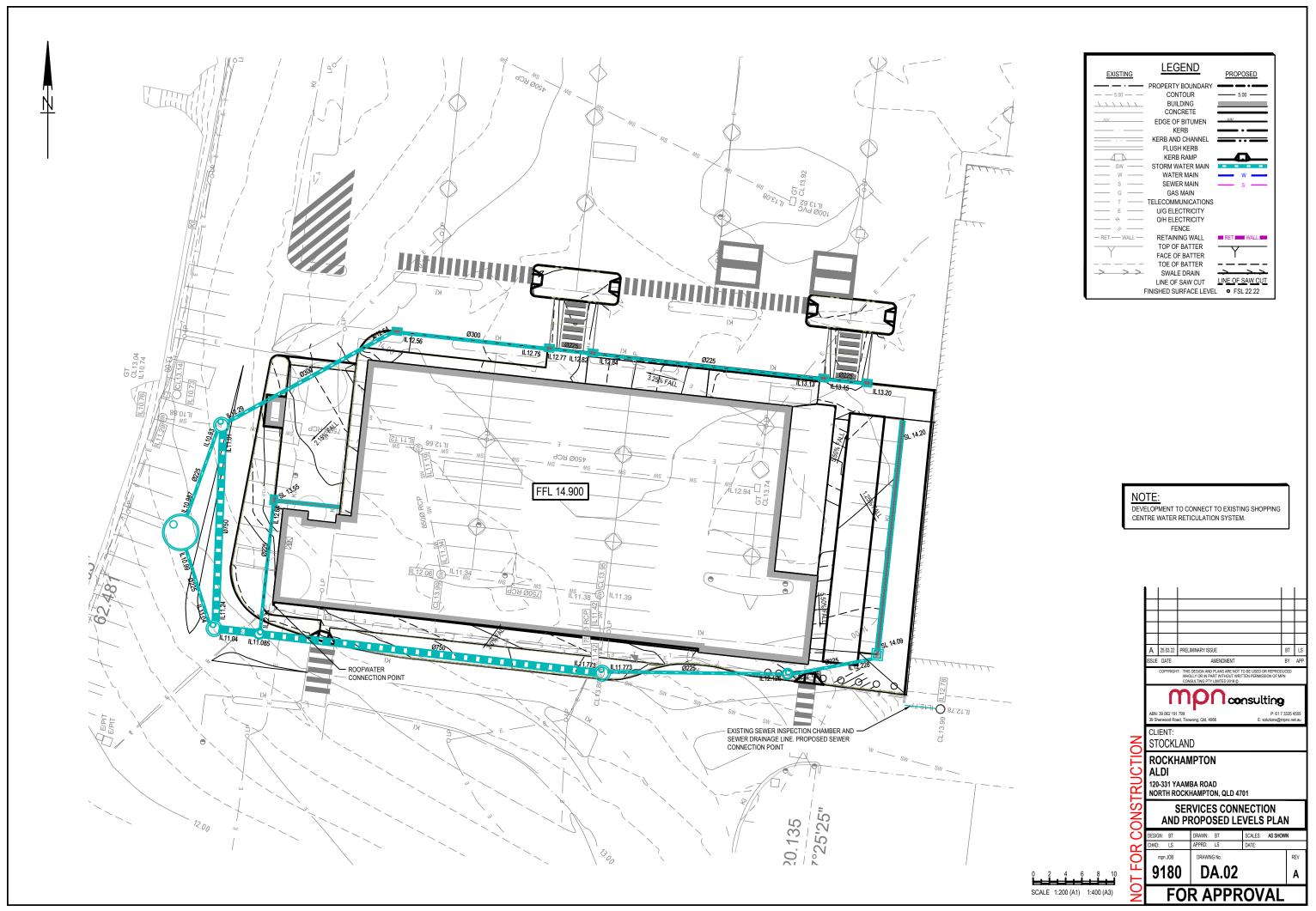

NOTES

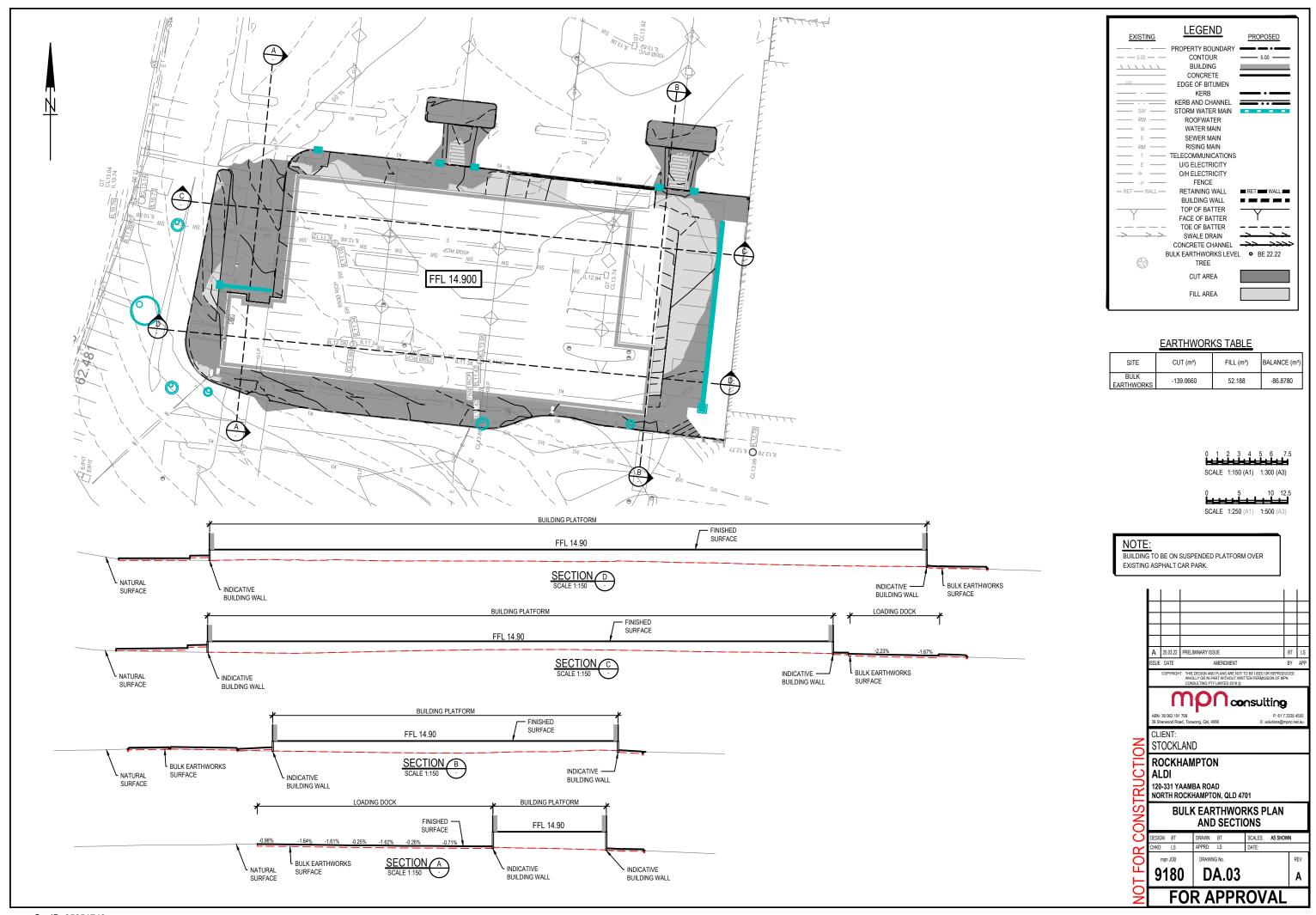
- 1. The title boundaries shown hereon were not marked at the time of survey, and have been determined by plan dimensions only and not by field measurement.
- 2. No Service As-Constructed information was received for this plan at time of survey. Services shown hereon
- have been located where possible by field survey.

 3. Some underground services have also been plotted utilising GPR or Potholing techniques provided by Vac Group. Vision Surveys (QLD) accepts no responsibility for the searching, accuracy or locations of these
- Group. Vision Surveys (QLD) accepts no responsibility for the searching, accuracy or locations of these services. Prior to any demolition, excavation or construction on the site, the relevant authority should be contacted for possible location of further underground services and detailed locations of all services prior to construction on this site.
- 4. For presentation purposes some information has not been represented on this plan. For complete information refer to digital CAD (*dwg*) file.

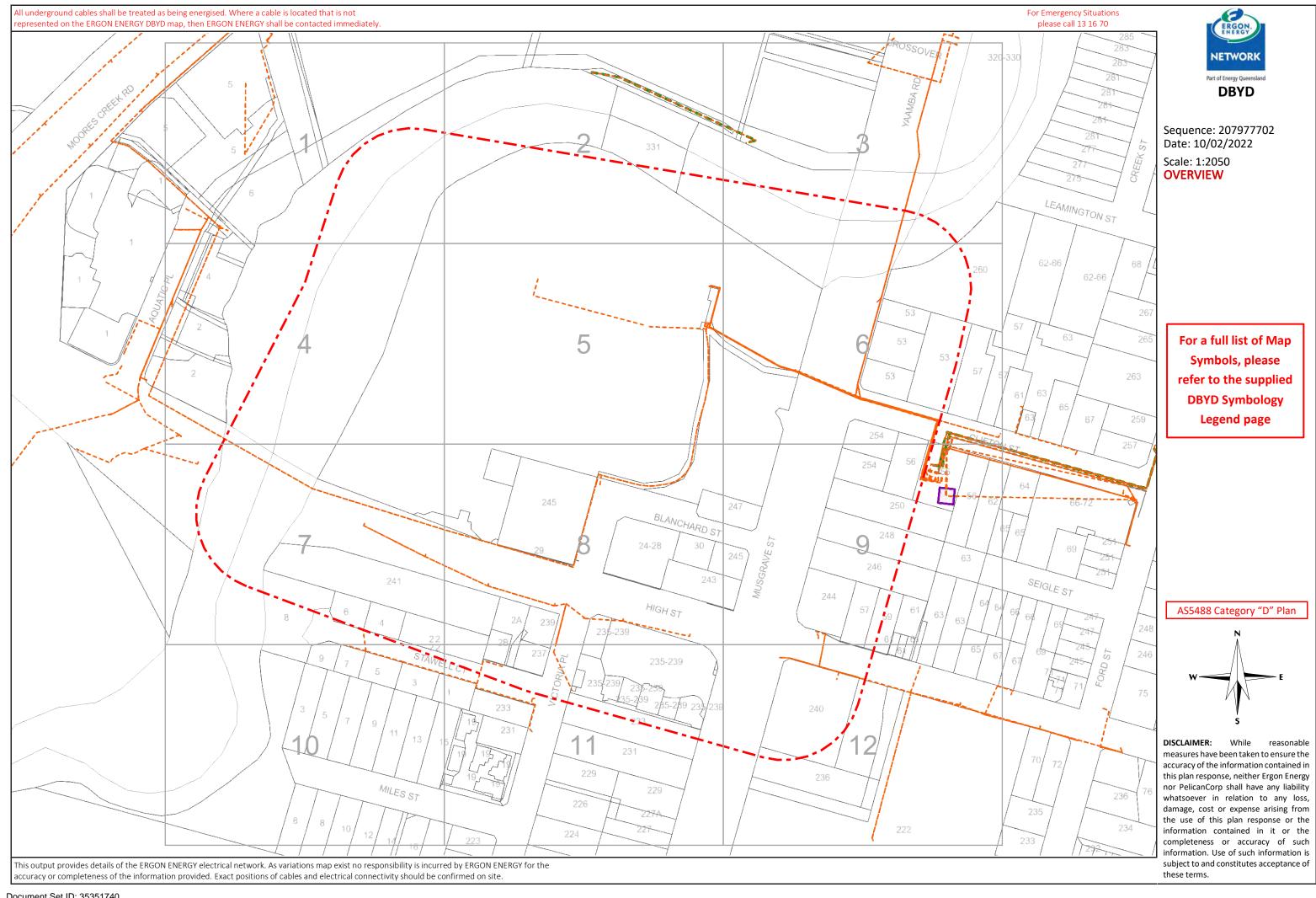
					PLAN OF CONTOUR AND DETAIL SURVEY					
					PROJECT: STOCKLAND ROCKHAMPTON SHOPPING CENTRE					
A	Original issue	AD	JS	29/10/2021	LOCATION: 331 YAAMBA ROAD, BERSERKER Real Property Description: LOT 201 ON SP236447					
This plan is prepared from a combination of field survey and existing records for the purpose of designing new constructions on the land and should not be used for any other purpose. The title boundaries shown hereon were not marked by the author at the time of survey and have been determined by plan dimensions only and not by field measurement. Services shown hereon have been located where possible by field survey. If not able to be located, services may have been plotted from the records of relevant authorities where				.	CLIENT: STOCKLAND		Airlie Beach Mackay Townsville Rockhampton SE QLD E : admin@visionsurveysqld.com.au P : 13000VISION			
				or at the time of ve been located	Horizontal Datum: MGA (GDA94) ZONE 56	Scale:	1:600 @ A1	Drawing No: 21765-CD-01		
					Vertical Datum: AHD		AD	Sheet: 1 OF 3		
				·	Local Authority: ROCKHAMPTON REGIONAL COUNCIL	Surveyed	JS	Revision: A		

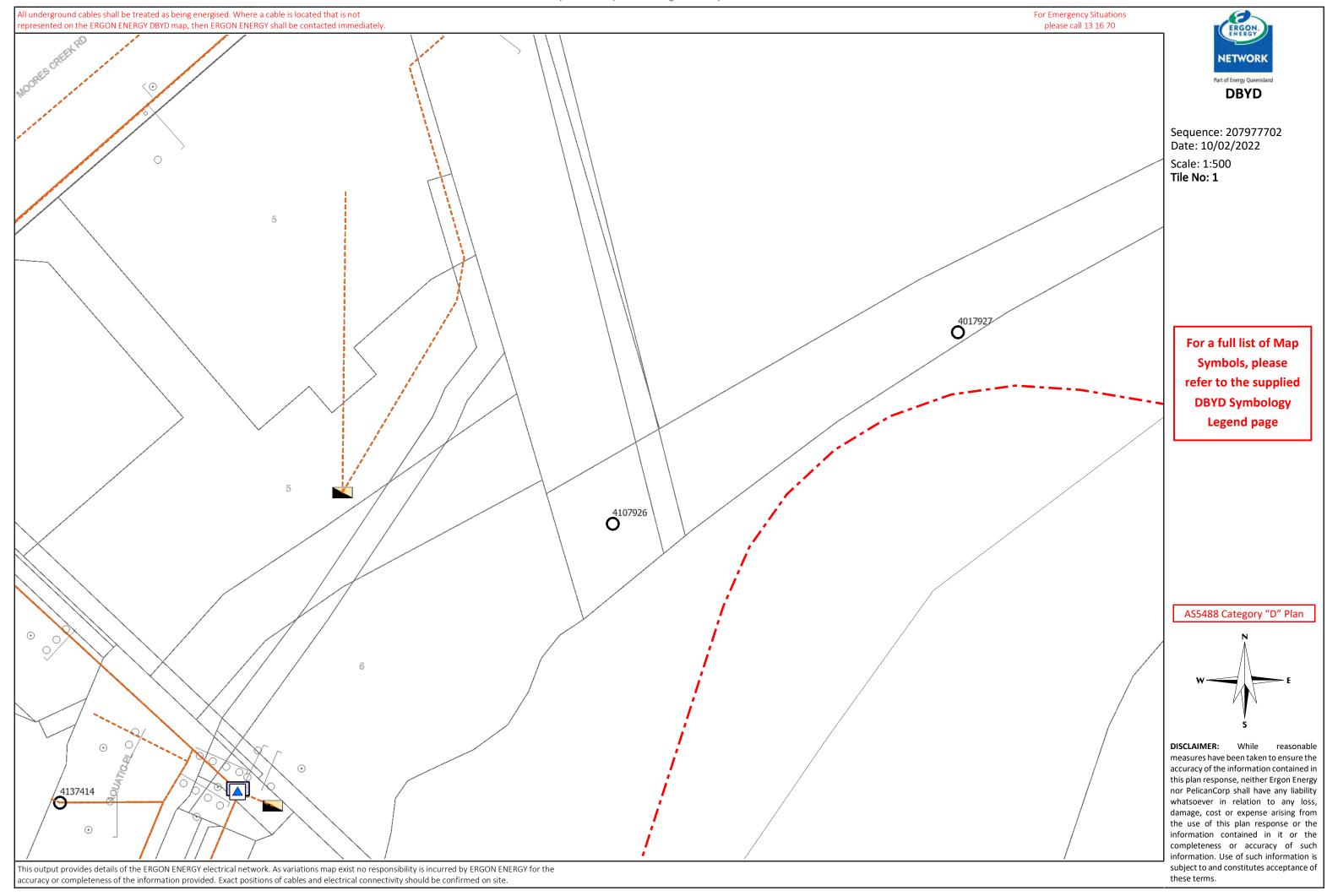

Scale 1:600 - Lengths are in Metres.

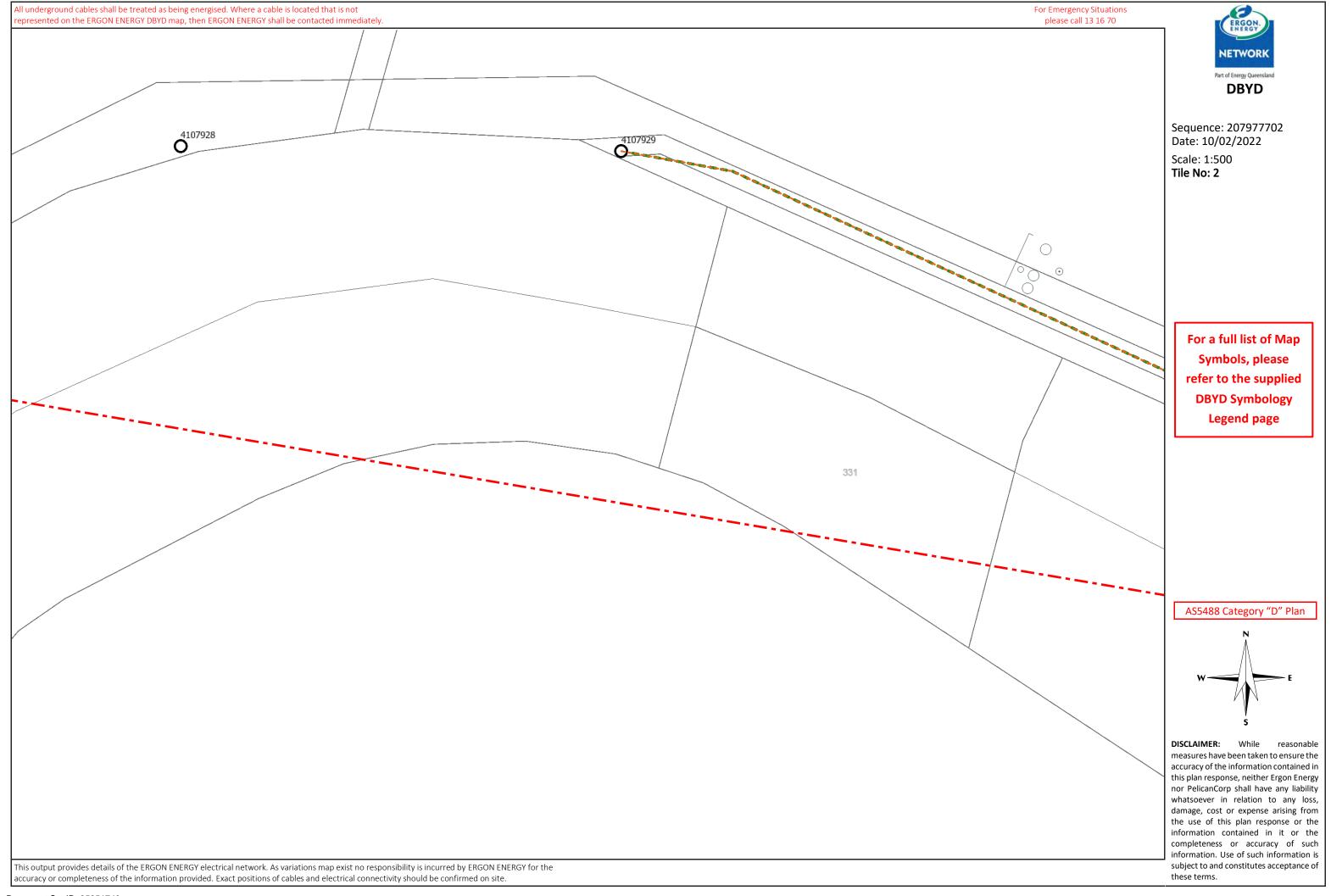


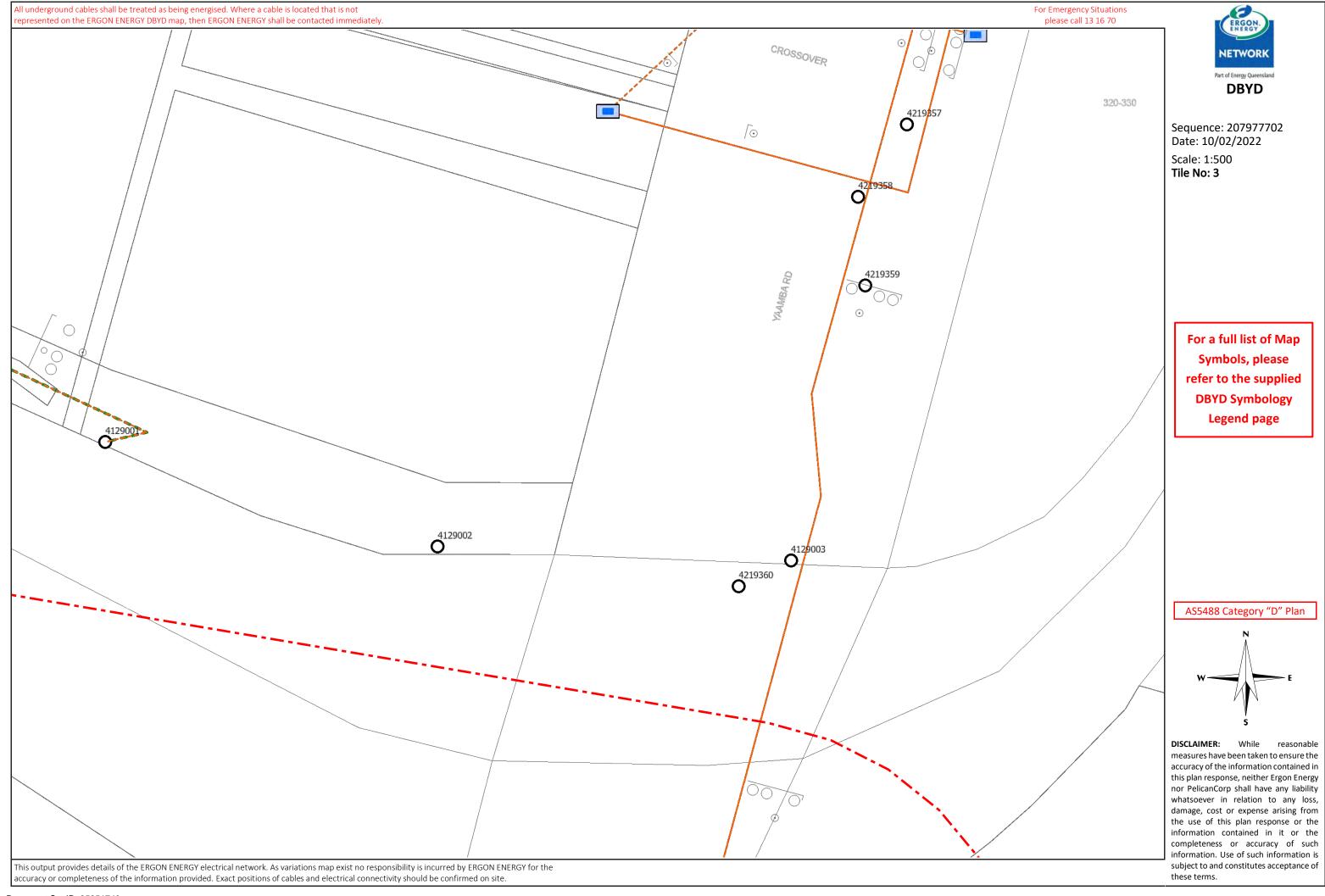


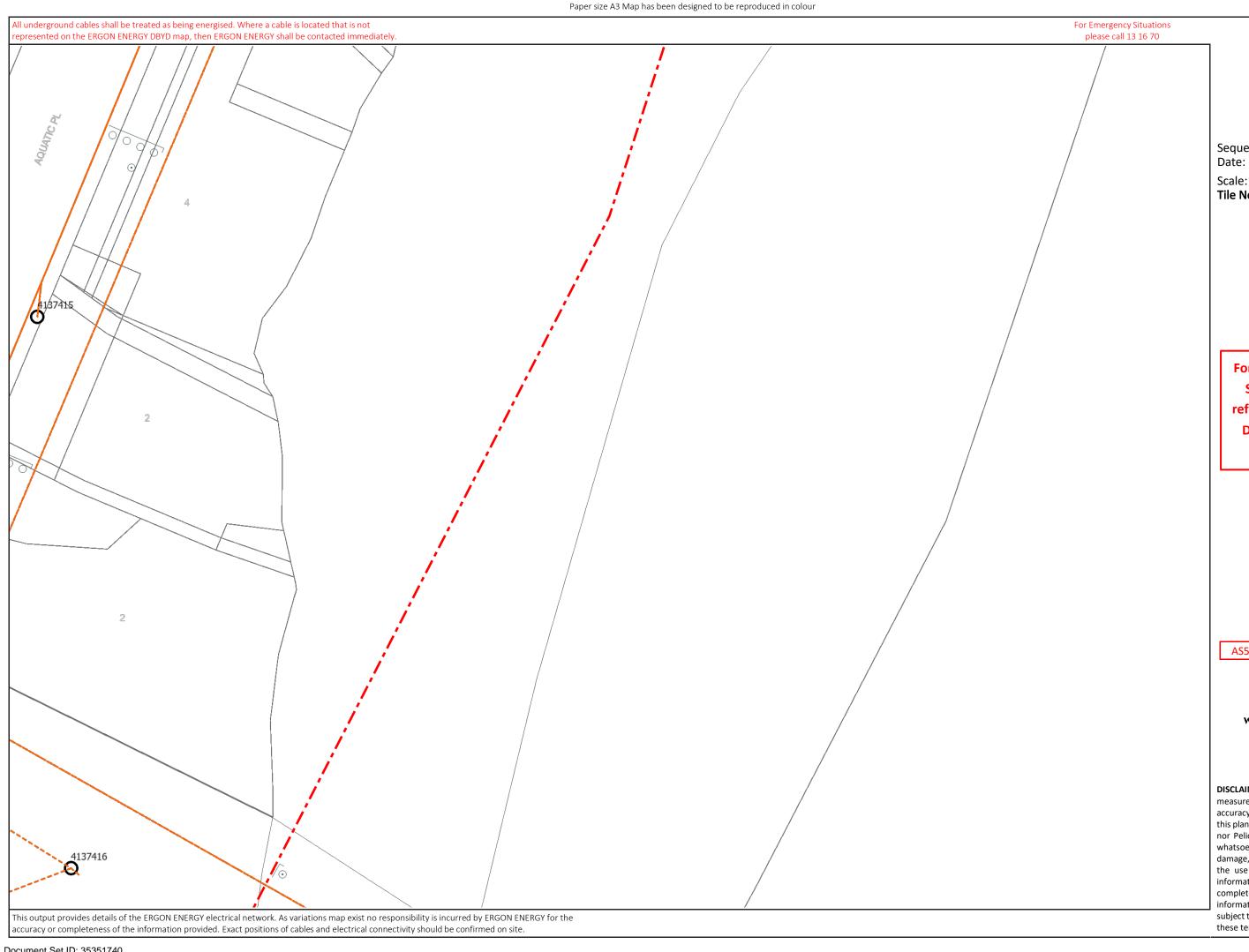
Appendix 3 MPN Plans



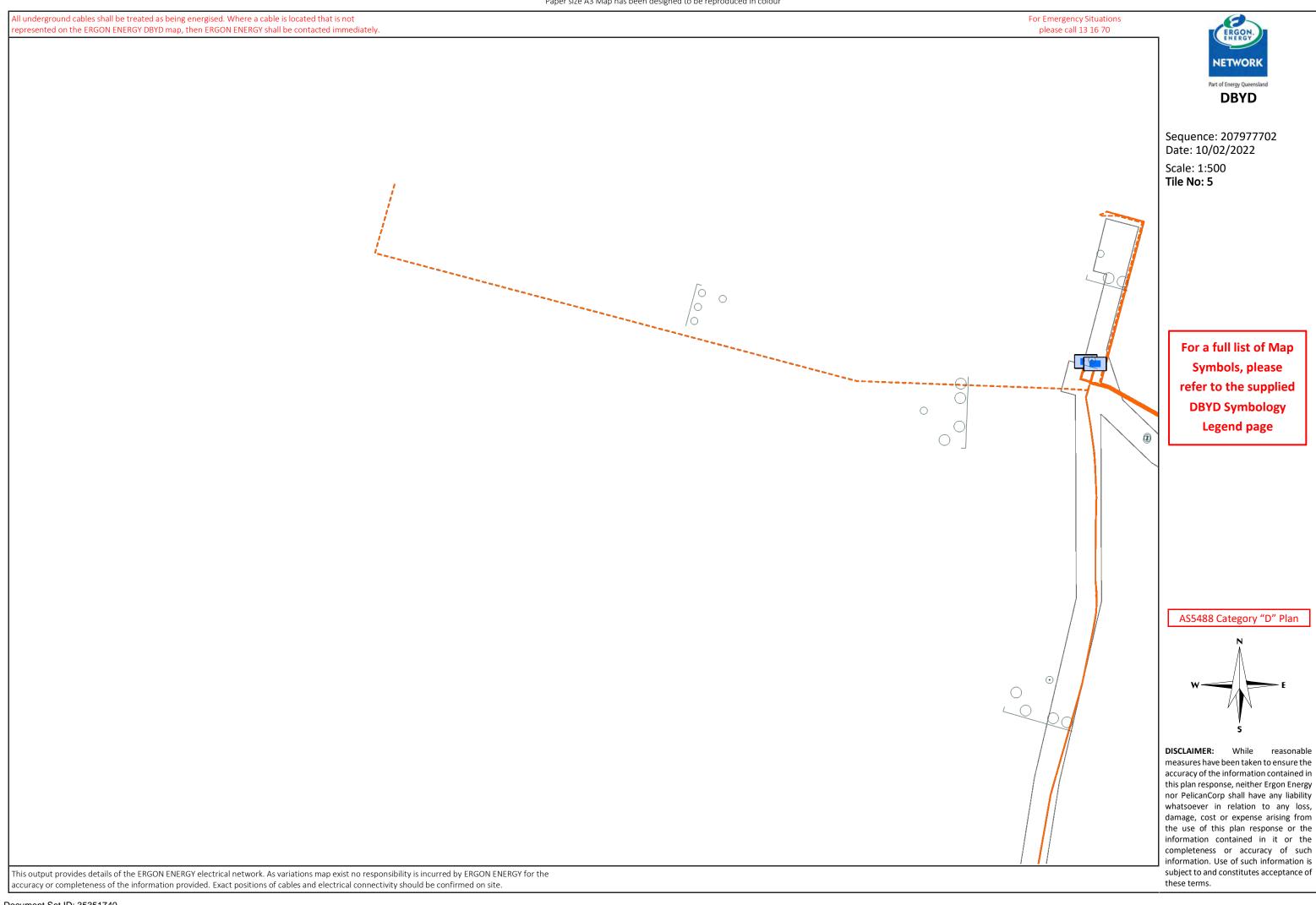


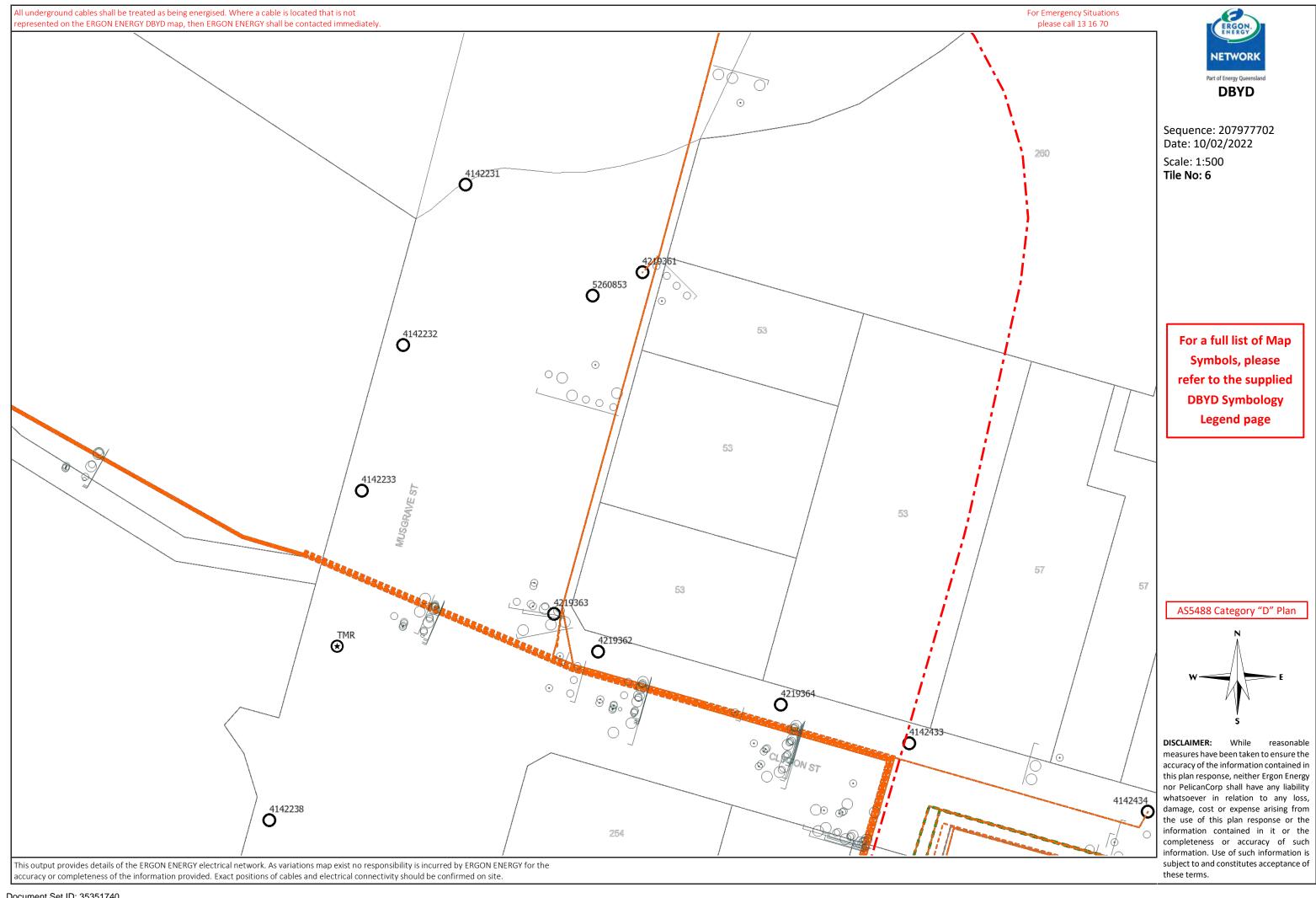


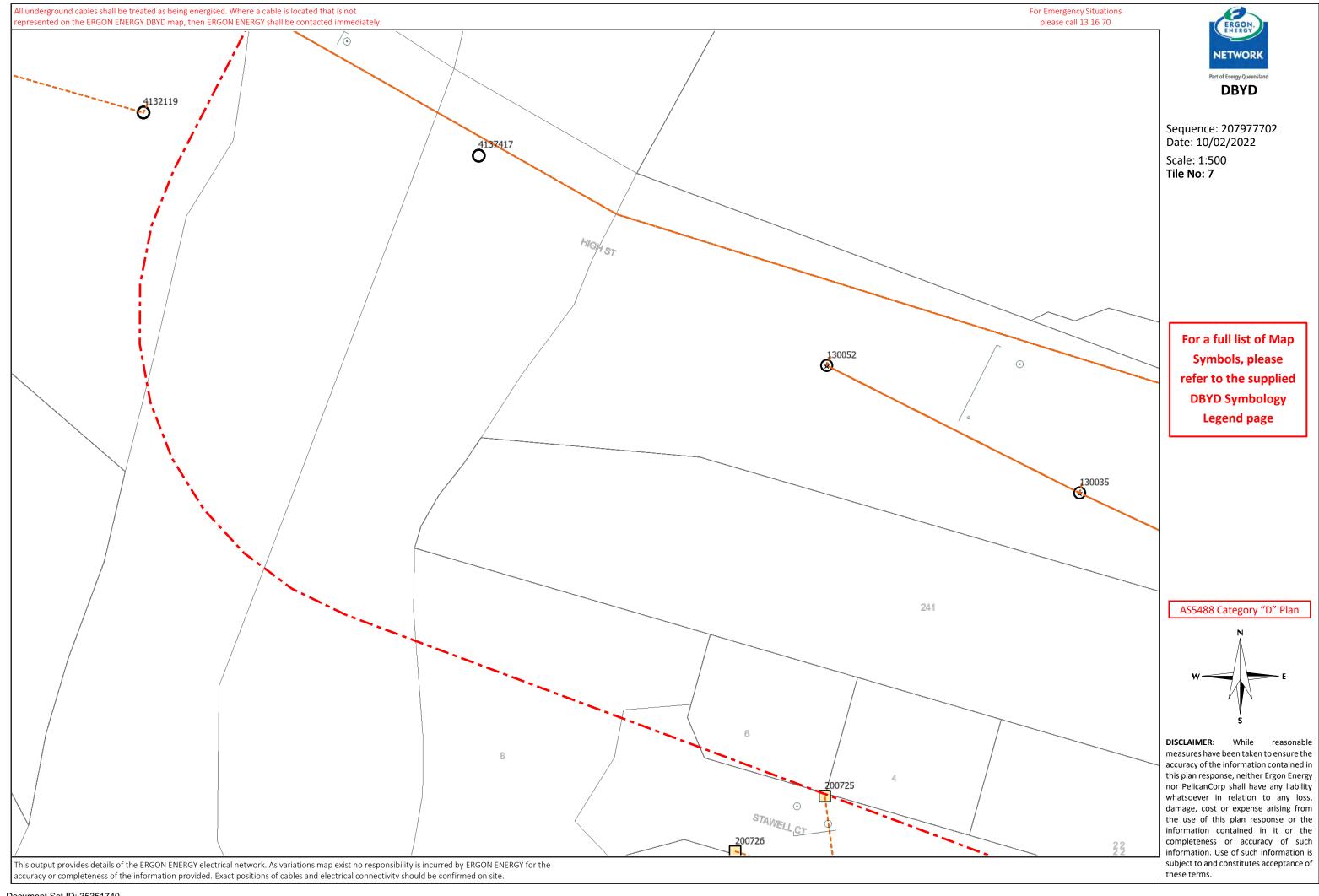


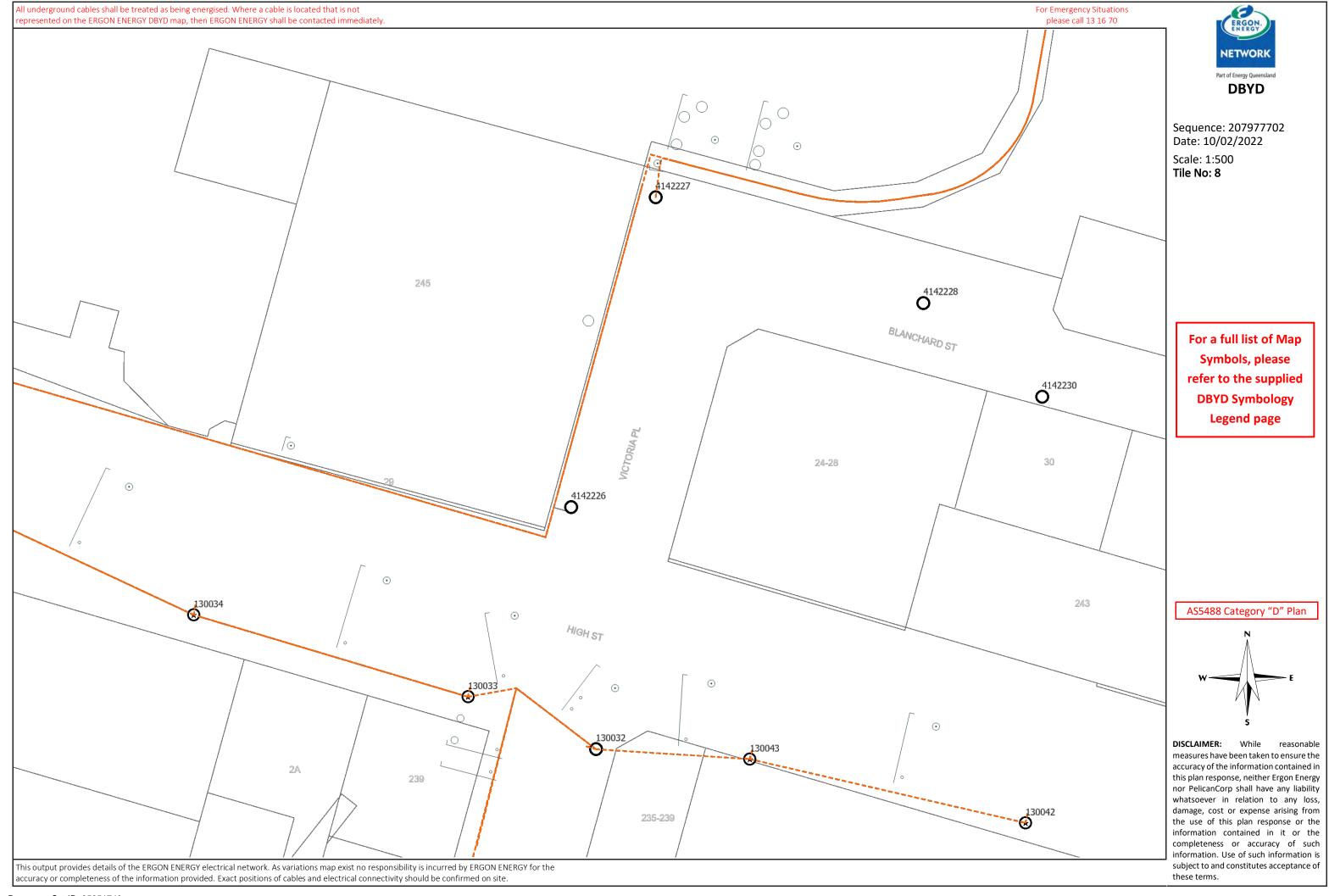

Appendix 4
Ergon DBYD Plans

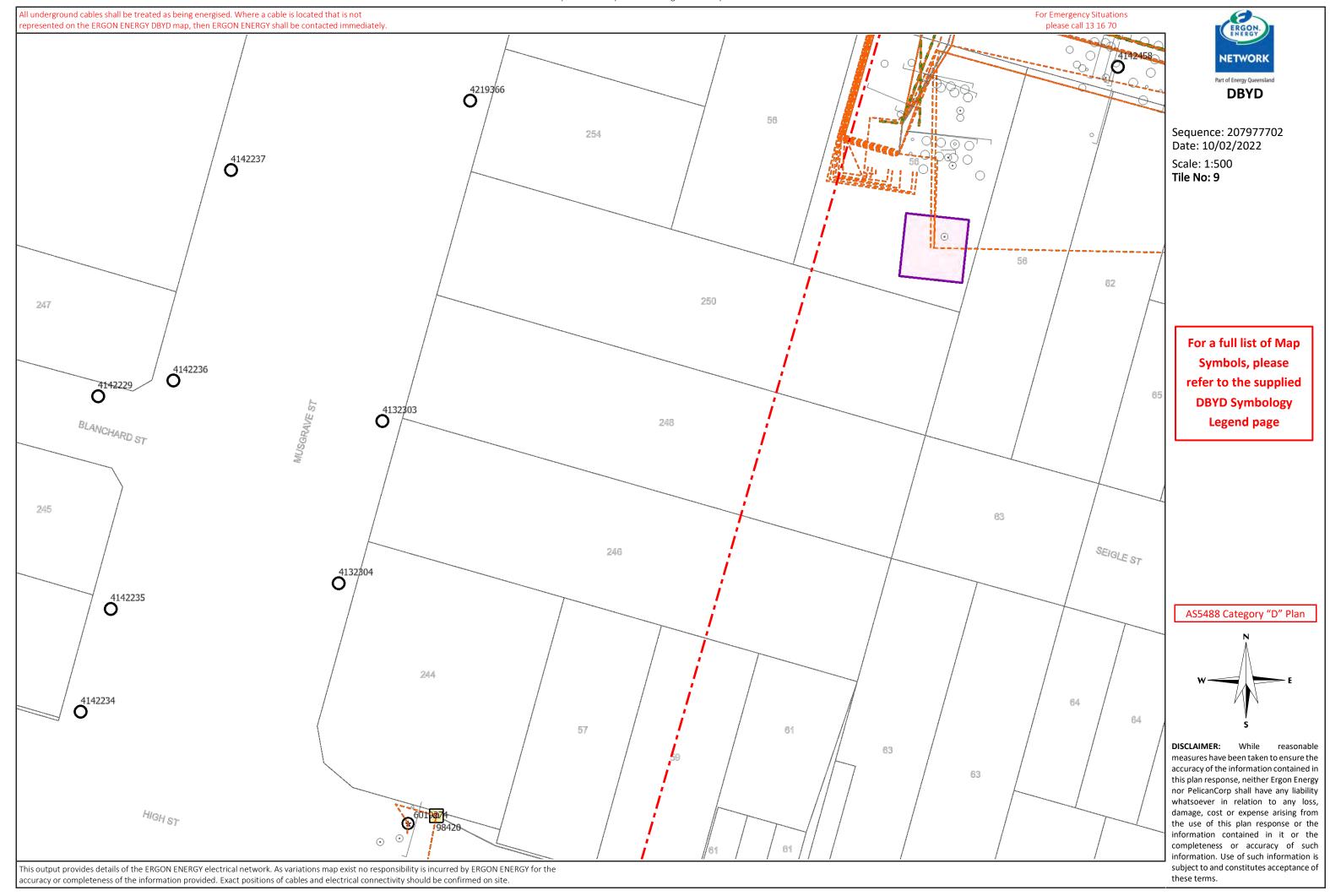
Sequence: 207977702 Date: 10/02/2022

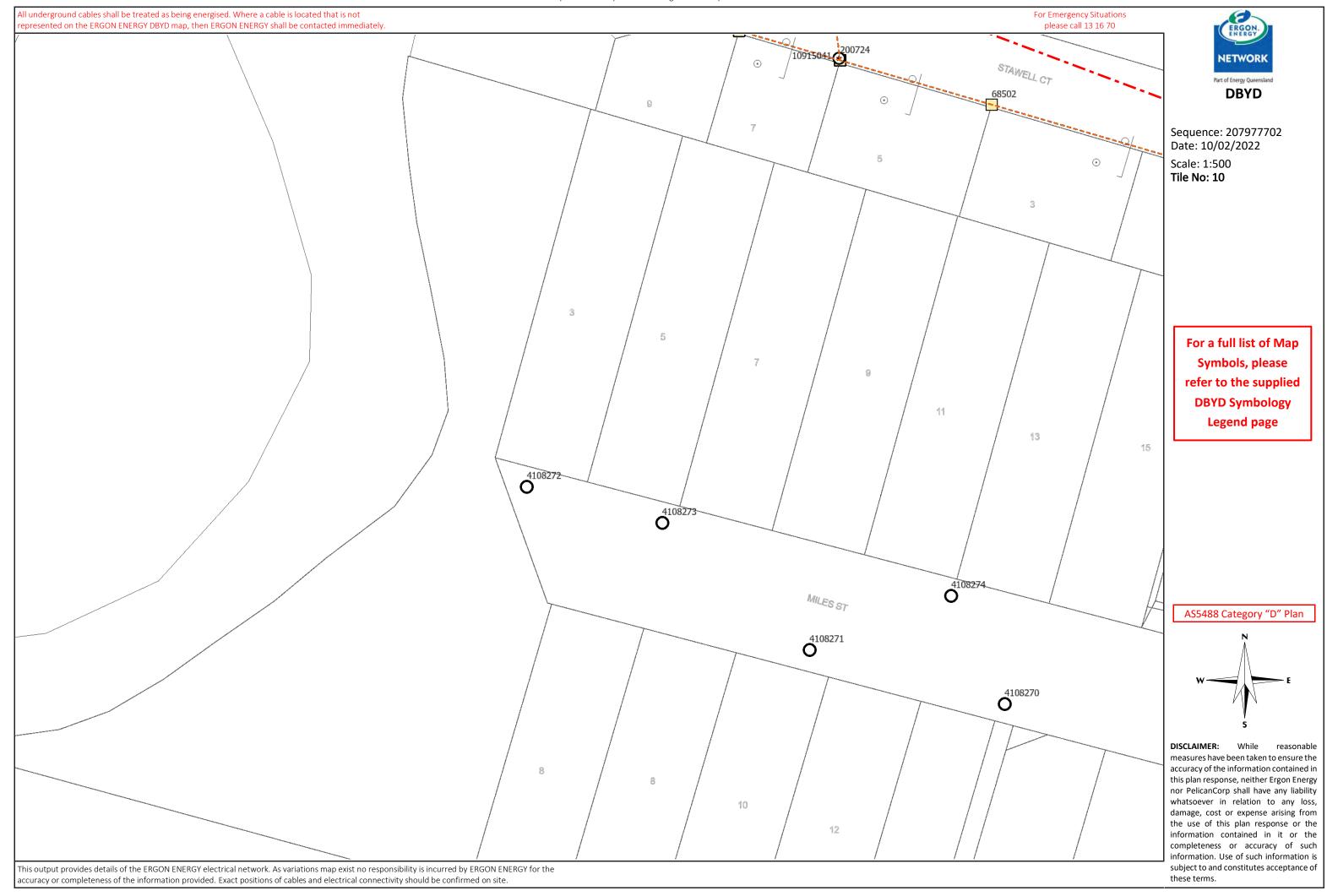

Scale: 1:500 Tile No: 4

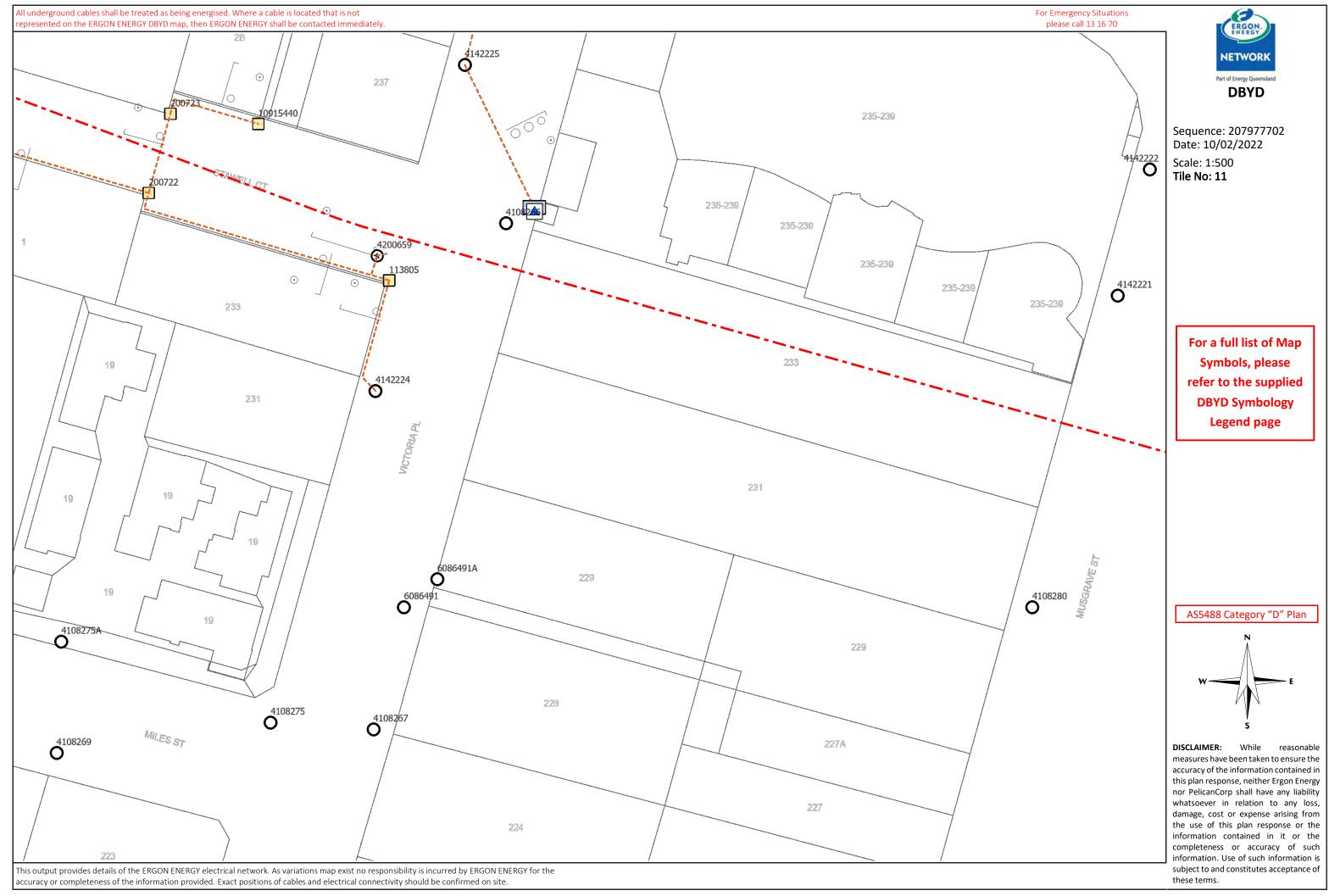

> For a full list of Map Symbols, please refer to the supplied **DBYD Symbology Legend page**

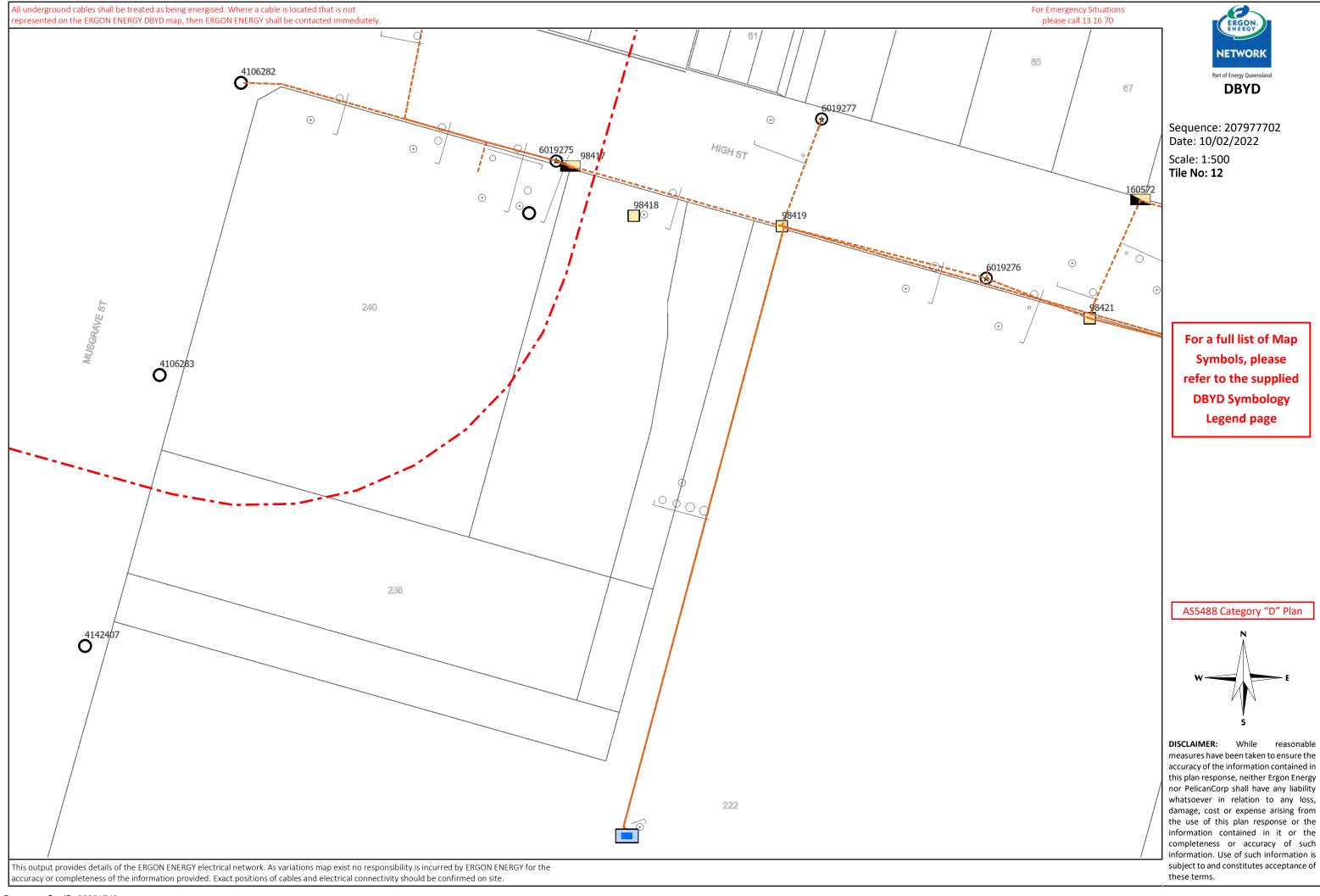

AS5488 Category "D" Plan




DISCLAIMER: While measures have been taken to ensure the accuracy of the information contained in this plan response, neither Ergon Energy nor PelicanCorp shall have any liability whatsoever in relation to any loss, damage, cost or expense arising from the use of this plan response or the information contained in it or the completeness or accuracy of such information. Use of such information is subject to and constitutes acceptance of these terms.







Appendix 5
Telstra DBYD Plans

Telstra

For all Telstra DBYD plan enquiries - email - Telstra.Plans@team.telstra.com

For urgent onsite contact only - ph 1800 653 935 (bus hrs)

TELSTRA CORPORATION LIMITED A.C.N. 051 775 556

Generated On 10/02/2022 13:03:20

Sequence Number: 207977703

CAUTION: Critical Network Route in plot area. DO NOT PROCEED with any excavation prior to seeking advice from Telstra Plan Services on: 1800 653 935

The above plan must be viewed in conjunction with the Mains Cable Plan on the following page

WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

Document Set ID: 35351740

Version: 1, Version Date: 19/05/2022 Page 1 of 2

Telstra

Document Set ID: 35351740

For all Telstra DBYD plan enquiries email - Telstra.Plans@team.telstra.com For urgent onsite contact only - ph 1800 653 935 (bus hrs)

TELSTRA CORPORATION LIMITED A.C.N. 051 775 556

Generated On 10/02/2022 13:03:25

Sequence Number: 207977703

CAUTION: Critical Network Route in plot area. DO NOT PROCEED with any excavation prior to seeking advice from Telstra Plan Services on: 1800 653 935

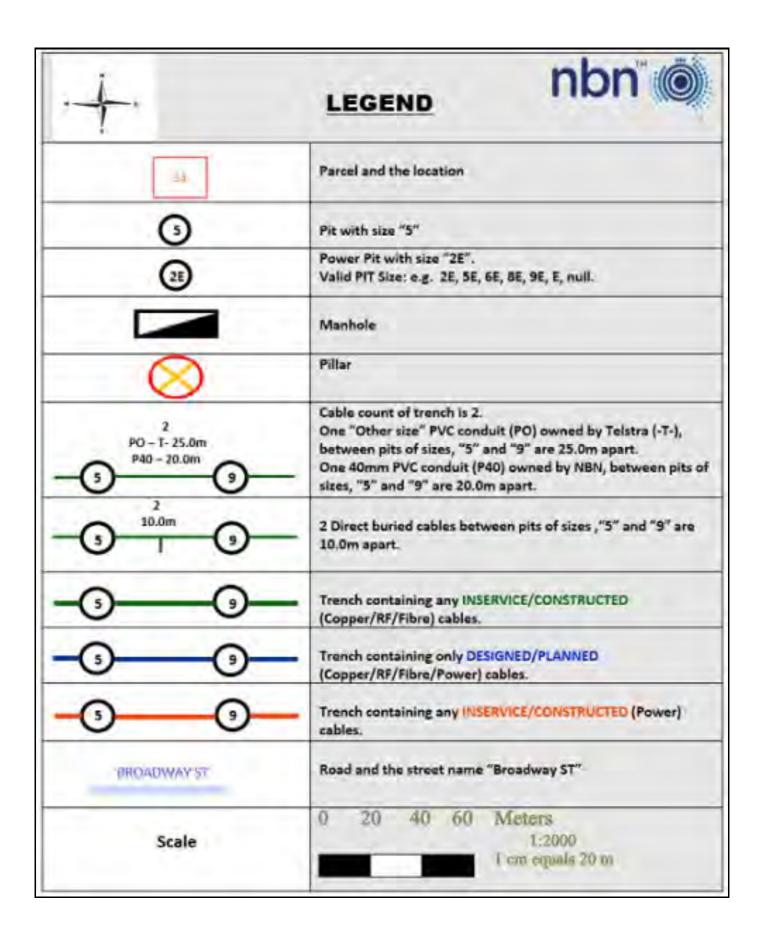
WARNING - Due to the nature of Telstra underground plant and the age of some cables and records, it is impossible to ascertain the precise location of all Telstra plant from Telstra's plans. The accuracy and/or completeness of the information supplied can not be guaranteed as property boundaries, depths and other natural landscape features may change over time, and accordingly the plans are indicative only. Telstra does not warrant or hold out that its plans are accurate and accepts no responsibility for any inaccuracy shown on the plans.

It is your responsibility to locate Telstra's underground plant by careful hand pot-holing prior to any excavation in the vicinity and to exercise due care during that excavation.

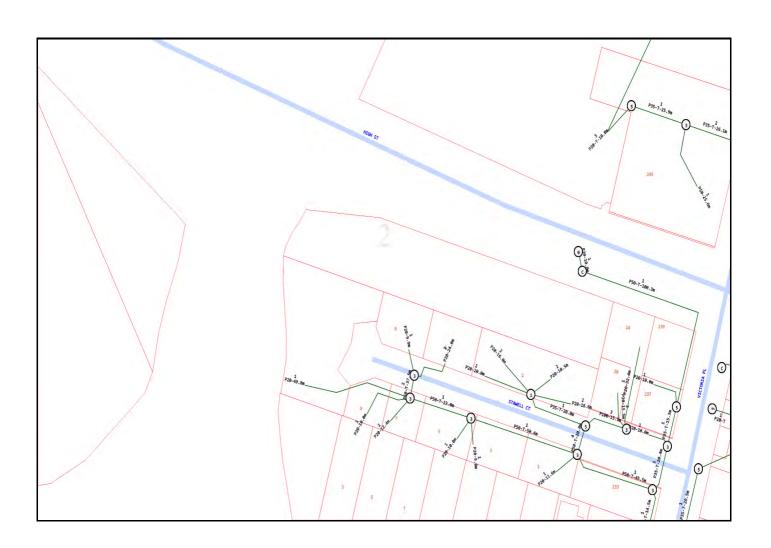
Please read and understand the information supplied in the duty of care statement attached with the Telstra plans. TELSTRA WILL SEEK COMPENSATION FOR LOSS CAUSED BY DAMAGE TO ITS PLANT.

Telstra plans and information supplied are valid for 60 days from the date of issue. If this timeframe has elapsed, please reapply for plans.

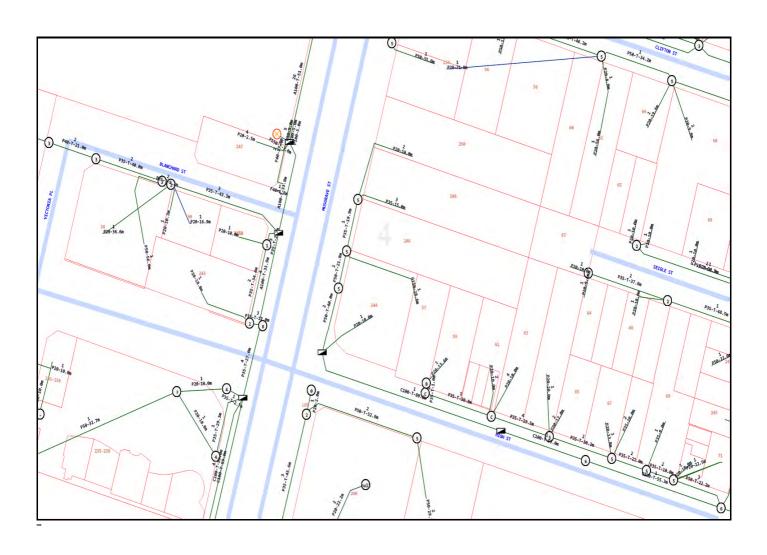
Version: 1, Version Date: 19/05/2022 Page 2 of 2


Appendix 6 NBN DBYD Plans To: Ben Tarrant
Phone: Not Supplied
Fax: Not Supplied


Email: bentarrant@mpnc.net.au


Dial before you dig Job #:	31366542	DIAL DECODE
Sequence #	207977704	YOU DIG
Issue Date:	10/02/2022	www.1100.com.gu
Location:	245 Victoria Place, Berserker, QLD, 4701	THE TOOLSONISC


Indicative Plans


1	3
2	4

Emergency Contacts

You must immediately report any damage to the **nbn**[™] network that you are/become aware of. Notification may be by telephone - 1800 626 329.

Appendix 7
APA DBYD Plans

APA Group PO Box 6014 Halifax Street South Australia 5000

For your immediate information THERE IS A CRITICAL GAS PIPELINE AND/OR ASSOCIATED INFRASTRUCTURE in the area of your works.

10/02/2022

Company:
Ben Tarrant
Level 5,39 Sherwood Road
Toowong
QLD 4066
bentarrant@mpnc.net.au

Dear Ben Tarrant

Sequence Number: 207

207977706

Worksite Address: 245 Victoria Place

Berserker

QLD 4701

Thank you for your Dial Before You Dig enquiry regarding the location of Gas Assets. We can confirm that the APA Group has **Critical Gas Assets** in the vicinity of the above location.

You are hereby notified that **before you commence any works** you are required to complete the attached '**Work In The Vicinity Of Critical Gas Assets**' request form and forward this to APA as soon as practicable.

As laid out in the **Duty of Care** requirements supplied, any activity in the vicinity of Critical Gas Assets operated by APA requires an Authority to Work Permit and potentially attendance on site by an APA representative during any work. Please ensure you read and comply with all the relevant requirements. Should you have any questions with regards to the attached information please contact our Qld Planning & Scheduling Officer - (07) 3215 6644.

Caution - Damage to gas assets could result in possible explosion and fire with the risk of personal injury.

For Gas Emergencies please call 1800 GAS LEAK (1800 427 532)

Please find enclosed the following information:-

- APA's Duty of Care, If you are unclear of your obligations under these requirements please contact the APA Representative listed above immediately
- An overview map with your requested area highlighted to assist in locating APA's Gas Assets
- A map(s) showing APA's Gas Assets in the requested area, this information is valid for 30 days from the
 date of this response, please check this represents the area you requested, if it does not, please contact the APA Representative listed above immediately
- A 'Work In The Vicinity Of Critical Gas Assets' request form, please complete and forward to APA as soon as practicable, via PermitsOld@apa.com.au, or the address above. A minimum of 5 business days advance notification is required to process Authority To Work Request applications

The outcome of this request may be that a qualified APA Group Representative will be required on site when you undertake your proposed works, if this is the case, this will need to be arranged dependent on their availability. Whilst we will aim to facilitate this within 5 business days from a decision, **this cannot be guaranteed**.

Mapping information is provided as AS5488-2013 Quality Level D

Document Set ID: 35351740

Please Note: For some DBYD enquiries, you might receive 2 responses from the APA Group. Please read both responses carefully as they will relate to different assets. It is your responsibility to action all requirements set out in APA Group responses.

Please take some time to review the entire response document and check the information supplied and please let us have any feedback by sending an email to DBYDNetworksAPA@apa.com.au or contacting us direct on 1800 085 628.

Duty of Care - Working Around Gas Assets

General Conditions

- This location enquiry is valid for 30 days from the enquiry date
- Expired locations, i.e., over 30 days from the date of this response, require a new Dial Before You Dig request to validate location information
- The location information supplied in this document shall be used as a guide only. APA Group shall not be liable or responsible for the accuracy of any such information supplied pursuant to this request
- It is the responsibility of the excavator to expose all Gas Assets, including Gas Service pipes (see below), by hand. Gas Asset depths may vary according to ground conditions
- Gas Services (inlet service) connecting Gas Assets in the street to the gas meter on the property are typically **not** marked on the map
- Some Gas Assets are installed inside of a casing. The locations where a Gas Asset changes from inserted to direct burial are not marked on the map unless otherwise stated
- This information has been generated by an automated system based on the area highlighted in your DBYD request and has not been independently verified. It is your responsibility to ensure that the information supplied in this response matches the dig site you defined when submitting your Dial Before You Dig enquiry. If the information does not match the dig site or you have any question, please contact APA immediately using the details listed on the first page and / or please resubmit your enquiry
- For Gas Emergencies please call 1800 GAS LEAK (1800 427 532)

Critical Gas Assets - Conditions

It is your responsibility to follow these important conditions when working in the vicinity of Critical Gas Assets

- A 'Work In The Vicinity Of Critical Gas Assets" request form must be submitted to APA Group PRIOR to any
 work commencing, a minimum of 5 business days are required to arrange attendance by an APA Group
 representative
- Whilst we will aim to facilitate this within 5 business days from a decision, this cannot be guaranteed. Charges for APA Group supervision may apply
- Any works in the vicinity of Critical Gas Assets requires approval from APA via APA's 'Authority to work" permit and supervision by an APA Group representative unless expressed otherwise on the "Authority to work" permit.
- Penalties apply to excavators commencing work in the vicinity of Critical Gas Assets prior to receiving an APA Group 'Authority to Work' permit and an APA Group representative is present.

Mapping information is provided as AS5488-2013 Quality Level D

Document Set ID: 35351740

Rates applicable to APA on-site representation for supervision or location

Item	Rate
Site Watch - Normal Hours	\$143.42 (hr)
Site Watch - After Hours	\$175.06 (hr)
Electronic Locate – Normal Hours	\$143.42 (hr)
Electronic Locate – After Hours	\$175.06 (hr)
Cancellation	2 hrs (where less than 1 business day notice is provided)
Mains Proving	As quoted by APA

Notes:

- All prices are exclusive of GST
- All partial hours will be charged at a full hour rate for the first hour, 1hr minimum charge.
- Cancellations must be received 1 business day prior to the booked supervision otherwise a 2hr charge will be incurred
- Contact us for State specific hours of business.

APA CHANGE NOTIFICATION

The map below may have different symbols to those you are familiar with.

APA recently upgraded the asset mapping software utilised for Dial Before You Dig requests.

To avoid confusion, please carefully review the legend along with the map.

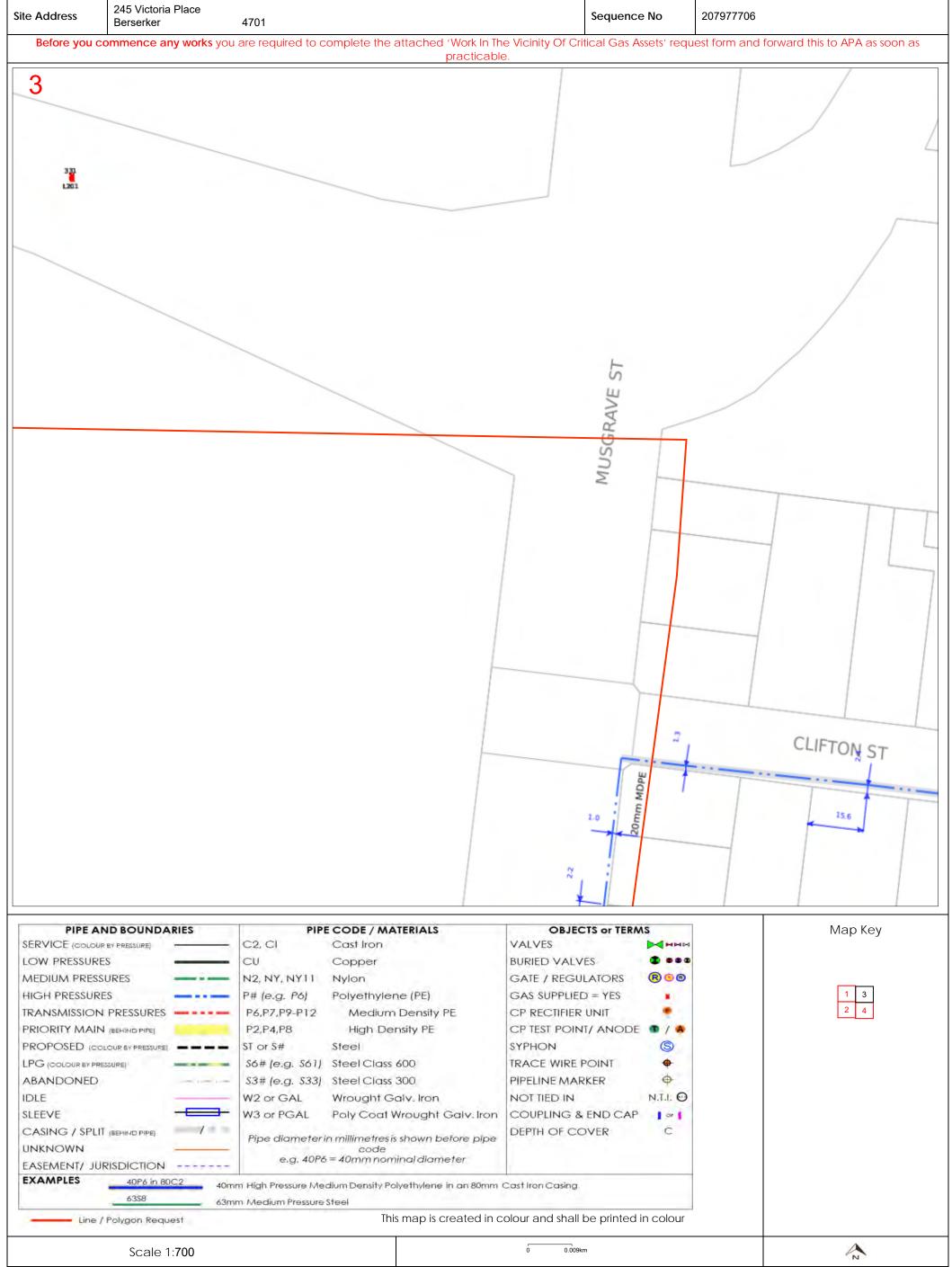
Please direct any questions to DBYDNetworksAPA@apa.com.au

Mapping information is provided as AS5488-2013 Quality Level D

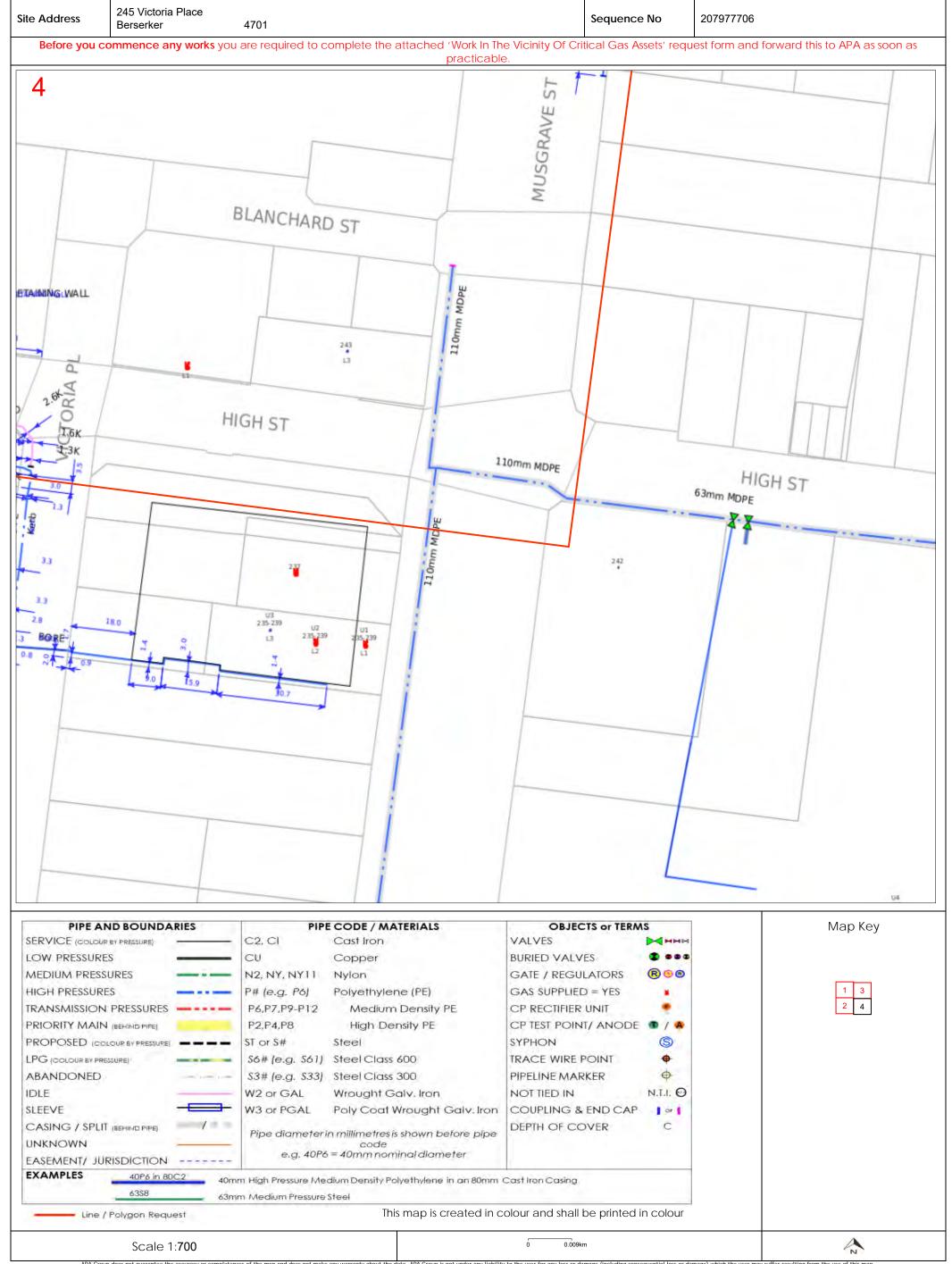
Site Address	245 Victoria Place Berserker 4701	Sequence No	207977706
Name	Ben Tarrant		
Email	bentarrant@mpnc.net.au		
k Allenby Park Company Street Allenby Park Company Street Company Street	Al Modern Burnett Street Burnett Street College College College Al Modern Burnett Street Burnett Street Burnett Street	Clifton Street High Street Richmond Street	Elphi
Scale 1: 60	000	Enquiry Area	Map Key Area

APA Group does not guarantee the accuracy or completeness of the map and does not make any warranty about the data. APA Group is not under any liability to the user for any loss or damage (including consequential loss or damage) which the user may suffer resulting from the use of this map.

245 Victoria Place Site Address 207977706 Sequence No Berserker 4701 Before you commence any works you are required to complete the attached 'Work In The Vicinity Of Critical Gas Assets' request form and forward this to APA as soon as practicable PIPE AND BOUNDARIES PIPE CODE / MATERIALS **OBJECTS or TERMS** Map Key SERVICE (COLOUR BY PRESSURE) VALVES C2, C1 Cast Iron BURIED VALVES LOW PRESSURES CU Copper MEDIUM PRESSURES N2, NY, NY11 Nylon GATE / REGULATORS HIGH PRESSURES P# (e.g. P6) Polyethylene (PE) GAS SUPPLIED = YES TRANSMISSION PRESSURES P6,P7,P9-P12 Medium Density PE CP RECTIFIER UNIT PRIORITY MAIN (BEHIND PIPE) High Density PE CP TEST POINT/ ANODE . / A P2,P4,P8 PROPOSED (COLOUR BY PRESSURE) -ST or S# SYPHON TRACE WIRE POINT LPG (COLOUR BY PRESSURE) S6# (e.g. S61) Steel Class 600 0 ABANDONED \$3# (e.g. \$33) Steel Class 300 PIPELINE MARKER W2 or GAL IDLE NOT TIED IN N.I.I. O Wrought Galv. Iron W3 or PGAL SLEEVE Poly Coat Wrought Galv. Iron COUPLING & END CAP CASING / SPLIT (BEHIND PIPE) DEPTH OF COVER Pipe diameter in millimetres is shown before pipe UNKNOWN code e.g. 40P6 = 40mm nominal diameter EASEMENT/ JURISDICTION **EXAMPLES** 40mm High Pressure Medium Density Polyethylene in an 80mm Cast Iron Casing 63mm Medium Pressure Steel This map is created in colour and shall be printed in colour Line / Polygon Request 0.009km Scale 1:700



245 Victoria Place 207977706 Site Address Sequence No Berserker 4701 Before you commence any works you are required to complete the attached 'Work In The Vicinity Of Critical Gas Assets' request form and forward this to APA as soon as 2 PIPE COMES THROUG WALL UNDER GROUN HIGH ST COMES UP WALL IN 3/4 COPPER SLEEVE BORE 63mm SLEEVE 40mm PIP DEA PP# 662448 0.8BOK PIPE CODE / MATERIALS PIPE AND BOUNDARIES **OBJECTS or TERMS** Map Key SERVICE (COLOUR BY PRESSURE) C2, CI Cast Iron VALVES LOW PRESSURES BURIED VALVES CU Copper MEDIUM PRESSURES N2, NY, NY11 Nylon GATE / REGULATORS HIGH PRESSURES P# (e.g. P6) Polyethylene (PE) GAS SUPPLIED = YES TRANSMISSION PRESSURES P6,P7,P9-P12 Medium Density PE CP RECTIFIER UNIT P2,P4,P8 PRIORITY MAIN (BEHIND PIPE) High Density PE CP TEST POINT/ ANODE . 7 A ST or S# PROPOSED (COLOUR BY PRESSURE) -SYPHON LPG (COLOUR BY PRESSURE) S6# (e.g. S61) Steel Class 600 TRACE WIRE POINT 0 ABANDONED \$3# (e.g. \$33) Steel Class 300 PIPELINE MARKER IDLE W2 or GAL NOT TIED IN N.I.I. O Wrought Galv. Iron SLEEVE W3 or PGAL COUPLING & END CAP Poly Coat Wrought Galv. Iron CASING / SPLIT (BEHIND PIPE) DEPTH OF COVER Pipe diameter in millimetres is shown before pipe UNKNOWN code e.g. 40P6 = 40mm nominal diameter EASEMENT/ JURISDICTION **EXAMPLES** 40mm High Pressure Medium Density Polyethylene in an 80mm Cast Iron Casing 63mm Medium Pressure Steel This map is created in colour and shall be printed in colour Line / Polygon Request 0.009km Scale 1:700



WORK IN THE VICINITY OF CRITICAL GAS ASSETS

It is your responsibility to read and complete this request form

- 1. This request form must be received by the APA Group via the options below at least <u>5 business days</u> prior to excavation or site location work commencement
- 2. Excavation / works must not commence on site until you have received a 'Authority to Work Permit' from the APA Group
- 3. This request form must be accompanied by a detailed schedule of works
- 4. Penalties apply to excavators commencing work in the vicinity of Critical Gas Assets **prior to receiving an APA Group 'Authority to Work Permit'**

For further information refer to:-

- NSW Gas Supply Act 1996 Sec 64 C, Requirements in relation to carrying out of certain excavation work
- Victoria: Pipelines Act 2005 Section 118, Digging near pipelines and Section 119, Interference with pipeline
- South Australia: Gas Industry Act 1997 Section 83, Notice of work that may affect gas infrastructure.
- Northern Territory: Energy Pipelines Act as in force at 8 March 2007 Section 66, Threat to pipeline.

Return to: PermitsQld@apa.com.au

Enquiries:

Should you have any questions with regards to the attached information please contact our Old Planning & Scheduling Officer - (07) 3215 6644.

Work / Excavation Site Details:

Number:	Street:		
Suburb:		State:	
Sequence Number: 207977706			
Requestors Name:			
Company Name:			
Name of Authorised Company Site Representative:			
Email:			
Phone:		Mobile:	
Signature:			

Description of Work / Excavation:

Activity/Excavation Details:				
Tick Applicable Box				
Excavation		Change to surface level		
Service crossing		Boring		
Proving		Other (provide details)		
Earthworks				
Excavator Size, Tooth Type & Tooth Size (provide details)				

Work / Excavation Drawings Attached (circle): $\underline{\underline{Yes}}$ $\underline{\underline{No}}$

Proposed Dates and Times:

Troposou Butos una			T_	
	From			То
Excavation	Date	Time	Date	Time
Excavation	/ /	am/pm	/ /	am/pm
Backfill	Date	Time	Date	Time
Dackiiii	/ /	am/pm	/ /	am/pm

Work is as-	Class 1	Class 2	Class 3	
sessed as:	Works crossing a critical gas asset	Works within 3m of a critical gas asset	Works involving large excavations, vibrations or blasting beyond 3m	
	gar asset	omioai gas assoc	of the critical gas asset	

Insurer and Policy Details

Policy Number	Policy Expiry Date
Insurance Cover - Current Level (\$am	ount)

Mapping information is provided as AS5488-2013 Quality Level D

Version: 1, Version Date: 19/05/2022

Third Party Works Authorisation requested by (mandatory fields required for invoicing):

Company/Biller Name:	
Billing Address:	
Purchase Order:	Billing Email:
Biller Phone:	
Requestors Name:	Requesters Signature:

NOTES

- 5. This Authority to Work applies only to work in the vicinity of the Gas Mains. It does not authorise work near or on the Gas Mains itself
- 6. A minimum of 2 business days must be allowed between receipt by APA Group of this Request and a response. However, more time for notification may be necessary
- 7. For any gas leak related work this application must be accompanied by a detailed sequence of events, outlining all aspects of work involved and work is not permitted until an Authority to Work is issued
- 8. For class 1 and 2 Dial Before You Dig, APA Group will arrange for an inspector to be on site as necessary during the work. An inspector must be present at all times for works involving excavation within 1m of the Gas Mains. APA Group will advise the requirement for an inspector for other works within 3m of the Gas Mains.
- 9. The applicant is responsible for any damage resulting from the work and all consequential damages and losses arising from such damage and therefore must insure against every liability of the contractor in respect of or arising out of any loss of life, loss of or damage to property of person (both real and personal), arising out of or in any way connected to this permit.
- 10. Rates applicable to APA on-site representation for supervision or location exclude GST.

Appendix 8 Codes

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Retaining Walls		
PO1	AO1.1	RO1.1
The construction of retaining walls does not adversely impact upon the stability of land or existing structures.	Retaining walls are set back at least half the height of the wall from any boundary of the site.	Not applicable – No retaining walls are proposed as part of the development.
	AND	
	AO1.2	RO1.2
	Retaining walls over 1.5 metres are stepped 1.5 metres for every 1.5 metres in height, terraced and landscaped.	Not applicable – No retaining walls are proposed as part of the development.
PO2	AO2	RO2
Excavation or filling or the construction of retaining walls does not adversely affect the visual character of the surrounding area and areas of high scenic amenity and visibility.	No acceptable outcome is nominated.	Complies – All excavation and filling will protect the visual amenity and visibility of the surrounding area.
PO3	AO3.1	RO3.1
Excavation or filling or the construction of retaining walls does not adversely affect the amenity of adjoining or nearby properties.	No dust or other air emissions extend beyond the boundaries of the site.	Complies – The erosion and sediment control program will control dust emissions such that they do not extend beyond the boundary of the site. Refer to the
o	AND	Stormwater Management Plan for further information.
	AO3.2	RO3.2
	The total duration of filling or excavation operations does not exceed four (4) weeks.	Performance criteria applies – Duration will be subject to weather conditions.
	AND	
	AO3.3 Filling or excavation operations occur only between 07:00 to 18:00 Monday to Saturday.	RO3.3 Complies – All filling and excavation activities will only be undertaken between the hours of 07:00 to 18:00 Monday to Saturday.
	AND	

l:\9000-9999\9100-9199\9180\code\24-03-22 filling and excavation code.docx

Page 1

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
	AO3.4 Excavation and filling operations are undertaken in accordance with the Capricorn Municipal Development Guidelines.	RO3.4 Complies – All filling and excavation operations will be undertaken in accordance with the Capricorn Municipal Development Guidelines.
Environment		
PO4	AO4	RO4
Excavation or filling or the construction of retaining walls does not adversely affect the environmental values of the locality.	No acceptable outcome is nominated.	Complies – All filling and excavation will ensure the environmental values of the locality are upheld and protected.
PO5	AO5.1	RO5.1
Excavation or filling of land is carried out in such a way that it does not materially impede the flow of water through the site or worsen the flow of water external to the site.	Excavation or filling does not increase, concentrate or divert stormwater into an adjoining site. AND	Complies – No adverse effects on adjoining sites will be caused by excavation or filling. All runoff will be diverted to the lawful point of discharge.
Editor's note—Excavation or filling is carried out in accordance with an approved hydrology and hydraulics report, prepared by a suitably qualified person. The report demonstrates that any proposed excavation or filling or structures will not adversely affect flows on the site, upstream of the site and downstream of the site.	AO5.2 Excavation or filling does not cause or enable the ponding of water on the site or on any other adjoining land. AND	RO5.2 Complies –Filling and excavation will not result in or enable ponding of water on the site or on any other adjoining lands.
	AO5.3 Excavation and filling is not located: (a) in any waterway corridor; and (b) in any wetland. Editor's note—Waterway corridors and wetlands are shown on the biodiversity areas overlay maps OM3A to OM3D. AND	RO5.3 Complies –The site is not within a waterway corridor or wetland.

l:\9000-9999\9100-9199\9180\code\24-03-22 filling and excavation code.docx

Version: 1, Version Date: 19/05/2022

Document Set ID: 35351740

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
	AO5.4 Filling or excavation does not adversely affect the level or flow of water in any overland flow path.	RO5.4 Complies – The overland flow path through the site will be retained and its level and peak flow will be reduced post development external to the site.
PO6 Traffic generated by excavation and filling does not adversely impact on the amenity of the surrounding area.	AO6.1 Haulage routes used for the transportation of fill to or from the site use major streets and only those minor streets that are necessary to provide direct access to the site. AND	RO6.1 Complies – Haulage routes will be determined in the pre start meeting.
	AO6.2 Truck movements generated by excavation or filling, do not exceed twenty (20) truck movements per day. AND	RO6.2 Complies – Truck movements for filling and excavation will not exceed 20 movements per day.
	AO6.3 Truck movements generated by excavation or filling, do not occur for longer than four (4) weeks within any three (3) month period.	RO6.3 Complies – Truck movements generated by filling or excavation will not occur for longer than four weeks within any three month period.
PO7 Filling or excavation does not prevent or create difficult access to the property.	AO7 No acceptable outcome is nominated.	RO7 Complies – Access to the site will be as per the existing condition. Refer to bulk earthwork plans.

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Infrastructure		
PO8 Excavation or filling or the construction of retaining walls is carried out in a manner that will not: (a) damage, or result in damage to existing infrastructure; or (b) compromise the safety of existing infrastructure. Editor's note—Development involving excavation or filling on land adjacent to electricity infrastructure should be referred to the relevant electricity entity to ensure there will be no electrical hazard created by the proposed development, before any application is lodged with Council.	In respect to electricity works, unless an approval from the owner of the electricity works is granted stating otherwise, excavation and filling does not occur within: (a) twenty (20) metres of any tower, pole, foundation, ground anchorage or stay supporting electric lines or associated equipment; or (b) five (5) metres of a substation site boundary; or (c) two (2) metres of a pad mount substation; or (d) one (1) metre of a pad mount transformer or an underground cable.	RO8 Performance criteria applies – Approval from the owner of the electricity works will be sought prior to lodgement of any application.
Erosion and sediment control		
PO9 Development ensures that all reasonable and practical measures are taken to manage the impact of erosion, turbidity and sedimentation, both within and external to the development site from construction activities, including vegetation clearing, earthworks, to protect water quality and environmental.	AO9 Erosion and sediment control plan is to be designed and implemented in accordance with the Capricorn Municipal Development Guidelines.	RO9 Complies – An erosion and sediment control plan has been completed for the site. Refer to the Stormwater Management Plan for further information.

l:\9000-9999\9100-9199\9180\code\24-03-22 filling and excavation code.docx

Document Set ID: 35351740

Version: 1, Version Date: 19/05/2022

Page 4

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Stormwater management - General		
PO1 Development provides a stormwater management system which achieves the integrated management of stormwater to: (a) ensure that flooding impacts do not increase, including upstream or downstream of the development site; (b) avoid net worsening of stormwater peak discharges and runoff volumes; (c) utilises the use of water sensitive urban design principles; and (d) ensure the site maximizes opportunities for capture and reuse. Editor's note—A stormwater management plan may be required	AO1.1 Development provides a stormwater management system which is designed in compliance with SC6.18—Stormwater management planning scheme policy, SC6.10 — Flood hazard planning scheme policy, Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff. AND AO1.2 Stormwater is conveyed to a lawful point of discharge in accordance with the Queensland Urban Drainage Manual.	RO1.1 Complies – The site-based stormwater management system has been designed in compliance with SC6.18 - Stormwater management planning scheme policy, SC6.10 — Flood hazard planning scheme policy, Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff. Refer to the Stormwater Management Plan for further information. RO1.2 Complies – All site runoff will be conveyed to the lawful point of discharge. Refer to Stormwater Management Plan for further information.
PO2 Development provides a stormwater management system which: (a) has sufficient capacity to safely convey runoff taking into account increased runoff from impervious surfaces and flooding in local catchments; (b) maximises the use of natural waterway corridors and natural channel design principles; and (c) efficiently integrates with existing stormwater treatments upstream and downstream.	AO2 Development provides a stormwater management system which is designed in compliance with SC6.18 — Stormwater management planning scheme policy, Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff.	RO2 Complies – The site-based stormwater management system has been designed in compliance with SC6.18 - Stormwater management planning scheme policy, Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff. Refer to the Stormwater Management Plan for further information.

Document Set ID: 35351740

Version: 1, Version Date: 19/05/2022

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
PO3 Development ensures that the location and design of stormwater detention and water quality treatment facilities: (a) minimise risk to people and property; (b) provide for safe access and maintenance; and (c) provide for the safe recreational use of stormwater management features.	AO3.1 Development provides for stormwater detention and water quality treatment facilities which are located outside of a waterway. AND AO3.2 Development provides for stormwater detention in accordance with SC4.18. Stormwater management.	RO3.1 Complies – As the development will reduce the site's impervious fraction, there is no requirement for on-site detention. Water quality treatment will be provided to ensure the runoff is of an acceptable quality prior to discharge from the site. RO3.2 Complies – As the development will reduce the site's
	accordance with SC6.18 — Stormwater management planning scheme policy, Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff. AND AO3.3 Development provides a stormwater quality treatment system which is designed in accordance with State Planning Policy Water Quality.	impervious fraction, there is no requirement for on-site detention. RO3.3 Complies – Stormwater quality treatment will be provided on site in accordance with State Planning Policy Water Quality.
Environmental values		
PO4 Development and drainage works including stormwater channels, creek modification works, bridges, culverts and major drains, protect and enhance the environmental values of the waterway corridors and	AO4.1 Development ensures natural waterway corridors and drainage paths are retained. AND	RO4.1 Not applicable – No open drains are proposed as part of the development.
drainage paths and permit terrestrial and aquatic fauna movement. Editor's note—Compliance with the performance outcomes and acceptable outcomes should be demonstrated by the submission of a sitebased stormwater management plan for development.	AO4.2 Development incorporates the use of natural channel design principles in constructed components to maximise environmental benefits and waterway stability in accordance with the Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff.	RO4.2 Not applicable – No open drains are proposed as part of the development.

Page 2

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
	AND AO4.3 Development provides stormwater outlets into waterways, creeks, wetlands and overland flow paths with energy dissipation to minimise scour in accordance with the Queensland Urban Drainage Manual, Capricorn Municipal Development Guidelines and Australian Rainfall and Runoff.	RO4.3 Not applicable – No outlets are proposed to any open drains as part of the development.
PO5 Development protects and enhances the environmental and water quality values of waterways, creeks and estuaries within or external to the site. Editor's note—The State Planning Policy Guideline Water Quality and Section 9 of the Environmental Protection Act 1994 define environmental values as 'a quality or physical characteristic of the environment that is conducive to ecological health or public amenity or safety.'	AO5 No acceptable outcome is nominated.	RO5 Complies – The development will protect and enhance the environmental and water quality values of waterways, creeks and estuaries external to the site by improving the existing site's water quantity and quality management. Refer to the Stormwater Management Plan for further information.
Overland flow path tenure		
PO6 All overland flow paths are maintained under tenure arrangements that facilitate efficient infrastructure and enhance environmental sustainability. Editor's note—As a guide, Council prefers that the location of Council owned assets are contained within a road reserve, drainage system is contained within a road reserve, drainage easement, drainage reserve, public reserve, public pathway, park or waterway corridor.	AO6 No acceptable outcome is nominated.	RO6 Complies – The existing overland flow path will be maintained and improved such that efficient infrastructure and enhanced environmental sustainability is achieved. Refer to the Stormwater Management Plan for further information.

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Detention Systems		
PO7 Detention basins are designed, located and constructed on land solely dedicated for stormwater management.	AO7 Detention basins are designed in accordance with SC6.18 Stormwater management planning scheme policy.	RO7 Not applicable – No detention basins are proposed for the development.
PO8 Development ensures that location and design of stormwater detention and water quality treatment: (a) minimises risk to people and property; (b) provides for safe access and maintenance; and (c) minimises ecological impacts to creeks and waterways.	AO8 Development provides a stormwater management system designed in accordance with SC6.10 Flood hazard planning scheme policy and SC6.18 Stormwater management planning scheme policy.	RO8 Complies – The stormwater management system has been designed in accordance with SC6.10 Flood Hazard planning scheme policy and SC6.18 Stormwater management planning scheme policy. Refer to the Stormwater Management Plan for further information.
PO9 Flood plain storage and function, and detention system functions are maintained. This shall include ensuring that: (a) detention system design does not remove floodplain storage; and (b) detention systems continue to operate effectively during a major storm event.	AO9 No acceptable outcome is nominated.	RO9 Complies – Flood plain storage and function, and detention system functions will be improved by the development. Refer to the Stormwater Management Plan for further information.
PO10 Detention basins shall not be provided in locations that prevent easy access to or maintenance of the detention basin.	AO10 The location of detention basins are in accordance with SC6.18 Stormwater management planning scheme policy.	RO10 Not applicable – No detention basins are proposed for the development.

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Efficiency and whole of life cycle cost		
PO11 Development ensures that there is sufficient site area to accommodate an effective stormwater management system. Editor's note—Compliance with the performance outcome should be demonstrated by the submission of a sitebased stormwater management plan for development.	AO11 No acceptable outcome is nominated.	RO11 Complies – Refer to the Stormwater Management Plan.
PO12 Development provides for the orderly development of stormwater infrastructure within a catchment, having regard to the: (a) existing capacity of stormwater infrastructure within and external to the site, and any planned stormwater infrastructure upgrades; (b) safe management of stormwater discharge from existing and future upslope development; and (c) implications for adjacent and downslope development.	AO12 No acceptable outcome is nominated.	RO12 Complies – The proposed development's stormwater infrastructure will not exceed the existing capacity of stormwater infrastructure within and external to the site, or any planned stormwater infrastructure upgrades, will allow safe management of stormwater discharge from existing and future upstream developments, and will not produce implications for adjacent and downstream developments. Refer to the Stormwater Management Plan for further information.
PO13 Development provides proposed stormwater infrastructure which: (a) remains fit for purpose for the life of the development and maintains full functionality in the design storm event; and (b) can be safely accessed and maintained in a cost effective way.	AO13 No acceptable outcome is nominated.	RO13 Complies – All stormwater infrastructure will be fit for purpose for the life of the development, maintain full functionality in the design storm event, and accessible and maintained in a cost effective way.

Page 5

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Erosion and sediment control		
PO14 Development ensures that all reasonable and practicable measures are taken to manage the impacts of erosion, turbidity and sedimentation, both within and external to the development site from construction activities, including vegetation clearing, earthworks, civil construction, installation of services, rehabilitation, revegetation and landscaping to protect: (a) the environmental values and water quality objectives of waters; (b) waterway hydrology; and (c) the maintenance and serviceability of stormwater infrastructure.	AO14 Erosion and sediment control plan is to be designed and implemented in accordance with the Capricorn Municipal Development Guidelines.	RO14 Complies – An erosion and sediment control plan has been detailed for the site. Refer to the Stormwater Management Plan for further information.
Water quality within catchment areas		
PO15 For development proposals within the Fitzroy River subbasin, relevant environmental values are recognised and enhanced, and relevant water quality objectives are addressed. Editor's note—Section 3.2 of Queensland Water Quality	AO15.1 Development complies with the provisions of the State Planning Policy Guideline Water Quality. AND	RO15.1 Complies – Stormwater runoff will be treated to ensure quality levels are within the acceptable limits outlined in State Planning Policy Guideline Water Quality. Refer to the Stormwater Management Plan for further information.
Guidelines 2009 identifies values for water quality for waters in the Central Coast Queensland region.	AO15.2 Development adjoining the full supply height above the Fitzroy River Barrage includes the provision of an effective buffer that assists in filtering runoff, including: (a) a buffer distance of 100 metres to the water supply height of the barrage which excludes cropping or grazing of a low intensity nature; and (b) fencing and water troughs installed on the land to prevent encroachment of animals within 100 metres of the full supply height above the barrage.	RO15.2 Not Applicable – The development does not adjoin the full supply height above the Fitzroy River Barrage.

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Protecting water quality		
	AO16 Development is undertaken in accordance with a stormwater management plan that: (a) incorporates stormwater quality control measures to achieve the design objectives set out in the State Planning Policy – Guideline – Water Quality; (b) provides for achievable stormwater quality treatment measures reflecting land use constraints, such as soil type, landscape features (including landform), nutrient hazardous areas, acid sulfate soil and rainfall erosion potential; and (c) accounts for development type, construction phase, local landscape, climatic conditions and design objectives. Editor's note—A stormwater management plan includes the	RO16 Complies - Refer to the Stormwater Management Plan for further information.
	design, construction, operation, maintenance of the stormwater system. Editor's note—SC6.18 — Stormwater management planning scheme policy provides guidance on preparing a stormwater quality management plan.	

 $I:\ 9000-9999\ 9100-9199\ 9180\ code\ 24-03-22\ stormwater\ management\ code. docx$

Page 7

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Protecting water quality in existing natural waterways		
PO17 The waterway is designed for stormwater flow management, stormwater quality management and the following end use purposes: (a) amenity including aesthetics, (b) landscaping and recreation; (c) flood management; (d) stormwater harvesting as part of an integrated water cycle management plan; (e) as a sustainable aquatic habitat; and (f) the protection of water environmental values.	AO17 No acceptable outcome is nominated.	RO17 Not applicable – There is no natural waterway in the proposed development.
PO18 The waterway is located in a way that is compatible with existing tidal waterways.	Where the waterway is located adjacent to, or connected to, a tidal waterway by means of a weir, lock, pumping system or similar: (a) there is sufficient flushing or a tidal range of more than 0.3 metres; or (b) any tidal flow alteration does not adversely impact on the tidal waterway; or (c) there is no introduction of salt water into freshwater environments.	RO18 Not applicable – There is no natural waterway in the proposed development.
PO19 The construction phase for the waterway is compatible with protecting water environmental values in existing natural waterways.	Erosion and sediment control measures are incorporated during construction to achieve design objectives set out in State Planning Policy Guideline Water Quality. Editor's note—Erosion and sediment control is to be designed and implemented in accordance with the International Erosion Control Association Best Practice Erosion and Sediment Control Guidelines.	RO19 Not applicable – There is no natural waterway in the proposed development.

 $I:\ 9000-9999\ 9100-9199\ 9180\ code\ 24-03-22\ stormwater\ management\ code. docx$

Page 8

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
PO20 Stormwater overflows from the waterway do not result in lower water quality objectives in existing natural waterways.	AO20 Stormwater runoff entering nontidal waterways is pretreated prior to release in accordance with the guideline design objectives, water quality objectives of local waterways, and any relevant local area stormwater management plan.	RO20 Not applicable – There is no natural waterway in the proposed development.

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Water		
PO1 A water supply is provided that is adequate for the current and future needs of the intended development.	Where within a water supply planning area, the development is connected to Council's reticulated water supply system in accordance with SC6.21 — Water supply infrastructure planning scheme policy and the Capricorn Municipal Development Guidelines. Editor's note—A network analysis may be required to demonstrate compliance with this acceptable outcome. Editor's note—Where development is located outside of the water supply planning area to refer to the requirements under the Plumbing Code of Australia.	RO1 Complies – The water supply will connect to the shopping centre's existing water main, pending further investigation within detailed design. Refer to the Civil Engineering Report for further information.
PO2 Reticulated water supply networks ensure that the installation is sustainable and minimises whole of life cycle costs.	AO2.1 Where within a water supply planning area, water supply systems and connections are designed and constructed in accordance with SC6.21 — Water supply infrastructure planning scheme policy and the Capricorn Municipal Development Guidelines. Editor's note—A network analysis may be required to demonstrate compliance with this acceptable outcome. AND	RO2.1 Complies – The water supply will connect to the shopping centre's existing water main, pending further investigation within detailed design. Refer to the Civil Engineering Report for further information.
	AO2.2 Where within a water supply planning area, staged developments are connected to the water supply network and operational prior to the commencement of the use or endorsement of the survey plan.	RO2.2 Not applicable – The proposed development is not staged.

l:\9000-9999\9100-9199\9180\code\24-03-22 water and sewer code.docx

Page 1

WATER AND SEWER CODE Performance Criteria and Acceptable Solution 24 March 2022 Issue A

Page 2

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Water		
PO3 Sewerage treatment and disposal is provided that is appropriate for the level of demand generated, protects public health and avoids environmental harm.	Where within a sewer planning area, the development is connected to Council's reticulated waste water system in accordance with SC6.17 — Sewerage infrastructure planning scheme policy and the Capricorn Municipal Development Guidelines. Editor's note—A network analysis may be required to demonstrate compliance with this acceptable outcome.3 Editor's note—Where development is located outside of the sewer planning area to refer to the requirements under the Plumbing Code of Australia.	RO3 Complies – Sewer infrastructure to sufficiently service the development will be provided. Refer to the Civil Engineering Report for further information.
PO4 Reticulated sewer networks ensure that the installation of infrastructure assets is sustainable and minimises whole of life cycle costs.	Where within a sewer planning area, waste water systems and connections are designed and constructed in accordance with SC6.17 — Sewerage infrastructure planning scheme policy and the Capricorn Municipal Development Guidelines. Editor's note—A network analysis may be required to demonstrate compliance with this acceptable outcome. AND	RO4.1 Complies – Sewer infrastructure to sufficiently service the development will be provided. Refer to the Civil Engineering Report for further information.
	AO4.2 Where within a sewer planning area, staged developments are connected to the waste water network and operational prior to the commencement of the use or endorsement of the survey plan.	RO4.2 Not applicable – The proposed development is not staged.

l:\9000-9999\9100-9199\9180\code\24-03-22 water and sewer code.docx

Version: 1, Version Date: 19/05/2022

Document Set ID: 35351740

WATER AND SEWER CODE Performance Criteria and Acceptable Solution 24 March 2022 Issue A

PERFORMANCE OUTCOMES	ACCEPTABLE OUTCOMES	RESPONSE
Point source waste water management		
PO5 The waste water management plan provides that waste water is managed in accordance with a waste management hierarchy that: (a) avoids waste water discharge to waterways; or (b) minimises waste water discharge to waterways by reuse, recycling, recovery and treatment for disposal to sewer, surface water and groundwater if it is agreed waste water discharge to waterways can not practically and reasonably be avoided.	AO5 A waste water management plan (WWMP) is prepared by a suitably qualified person. The waste water management plan accounts for: (a) waste water type; (b) climatic conditions; (c) water quality objectives; and (d) best practice environmental management.	RO5 Not applicable – All waste water from the site will discharge to sewer.

l:\9000-9999\9100-9199\9180\code\24-03-22 water and sewer code.docx

Document Set ID: 35351740 Version: 1, Version Date: 19/05/2022

ROCKHAMPTON REGIONAL COUNCIL APPROVED PLANS

These plans are approved subject to the current conditions of approval associated with

Development Permit No.: D/66-2022

Dated: 2 November 2022

Traffic Impact Assessment

Stockland Rockhampton ALDI Expansion

CEB06360

Prepared for Stockland

30 March 2022

Document Set ID: 35351736 Version: 1, Version Date: 19/05/2022

Contact Information

Document Information

Prepared for

Project Name

Cardno (Qld) Pty Ltd

ABN 57 051 074 992

Level 11

515 St Paul's Terrace

Fortitude Valley QLD 4006

Locked Bag 4006

www.cardno.com

Phone +61 7 3369 9822

Fax +61 7 3369 9722

Date 30 March 2022

Version Number

Author(s):

Digitally signed by Robert Bakon Date: 2022.03.30

Robert Bakon

Traffic Engineer

Approved By:

Digitally signed by Andy Johnston

2022.03.30 11:49:41+10'00'

Andy Johnston RPEQ:24764

Technical Director

ALDI Expansion

File Reference CEB06360 - Aldi

Development - TIA - 2022 03

Stockland Rockhampton

30 - D.docx

Stockland

Job Reference CEB06360

04

Effective Date

Date Approved

30/03/2022

30/03/2022

Document History

Version	Effective Date	Description of Revision	Prepared by	Reviewed by
01	27/10/2021	Draft	Robert Bakon	Andy Johnston
01	28/10/2021	Final	Robert Bakon	Andy Johnston
02	11/03/2022	Final	Robert Bakon	Andy Johnston
03	18/03/2022	Final	Robert Bakon	Andy Johnston
04	30/03/2022	Final	Robert Bakon	Andy Johnston

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this

Our report is based on information made available by the client. The validity and comprehensiveness of supplied information has not been independently verified and, for the purposes of this report, it is assumed that the information provided to Cardno is both complete and accurate. Whilst, to the best of our knowledge, the information contained in this report is accurate at the date of issue, changes may occur to the site conditions, the site context or the applicable planning framework. This report should not be used after any such changes without consulting the provider of the report or a suitably qualified person.

Table of Contents

1	Introd	uction	1
	1.1	Background	1
	1.2	Scope	1
	1.3	References	1
2	Existir	ng Situation	2
	2.1	Rockhampton Centre	2
	2.2	Local Road Network	2
	2.3	Parking and Access	3
	2.4	Active Transport Connections	4
	2.5	Public Transport Connections	4
	2.6	Rockhampton Ring Road	7
3	Devel	opment History	8
4	Propo	sed Development	9
	4.1	Proposed Development Expansion	9
	4.2	Active Transport Connections	10
	4.3	Public Transport Connections	11
5	Devel	opment Impact	12
	5.1	Existing Traffic Movements	12
	5.2	Development Trip Generation	15
	5.3	Previously Approved Trip Generation	16
	5.4	Traffic Growth Rate	17
	5.5	Distribution	19
6	Interse	ection Assessment	20
	6.1	Assessed Intersections	20
	6.2	Assessment Scenarios	21
	6.3	SIDRA Assessment Criteria	21
	6.4	Operational Assessment Results	22
	6.5	GTIA Assessment	29
7	Car Pa	arking Review	30
	7.1	Parking Requirement	30
	7.2	Parking Provision	30
8	Servic	cing Provision	31
	8.1	Overview	31
	8.2	AV Route	31
	8.3	Turnaround Provision	32
	8.4	Access Amendment	33
9	Summ	nary	34
	9.1	Development Impact	34

34

34

9.2

9.3

Traffic Impact

Parking Impact

	9.4 Servicing Impact	34
Appen	dices	
Appendix	A Development plans	
Appendix	B Traffic Generation	
Appendix	C SIDRA Analysis	
Appendix	D Swept Paths	
Appendix	E Signage and Line marking	
Tables		
Table 2-1	Local Road Network Hierarchy	2
Table 2-2	Centre Access Intersections	3
Table 2-3	Bus Routes that Operate To/From Stockland Rockhampton Centre	5
Table 3-1	Existing and Approved Development Yields	8
Table 5-1	Centre Yields – Existing and Proposed Expansion	14
Table 5-2	Trip Generation Estimation – Proposed Retail Expansion	16
Table 5-3	Trip Generation Estimation – Previously Approved Expansions	16
Table 5-4	TMR AADT Growth Rates	17
Table 5-5	Adopted Direction In / Out Splits	19
Table 6-1	Thresholds for Intersection Performance	21
Table 6-2	SIDRA Outputs – Bruce Highway / Musgrave Street Intersection	22
Table 6-3	SIDRA Outputs – Musgrave Street / Cowap Street Intersection	23
Table 6-4	SIDRA Outputs – Musgrave Street / Clifton Street Intersection	24
Table 6-5	SIDRA Outputs – Musgrave Street / High Street Intersection	25
Table 6-6	SIDRA Outputs – High Street / Site Access Intersection	26
Table 6-7	SIDRA Outputs - High Street / Aquatic Place Intersection	27
Table 6-8	SIDRA Outputs – Bruce Highway / High Street / Alexandra Street Intersection	28
Table 6-9	GTIA Delay Impact Analysis	29
Table 7-1	SIDRA Outputs – High Street / Aquatic Place Intersection	30
Figure	s	
Figure 2-1	Stockland Rockhampton Centre Location	2
Figure 2-2	Access Locations to Site	3
Figure 2-3	Active Transport Network Infrastructure	4
Figure 2-4	Bus Interchange Location – Rockhampton Centre	5

Figure 2-5	Bus Route Network	6
Figure 2-6	Rockhampton Ring Road layout	7
Figure 4-1	Proposed development expansion and previous approvals	9
Figure 4-2	Pedestrian Access between Expansion Site and Active Transport Infrastructure	10
Figure 4-3	Pedestrian Access between Expansion Site and Bus Stops	11
Figure 5-1	Proposed Development Context	12
Figure 5-2	Existing Stockland Rockhampton Centre Patronage & 85th %ile (Thursday)	13
Figure 5-3	Existing Stockland Rockhampton Centre Patronage & 85th %ile (Saturday)	14
Figure 5-4	Thursday Peak Generation Profile	15
Figure 5-5	Saturday Peak Generation Profile	16
Figure 5-6	AADT Survey Locations	17
Figure 5-7	AADT Comparison – Historic Trend vs Adopted Growth Rate	18
Figure 5-8	Expansion Traffic Distribution	19
Figure 6-1	SIDRA Assessment Locations	20
Figure 6-2	Current and SIDRA Assessed Layout – Bruce Highway / Musgrave Street Intersection	22
Figure 6-3	Current and SIDRA Assessed Layout – Musgrave Street / Cowap Street Intersection	23
Figure 6-4	Current and SIDRA Assessed Layout – Musgrave Street / Clifton Street Intersection	24
Figure 6-5	Current and SIDRA Assessed Layout – Musgrave Street / High Street Intersection	25
Figure 6-6	Proposed and SIDRA Assessed Layout - High Street / Site Access Intersection	26
Figure 6-7	Current and SIDRA Assessed Layout - High Street / Aquatic Place Intersection	27
Figure 6-8	Current and SIDRA Assessed Layout – Bruce Highway / High Street / Alexandra Street Intersection	28
Figure 8-1	AV servicing route	31
Figure 8-2	AV turnaround provision	32
Figure 8-3	AV turnaround provision	33

1 Introduction

1.1 Background

Cardno has been engaged by Stockland to undertake a Traffic Impact Assessment (TIA) for the proposed development of an ALDI supermarket at the Stockland Shopping Centre, located at 331 Yaamba Road, Berserker.

The updated plans of the proposed development can be found in **Appendix A**.

1.2 Scope

The objective of this Traffic Impact Assessment (TIA) is to understand the traffic and transport issues associated with the proposed ALDI shopping centre development. The TIA will support the Development Application (DA) process and provides the relevant approval authorities, including the Department of Transport and Main Roads (TMR) and Rockhampton Regional Council (RRC), the opportunity to adequately consider any traffic or transport related impacts.

The main aspects of this TIA relate to the following:

- > Traffic impacts generated by the proposed development
- > Impact on the external traffic and transport services

Cardno have been engaged to undertake the following tasks to complete this assessment:

- > Review project background and previous related traffic assessment documentation
- > Commission traffic counts at centre access intersections
- > Determine current base traffic and projected traffic levels for the development
- > Develop a desktop model of the local road network
- > Assess the development traffic impacts at the key intersections
- > Assess the impacts of the proposed development on the existing Public and Active Transport network

1.3 References

The following resources were referred to in the preparation of the report:

- > AS2890.1:2004 Parking Facilities Part 1: Off-street Car Parking, Australian Standards, 2004
- > Rock e Plan: Rockhampton Region Planning Scheme, Rockhampton Regional Council, 2015
- > Guide to Traffic Generating Developments: Updated Traffic Surveys, Roads and Maritime Services (RMS), NSW Government, August 2013
- > Guideline for Assessment of Road Impacts of Developments, Department of Transport and Main Roads, April 2006

2 Existing Situation

2.1 Rockhampton Centre

Rockhampton Centre is located in Rockhampton's north-eastern suburbs, and comprises 55,005 sq.m gross leasable area (GLA) of retail and 3,392 sq.m GLA of cinema for a total centre GLA of 58,397 sq.m.

Figure 2-1 Stockland Rockhampton Centre Location

Source: Nearmap

2.2 Local Road Network

The site has frontage along Musgrave Street to the east, High Street to the south and the Bruce Highway to the west. Table 2-1 report the key characteristics of the local road network.

Table 2-1 Local Road Network Hierarchy

Road	Authority	Classification	Speed Limit	Typical Form
Bruce Highway / Moores Creek Rd	TMR	Highway	70km/h	Four lane divided
High Street	RRC	Urban Arterial Road	60km/h	Two / Four lane divided
Musgrave Street	TMR	State Controlled Road	60km/h	Four lane divided
Aquatic Place	RRC	Urban Access Place	50km/h	Two lane undivided

2.3 Parking and Access

Access to the site is currently provided via eight locations around the perimeter of the site, each shown on Figure 2-2.

Figure 2-2 Access Locations to Site

Source: Nearmap

Table 2-2 describes the forms of these identified access points.

Table 2-2 Centre Access Intersections

1 Aquatic Place/Stockland Access Two way link section 2 High Street Signalised three way 3 High Street/Victoria Place Left in/Left out 4 Musgrave Street/Blanchard Street Left in/Left out 5 Musgrave Street/Clifton Street Signalised four way 6 Musgrave Street/Cowap Street Signalised three way 7 Musgrave Street Left in/Left out	ID	Location	Form
3 High Street/Victoria Place Left in/Left out 4 Musgrave Street/Blanchard Street Left in/Left out 5 Musgrave Street/Clifton Street Signalised four way 6 Musgrave Street/Cowap Street Signalised three way	1	Aquatic Place/Stockland Access	Two way link section
4 Musgrave Street/Blanchard Street Left in/Left out 5 Musgrave Street/Clifton Street Signalised four way 6 Musgrave Street/Cowap Street Signalised three way	2	High Street	Signalised three way
5 Musgrave Street/Clifton Street Signalised four way 6 Musgrave Street/Cowap Street Signalised three way	3	High Street/Victoria Place	Left in/Left out
6 Musgrave Street/Cowap Street Signalised three way	4	Musgrave Street/Blanchard Street	Left in/Left out
	5	Musgrave Street/Clifton Street	Signalised four way
7 Musgrave Street Left in/Left out	6	Musgrave Street/Cowap Street	Signalised three way
	7	Musgrave Street	Left in/Left out
8 Bruce Highway Left in/Left out	8	Bruce Highway	Left in/Left out

2.4 Active Transport Connections

Figure 2-3 illustrates the active transport infrastructure surrounding the centre. External pathways connect the boundary of the site along the major roads. In addition, there are extensive pedestrian crossings through the site.

Figure 2-3 Active Transport Network Infrastructure

Source: Nearmap

2.5 Public Transport Connections

2.5.1 Public Bus Services

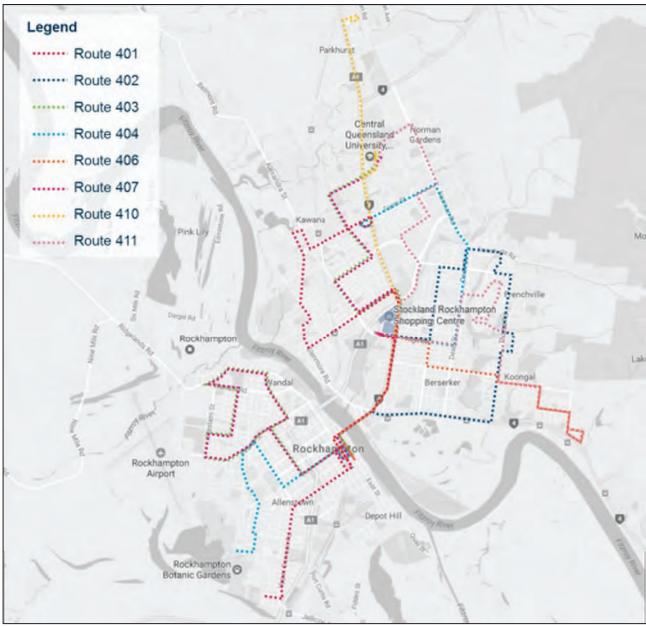
Stockland Rockhampton Centre provides a bus interchange on-site, located between the High Street signalised access and the Musgrave Street / Clifton Street signalised access intersection, as shown on Figure 2-4. Additional bus stops are provided on Musgrave Street.

Figure 2-4 Bus Interchange Location – Rockhampton Centre

Source: Nearmap

Table 2-3 summarises the current bus routes, frequencies, and major destinations.

Table 2-3 Bus Routes that Operate To/From Stockland Rockhampton Centre


Doute	Inbound		Outbound		Major Stone	
Route	7-9am	3-6pm	7-9am	3-6pm	Major Stops	
401	30 mins	20-60 mins	30 mins	20-60 mins	Glenmore, City Centre, The Range	
402	60 mins	60 mins	60 mins	60 mins	City Centre, Koongal, Frenchville	
403	8:43am	60 mins	8:35am	45 – 60 mins	CQU, Park Avenue, City Centre, Base Hospital, Wandal	
404	30 – 60 mins	30 – 60 mins	60 mins	30 – 45 mins	Glenmore, Base Hospital, City Centre, The Range, Norman Gardens	
406	7:48am, 8:53am	3:38pm, 3:56pm	8:10am	60 mins	Lakes Creek, City Centre, Koongal	
407	30 – 45 mins	3:13pm, 5:13pm	7:34am, 8:55am	3:55pm, 5:55pm	West Rockhampton, City Centre, CQU, Base Hospital, Park Avenue, Wandal	
410	60 mins	60 mins	60 mins	60 mins	Parkhurst, CQU, City Centre	
411	60 mins	60 mins	60 mins	60 mins	Lakes Creek, Koongal, Norman Gardens, CQU	

There are 7 bus services which provide connections between Stockland Rockhampton and City Centre, with frequent services into the city during the AM peak, and arriving at Stockland Rockhampton during the PM peak.

Figure 2-5 illustrates the areas serviced by the bus routes, and subsequently the neighbourhoods connected to Stockland Rockhampton via a direct bus service.

Figure 2-5 Bus Route Network

Source: qconnect / Sunbus timetables

2.6 Rockhampton Ring Road

A 14.7km ring road around western side of Rockhampton is currently undergoing detailed design, and is scheduled to be built by TMR by 2026. Further information is shown below in Figure 2-6.

Figure 2-6 Rockhampton Ring Road layout

The Ring Road will provide a direct connection between the northern and southern aspects of Rockhampton while by-passing the town centre, and improve traffic flows and travel times for through traffic. The Ring Road also bypasses the subject site and will likely noticeably reduce volumes along the Bruce Highway and Musgrave Street.

As such, the Ring Road will likely significantly impact all future traffic investigations and will be discussed further below.

3 Development History

Cardno have previously completed Traffic Impact Assessments assessing the impact on the existing centre to accommodate:

- > A cinema expansion with additional retail
- > A discount department store (DDS) (mini-major retail) expansion,

The cinema expansion was approved in November 2017 under DA application D/69-2017-MCU, May 2018 under DA application D/29-2018-MCU, May 2020 under 'Other Change' Application D69-2017 and the DDS was approved in May 2018 under DA application D/29-2018-MCU, respectively. Only Stage 1 of the development approval D/29-2017 has been constructed, being the redevelopment of the Sizzler restaurant, which is now The Bavarian food and drink tenancy. Given that two elements of the approved centre expansions have not yet commenced construction, this assessment reviews the two listed baseline scenarios, as follows:

- 1. The existing shopping centre + Stage 1 Food and Drink Outlet
- 2. The existing shopping centre + approved Stage 2 cinema/retail development (application D/69-2017-MCU) + Mini-Major (DDS) retail expansion (application D/29-2018-MCU)

It is important to note that the DDS application and the cinema expansion have been included within the below retail land use yield. Also, the Food and Drink development had no overall change in yield as part of the application and thus has not been include in further discussions.

A summary of the existing shopping centre and the approved expansion is provided in Table 3-1.

Table 3-1 Existing and Approved Development Yields

Land Use	Existing Centre	Approved Expansion (Cinema and Retail), Mini-Major (DDS) and Food + Drink
Retail	55,005 sq.m	61,433 sq.m
Cinema	954 seats / 3,392 sq.m	1,169 seats / 3,993 sq.m
Food and Drink	-	0 sq.m*
Total	58,397 sq.m	65,426 sq.m

Note * net change in floor area for food and drink application was nil

Stockland have advised of following status with respect to the above approved developments, which are not yet constructed on the premises.

Firstly, the approved cinema/retail development (application D/69-2017-MCU) cannot be acted upon without further approval from Council due to the proposed cinema requiring redesign to avoid construction occurring over a third party (Ergon) easement. With this in mind, a change application to amend the approved development would require submission of an amended traffic assessment, including an assessment of car parking.

Secondly the Mini-Major (DDS) retail expansion (application D/29-2018-MCU) was proposed to accommodate a new tenant within the shopping centre. This development approval will not be enacted due to market conditions.

Regardless, the above approvals have been included as part of the traffic impact analysis noted in section 6, in accordance with matters that the Assessment Manger is required to consider. Specifically, an additional traffic scenario has been undertaken, detailing the potential impacts from the approved developments on the local network. The previous approvals will not be constructed due to the above reasons, but will provide a baseline comparison between the currently approved expansions and the proposed ALDI development. Notably, the approved development scenario does <u>not</u> include the proposed ALDI expansion.

4 Proposed Development

4.1 Proposed Development Expansion

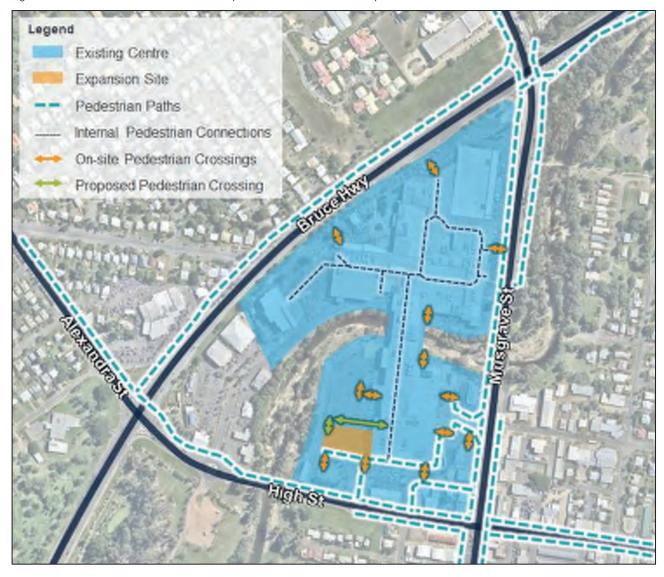
The proposed expansion comprises of the following land uses:

> 1,725 sq.m GLA retail (supermarket)

The expansion is located on the south-western site of the existing site, which will be positioned over the existing car parking resulting in an overall removal of 123 spaces. Figure 4-1 illustrates the location of the proposed expansion and all previously approved expansions undertaken.

Figure 4-1 Proposed development expansion and previous approvals

Source: Nearmap

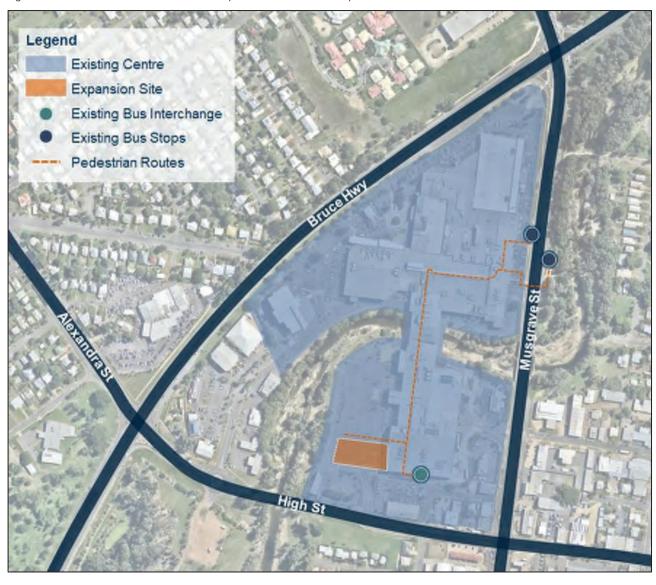


4.2 Active Transport Connections

The existing active transport infrastructure provides connections to the back of the proposed development. As such, additional provisions are proposed to service the front of the existing development as well, with this to service acks formal connections between the main centre and the cinema.

Figure 4-2 illustrates the both the existing and proposed pedestrian access routes between the centre, the development and the active transport network.

Figure 4-2 Pedestrian Access between Expansion Site and Active Transport Infrastructure



4.3 Public Transport Connections

The existing bus interchange on-site, located between the High Street signalised access and the Musgrave Street / Clifton Street signalised access intersection, will provide sufficient bus services to cater for the proposed expansion.

Pedestrian access from the bus interchange and external bus stops to the expansion will be provided through the centre, which will provide the most desirable route for pedestrians, as illustrated in Figure 4-3.

Figure 4-3 Pedestrian Access between Expansion Site and Bus Stops

5 Development Impact

5.1 Existing Traffic Movements

5.1.1 Background Traffic Surveys

Traffic surveys were carried out by Austraffic, on Thursday 4th May 2017 between 4:00pm and 7:00pm, and Saturday 6th May 2017 between 10:00am and 1:00pm, at the following twelve locations:

- 1. Bruce Highway / Musgrave Street signalised intersection
- 2. Musgrave Street / Cowap Street signalised access intersection
- 3. Musgrave Street / Clifton Street signalised access
- 4. Musgrave Street / Blanchard Street left in/left out access
- 5. Musgrave Street / High Street signalised intersection
- 6. High Street / Site Access left in/left out access
- 7. High Street/Site Access signalised access
- 8. High Street / Aquatic Place roundabout access
- 9. Bruce Highway / High Street signalised intersection
- 10. Bruce Highway / Site Access left in/left out access
- 11. Aquatic Place entry and exit
- 12. Musgrave Street / Site Access left in/left out access

These locations are shown in Figure 5-1.

Figure 5-1 Proposed Development Context

A review of the traffic surveys was undertaken, and the common peak hour period for the centre was identified for all surveyed intersections, as follows:

Thursday Peak: 4:30 pm – 5:30 pm.Saturday Peak: 11:15 am – 12:15 pm.

5.1.2 Suitability of existing traffic surveys

There are two primary reasons to utilise the existing traffic intersection data. These are as follows:

- Intersection data collected now would likely be affected by COVID-19 impacts and would likely underrepresent traffic impacts
- > There is highly consistent traffic growth along the primary roadways and factoring up the intersection counts accordingly will provide suitable intersection data.

This is further discussed in section 5.3.

5.1.3 Peak (85th Percentile) Generation Assessment

In order to assess the peak demand scenario for Stockland Rockhampton Centre, annual daily door count data was used to illustrate the pedestrian flow at the centre and to identify the 85th percentile busiest shopping day of the week. Given that Thursdays and Saturdays are generally considered the busier days of the week, the 85th percentile Thursday and Saturday were both identified from the door count data. Raw patronage data has not been reported due to commercial sensitivities.

The 85th percentile Thursday or Saturday corresponds to the 85% busiest Thursday or Saturday of the annual profile of daily door count data, where the top 15% of the data has been excluded. This assessment approach is a standard traffic engineering approach which accounts for all, but the highest outliers of the busiest trading periods. These outliers generally occur over the week before Christmas or a public holiday where designing for these occurrences would mean a significant over supply the rest of the year.

Cardno has reviewed the Stockland Rockhampton door count data for May 2016 to May 2017. The door counts from the survey days were included in the data set to accurately capture the relationship between the survey day traffic generation and the 85th percentile busiest Thursday and Saturday for the centre.

Figure 5-2 and Figure 5-3 show the FY 2016/17 annual trading profile, along with the equivalent survey date trading volume, and the 85th percentile trading volume for the existing Rockhampton centre.

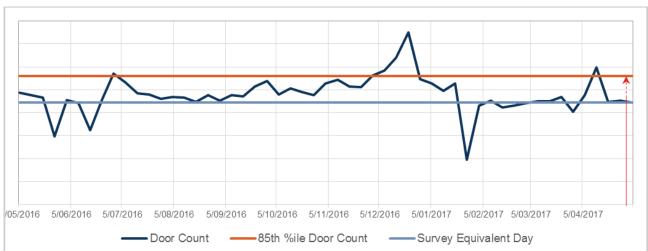


Figure 5-2 Existing Stockland Rockhampton Centre Patronage & 85th %ile (Thursday)

/05/2016 7/06/2016 7/07/2016 7/08/2016 7/09/2016 7/10/2016 7/11/2016 7/12/2016 7/01/2017 7/02/2017 7/03/2017 7/04/2017

— Door Count — 85th %ile Door Count — Survey Equivalent Day

Figure 5-3 Existing Stockland Rockhampton Centre Patronage & 85th %ile (Saturday)

These figures illustrate and confirm that the 85th percentile Thursday and Saturday represent the busiest day over the year, with the exception of the peaks during the Easter and Christmas holidays.

The 85th percentile trading factor was estimated by comparing the patronage for the survey days to the relevant 85th percentile trading patronage. Therefore, the following factors were devised to apply to the traffic survey volumes, in order to determine an 85th percentile traffic generation for the existing centre:

- > 1.26 for Thursday peak hour volumes.
- > 1.09 for Saturday peak hour volumes.

By applying the 85th percentile factor to the traffic survey peak volumes, a baseline traffic generation rate for the existing centre was identified, as shown in Table 5-1.

As the surveys will have captured the trips for the retail and cinema combined, the assessment has separated the two uses. Trips for the existing cinema have been calculated from previous data received from Stockland on the operation of the site and has been suitably previously approved under DA application D/690-2017-MCU. Given the previous approval and lack of cinema expansion proposed as part of this development, no more discussion regarding the cinema traffic rate is considered warranted.

All uses have been factored for the 85th percentile trading.

Table 5-1 Centre Yields – Existing and Proposed Expansion

Scenario	Thursday Peak	Saturday Peak
Surveyed Site Traffic Generation – In	1,255 vph	1,831 vph
Surveyed Site Traffic Generation – Out	1,310 vph	1,645 vph
Surveyed Site Traffic Generation - Total	2,565 vph	3,476 vph
85 th %ile Factor – Overall centre	1.2614	1.0863
85 th %ile Centre Traffic Generation (Retail & Cinema uses)	3,236 vph	3,776 vph
Retail Only		
85 th %ile Retail Only Traffic Generation	3,105 vph	3,678 vph
Existing Site GLA – Retail	55,005 sq.m	55,005 sq.m
85 th %ile Retail Traffic Generation Rate	5.64 vph / 100 sq.m	6.69 vph / 100 sq.m

As reported, the existing retail trip generation for the centre is estimated at 5.64 vph/100sq.m for Thursday and 6.69 vph/100sq.m for Saturday.

5.2 Development Trip Generation

The traffic generation rate of a retail centre is significantly influenced by the operation and scale of the centre in question.

Therefore, the new retail precinct has been considered as a direct increase in GLA of the existing centre. This is a common assumption, which aligns with many expansions to shopping centres, providing activities other than solely retail.

As a result of the broader range of uses and activities at the centre, the duration of trips to the centre are extended, and trips with multiple purposes are combined into one trip. Therefore, this creates a phenomenon whereas the floor area expands, the generation rate, per square metre, reduces.

The NSW Roads and Maritime Services (RMS) *Guide to Traffic Generating Developments* (updated August 2013), provides a table of traffic generation rates for shopping centres dependant on the size of the centre. This data can be extrapolated into a curve to determine the traffic generation of a particular size centre.

To consider the variance in shopping centre trading patterns between NSW and Queensland, the 85th percentile traffic generation rate for the existing Stockland Rockhampton Centre (derived in Section 4.1.2), has been used to calibrate the generation curves specified in the RMS guide, to reflect the actual trading patterns identified for the Stockland Rockhampton Centre.

Using the calibrated curve, the traffic generation of the new retail precinct expansion has been determined by increasing the GLA along the calibrated curve.

Figure 5-4 and Figure 5-5 illustrate the actual and calibrated generation curves for the Thursday and Saturday trading respectively, and where the existing centre and proposed expansion lie on the calibrated curve. Additionally, the expected traffic generation from the previously approved expansions has been including to provide comparison with the proposed revised expansion.

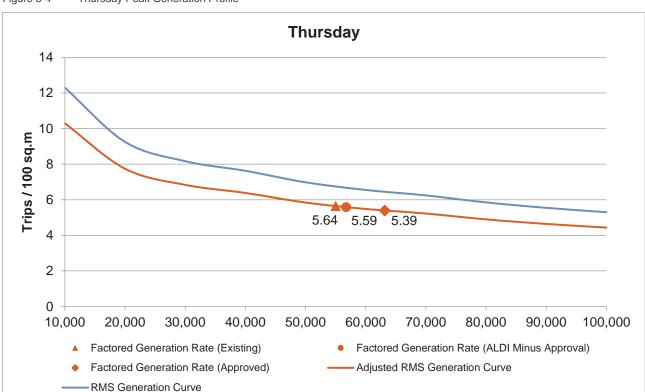
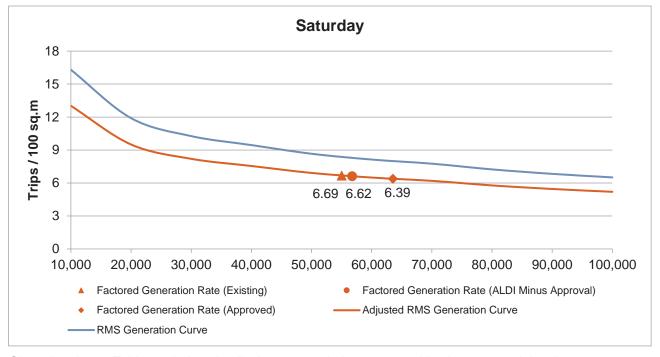



Figure 5-4 Thursday Peak Generation Profile

Figure 5-5 Saturday Peak Generation Profile

Given the above, Table 5-2 below details the expected trips generated by the proposed development.

Table 5-2 Trip Generation Estimation – Proposed Retail Expansion

Scenario	Thursday Peak	Saturday Peak
Existing 85th %ile Retail Traffic Generation (55,005 sq.m GLA)	3,105 vph	3,678 vph
85 th %ile Retail Traffic Generation Rate (56,730 sq.m GLA)	5.59* vph / 100m ²	6.62* vph / 100m ²
85 th %ile Retail Traffic Generation (56,730 sq.m GLA)	3,169 vph	3,754 vph
Additional Trips from Proposed Development (1,725 sq.m)	64 vph	76 vph

^{*} Values have been rounded for ease of comprehension and express accurate final results.

As such, the proposed expansion is expected to generate an additional 64 vph during the Thursday PM peak and 76 vph during the Saturday peak.

5.3 Previously Approved Trip Generation

Previously approvals also include traffic generation for a cinema expansion, which has been previously outlined in application D/69-2017-MCU. Table 5-3 details the trips generated by the previously approved developments, noting that the proposed ALDI development in <u>not</u> included.

Table 5-3 Trip Generation Estimation – Previously Approved Expansions

Scenario	Thursday Peak	Saturday Peak
Existing 85 th %ile Retail Traffic Generation (55,005 sq.m GLA)	3,105 vph	3,678 vph
85 th %ile Retail Traffic Generation Rate (61,433 sq.m GLA)	5.44* vph / 100m ²	6.45* vph / 100m ²
85 th %ile Retail Traffic Generation (61,433 sq.m GLA)	3,342 vph	3,961 vph
Additional retail Trips from previous approvals (6,428 sq.m)	237 vph	283 vph
Existing 85 th %ile Cinema Traffic Generation (954 seats)	131 vph	98 vph
85 th %ile Cinema Traffic Generation Rate	0.137* vph / seat	0.103* vph / seat
85 th %ile Cinema Traffic Generation (1,169 seats)	160 vph	120 vph
Additional Trips from approved cinema expansion (215 seats)	29 vph	22 vph
Total Additional Trips from previously Approved Developments	267 vph	305 vph

^{*} Values have been rounded for ease of comprehension and express accurate final results

As such, the previously approved expansions are expected to generate 267 vph during the Thursday PM peak and 305 vph during the Saturday peak.

5.4 Traffic Growth Rate

A traffic growth rate of 2.0% per annum has been adopted for the Bruce Highway (Moores Creek Road) and Musgrave Street. With regards to the lower-order roads (High Street, Clifton Street), it has been assumed that 1% per annum traffic growth will be representative of the future growth. This rate has been adopted for based on previous agreements with the Department of Transport and Main Roads in Rockhampton.

5.4.1 Historic Growth Rate

Cardno analysed TMR's historic AADT data for four sites near the development, as indicated on Figure 5-6.

Figure 5-6 AADT Survey Locations

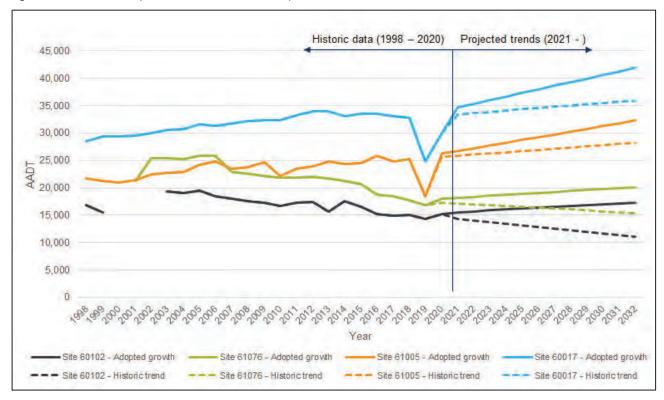
Source: Nearmap

The available AADT data ranges from 1999 to 2019/2020. The average annual growth rate for each site has been calculated and is shown in Table 5-3. It is noted that the growth between the 1999-2018 period has been used as all sites show a dramatic decrease in AADT in 2019-2020 records.

Noticeably, this decrease in traffic volumes correlates with COVID-19 impact time frames and further justifies the use of the existing traffic counts to better estimate total possible intersection impacts, rather than undertaking additional current day traffic counts.

Table 5-4 TMR AADT Growth Rates

S	Site ID Location		Average Annual Growth Rate (1999-2018)	Adopted Annual Growth Rate
Α	61005	Bruce Highway: at Boland St	0.85%	2.00%
В	60017	Bruce Highway: 100m Sth Knight St	0.70%	2.00%
С	60102	Musgrave Street: Sth Moores Ck	-1.90%	1.00%
D	61076	Musgrave Street: at Elphinstone St	-0.92%	1.00%


The results above show that for the Bruce Highway (sites A and B), the average historic growth rate is less than 1%, while for Musgrave Street (sites C and D), the growth rate is generally negative, indicating a

decrease in background traffic. As such, a 1% growth rate will be adopted for all intersections along Musgrave Street and a 2% growth rate will be adopted for all other intersections.

Figure 5-7 presents a comparison to the future AADT volumes when adopting the average historic growth rate as per Table 5-3 against the adopted growth rates. It illustrates the vast overestimation of the adopted growth rate with significant inflation above the projected historic trend at the 2031 design horizon.

Figure 5-7 AADT Comparison – Historic Trend vs Adopted Growth Rate

As such, given the significant impact of COVID-19 on the accuracy of traffic survey data and the conservative background volume analysis, using the factored up existing 2017 traffic surveys is a suitable outcome from a traffic engineering perspective.

5.4.2 Rockhampton Ring Road

As noted previously, a ~14km Ring Road is proposed for the western side of Rockhampton and is expected to be delivered by 2026. Given that the Ring Road allows through traffic to bypass the town centre and the subject site, there is expected to be a significant decrease in traffic volumes along the Bruce Highway and Musgrave Street in particular. This expected additional decrease in traffic volumes has not been considered has part of the above traffic growth analysis, but is expected to impact all results after 2026.

5.5 Distribution

5.5.1 Access Distribution

The access distribution observed in the traffic surveys has generally been adopted to represent the distribution of the additional traffic associated with the proposed expansion. However, given the proposed expansion is located in the north-eastern corner of the site, it has been assumed that 50% of expansion traffic will utilise the two closest access points, being the left in/left out on the Bruce Hwy and Aquatic Place.

5.5.2 External Distribution

A review of the traffic survey data has been undertaken, in order to establish an approximate distribution of expansion traffic passing through the three external intersections:

- 1. Bruce Highway / Musgrave Street signalised intersection
- 2. Musgrave Street / High Street signalised intersection
- 3. Bruce Highway / High Street / Alexandra Street signalised intersection

The following distribution assumptions, as illustrated on Figure 5-8, have been drawn from the traffic surveys and adopted for the assessment of the expansion traffic.

Legend
Existing Centre
Expansion Site
3 External Network Distribution
3 Internal Access Distribution

1136

1136

1137

1137

1137

1138

1138

1138

1138

1138

1138

1138

1138

1138

1138

Figure 5-8 Expansion Traffic Distribution

Source: Nearmap

5.5.3 Directional Distribution

The arrival / departure splits for trips associated with the existing centre and proposed expansion have been adopted from the existing centre travel patterns, estimated from the survey data. The adopted rates are shown in Table 5-5.

Table 5-5 Adopted Direction In / Out Splits

Time Period	IN	OUT
Thursday	50%	50%
Saturday	50%	50%

6 Intersection Assessment

6.1 Assessed Intersections

For this assessment, the following intersections have been assessed and are illustrated on Figure 6-1:

- 1. Bruce Highway / Musgrave Street signalised intersection
- 2. Musgrave Street / Cowap Street signalised access intersection
- 3. Musgrave Street / Clifton Street signalised access
- 5. Musgrave Street / High Street signalised intersection
- 7. High Street / Site Access signalised access
- 8. High Street / Aquatic Place roundabout access
- 9. Bruce Highway / High Street / Alexandra Street signalised intersection

Figure 6-1 SIDRA Assessment Locations

Source: Nearmap

It is noted that the minor access points (left in/left out, intersections 4 & 6) have not been analysed in SIDRA.

6.2 Assessment Scenarios

The following scenarios have been assessed for the proposed expansion development:

- > 2022 Background Traffic
- > 2024 Background Traffic
- > 2024 Background Traffic with Development Expansion (Year of Opening)
- > 2024 Background Traffic with Previously Approved Expansion (Hypothetical Year of Opening)

It is important to note that the approved expansion scenario will <u>not</u> be constructed at this time as per the reasons outlined in Section 3 above. These have been included entirely as a comparison between the previous approvals and the proposed development, and do not represent any actual real-world impacts. As such, the previously approved developments do not include GFA from the proposed development.

The background, development, and design traffic volumes have been included at Appendix B.

The SIDRA analysis files for all intersections are provided at a file share link, found at **Appendix C**.

As previously noted, the Rockhampton Ring Road is expected to significantly reduce traffic volumes along the Bruce Highway and Musgrave Street and is scheduled to be completed in 2026. As such, it is proposed that the ten-year design horizon (2033) traffic scenarios are not undertaken for this development as they are highly likely to overestimate the expected traffic impacts.

There are two primary reasons as to why the 10-year design horizon should be excluded from this analysis:

- > There will be likely significant fluctuations in the traffic volumes along the Bruce Highway and Musgrave Street.
- > The only practical way to measure the likely impacts on the Bruce Highway and Musgrave Street would be via traffic counts after the completion of the Ring Road.
- > Any intersection upgrades resulting from the 10-year design horizon would likely become redundant upon the completion of the Rockhampton Ring Road and would likely not pass a cost-benefit analysis.

6.3 SIDRA Assessment Criteria

The performance of each study intersection was analysed using SIDRA Intersection 9 (SIDRA) which is an industry recognised analysis tool that estimates the capacity and performance of intersections based on input parameters, including geometry and traffic volumes, and provides estimates of an intersection's Degree of Saturation (DOS), queues and delays. The DOS is a measure of the proportion of traffic entering an intersection relative to the intersection's capacity.

Table 6-1 provides the defined DOS intervention thresholds for intersections.

Table 6-1 Thresholds for Intersection Performance

Intersection Control	DOS Threshold
Signals	less than or equal to 0.90
Roundabout	less than or equal to 0.85
Priority-controlled	less than or equal to 0.80

Source: TMR Guidelines for Assessment of Road Impacts of Development (2006)

The guideline notes that a DOS exceeding the values indicated in Table 6-1 identifies that an intersection is nearing its practical capacity and upgrade works may be required. Above these threshold values, users of the intersection are likely to experience rapidly increasing delays and queuing.



6.4 Operational Assessment Results

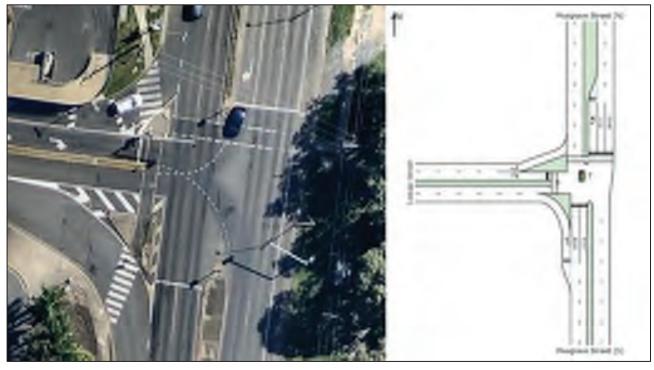
6.4.1 Intersection 1: Bruce Highway / Musgrave Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-2.

Figure 6-2 Current and SIDRA Assessed Layout – Bruce Highway / Musgrave Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-2.

Table 6-2 SIDRA Outputs – Bruce Highway / Musgrave Street Intersection


		Thursday PM	Peak		Saturday AM Peak			
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.77	47.8 sec	162m	0.73	45.4 sec	141m		
2024 Background	0.80	48.7 sec	172m	0.75	45.8 sec	149m		
2024 Background + Committed Approval	0.81	49.0 sec	172m	0.76	46.2 sec	152m		
2024 With Development (No Committed Approval)	0.80	48.7 sec	172m	0.75	45.9 sec	150m		

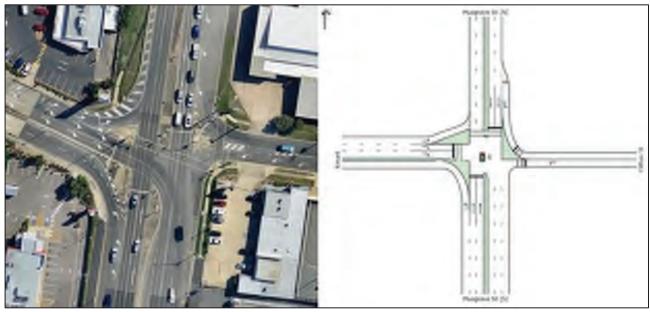
6.4.2 Intersection 2: Musgrave Street / Cowap Street Intersection

The current configuration of this intersection is a three-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-3.

Figure 6-3 Current and SIDRA Assessed Layout – Musgrave Street / Cowap Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-3.

Table 6-3 SIDRA Outputs – Musgrave Street / Cowap Street Intersection


	Т	Thursday PM Peak			Saturday AM Peak		
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.42	4.4 sec	26m	0.52	10.4 sec	76m	
2024 Background	0.42	4.1 sec	26m	0.52	10.0 sec	75m	
2024 Background + Committed Approval	0.44	4.5 sec	27m	0.55	10.3 sec	82m	
2024 With Development (No Committed Approval)	0.43	4.4 sec	27m	0.53	10.1 sec	77m	

6.4.3 Intersection 3: Musgrave Street / Clifton Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-4.

Figure 6-4 Current and SIDRA Assessed Layout – Musgrave Street / Clifton Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-4.

Table 6-4 SIDRA Outputs – Musgrave Street / Clifton Street Intersection


	T	Thursday PM Peak			Saturday AM Peak		
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.31	5.5 sec	21m	0.28	5.5 sec	22m	
2024 Background	0.31	5.5 sec	21m	0.28	5.4 sec	22m	
2024 Background + Committed Approval	0.31	5.8 sec	25m	0.29	5.8 sec	25m	
2024 With Development (No Committed Approval)	0.31	5.5 sec	22m	0.28	5.5 sec	23m	

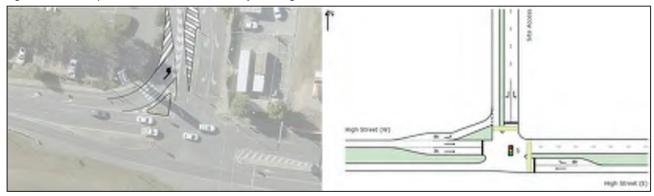
6.4.4 Intersection 5: Musgrave Street / High Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-5.

Figure 6-5 Current and SIDRA Assessed Layout – Musgrave Street / High Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-5.

Table 6-5 SIDRA Outputs – Musgrave Street / High Street Intersection


	Т	hursday PM Pe	ak	Saturday AM Peak			
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.75	48.1 sec	114m	0.63	49.1 sec	101m	
2024 Background	0.78	50.2 sec	126m	0.64	49.2 sec	105m	
2024 Background + Committed Approval	0.80	50.3 sec	133m	0.67	49.1 sec	112m	
2024 With Development (No Committed Approval)	0.78	50.3 sec	127m	0.65	49.2 sec	105m	

6.4.5 Intersection 7: High Street / Site Access Intersection

The current configuration of this intersection is a three-way signalised arrangement. As part of the proposed development, a revised intersection layout is proposed to help facilitate additional AV movements. The proposed and SIDRA assessed layout are illustrated on Figure 6-6.

Figure 6-6 Proposed and SIDRA Assessed Layout – High Street / Site Access Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-6.

Table 6-6 SIDRA Outputs – High Street / Site Access Intersection

	Т	Thursday PM Peak			Saturday AM Peak		
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.49	13.6 sec	38m	0.42	13.9 sec	36m	
2024 Background	0.50	14.1 sec	39m	0.43	13.9 sec	37m	
2024 Background + Committed Approval	0.51	14.1 sec	40m	0.43	14.0 sec	41m	
2024 With Development (No Committed Approval)	0.50	14.1 sec	39m	0.43	14.0 sec	37m	

6.4.6 Intersection 8: High Street / Aquatic Place Intersection

The current configuration of this intersection is a roundabout arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-7.

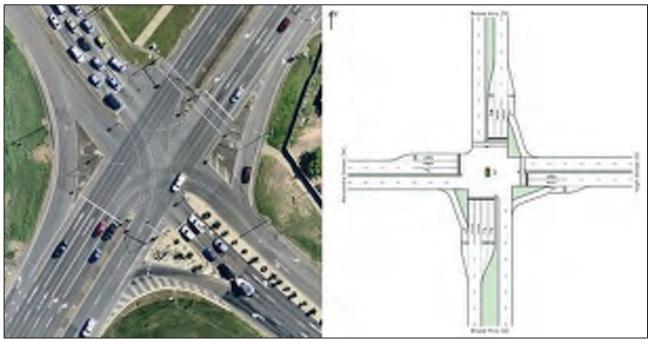
Figure 6-7 Current and SIDRA Assessed Layout – High Street / Aquatic Place Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-7.

Table 6-7 SIDRA Outputs – High Street / Aquatic Place Intersection

	Thursday PM Peak			Saturday AM Peak		
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue
2022 Background	0.34	5.1 sec	17m	0.50	5.4 sec	28m
2024 Background	0.35	5.1 sec	18m	0.51	5.4 sec	28m
2024 Background + Committed Approval	0.37	5.2 sec	20m	0.54	5.7 sec	34m
2024 With Development (No Committed Approval)	0.35	5.1 sec	18m	0.51	5.5 sec	30m

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS \leq 0.85 for roundabouts), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.


Although the SIDRA results suggest the intersection has capacity remaining, Council advised (advice from Stuart Harvey, email dated 24 May 2017) that the intersection has been identified in the Plans for Trunk Infrastructure as requiring an upgrade subject to future demand, in conjunction with a required duplication of the High Street bridge. The operational results of the roundabout indicate that the existing form will be suitable for the design horizon scenario.

6.4.7 Intersection 9: Bruce Highway / High Street / Alexandra Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 6-8.

Figure 6-8 Current and SIDRA Assessed Layout – Bruce Highway / High Street / Alexandra Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 6-8.

Table 6-8 SIDRA Outputs – Bruce Highway / High Street / Alexandra Street Intersection

	Т	Thursday PM Peak			Saturday AM Peak		
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.78	45.4 sec	229m	0.76	46.3 sec	175m	
2024 Background	0.82	46.3 sec	238m	0.77	47.1 sec	182m	
2024 Background + Committed Approval	0.83	48.0 sec	245m	0.80	47.9 sec	185m	
2024 With Development (No Committed Approval)	0.82	46.5 sec	236m	0.77	47.3 sec	183m	

6.5 GTIA Assessment

In accordance with the Guide to Traffic Impact Assessments (GTIA), the above intersections located along the state network (Intersections 1, 2, 3, 5 & 9) have been included in an assessment of intersection delay on the state-controlled road network.

Given that the previous approvals are relevant for the site, the background volumes and impacts for the delay assessment will be considered under the approved development scenario, instead of a usual background scenario. As such, given the overall reduction in GFA and subsequent traffic generation between the approved developments and the proposed development, all impact analysis outcomes will be negative, thereby showing a compliant outcome. Nevertheless, delay impacts have been undertaken for all state intersections as per GTIA guidelines.

The assessment is outlined below in Table 6-9.

Table 6-9 GTIA Delay Impact Analysis

Intersection	Scenario	APRV Total Delay Vehmin	DEV Total Delay Vehmin	DEV Delay Impact Vehmin	Impact
Int 1	2022 Thursday	231,035.0	229,620.5	-1,414.5	-0.61%
Int 1	2022 Saturday	204,065.4	202,740.3	-1,325.1	-0.65%
Int O	2022 Thursday	8,500.5	8,311.6	-188.9	-2.22%
Int 2	2022 Saturday	22,227.4	21,795.8	-431.6	-1.94%
Int O	2022 Thursday	12,035.0	11,412.5	-622.5	-5.17%
Int 3 ———————————————————————————————————	2022 Saturday	12,800.6	12,138.5	-662.1	-5.17%
Int 5	2022 Thursday	161,161.2	161,161.2	-	0.00%
1111.5	2022 Saturday	154,566.8	154,881.6	314.8	0.20%
Int 9	2022 Thursday	226,128.0	219,061.5	-7,066.5	-3.13%
III 9	2022 Saturday	195,911.0	193,457.0	-2,454.0	-1.25%
	2022 Thursday	523,042.9	515,741.5	-7,301.4	-1.40%
Total	2022 Saturday	510,397.2	506,232.0	-4,165.2	-0.82%
	Average	516,768.8	511,061.4	-5,707.5	-1.10%

It is important to note the above with regard the following:

- > The % delay increase for the 2022 scenario is less than 5%, and thus is in accordance with the GTIA.
- > As the % delay is lower than 5%, no mitigation measures are required due to capacity issues.
- All intersections operate within typical performance thresholds and do not require any additional works for capacity or operational reasons.

As such, the proposed development is expected to comply with the GTIA capacity assessment.

7 Car Parking Review

7.1 Parking Requirement

As per discussions in the pre-lodgement meeting with Council on 19th April 2017, the following minimum parking rates were agreed upon:

- > Shopping Centre 4.1 spaces per 100 sq.m of gross leasable floor area; and
- > Cinema one (1) space per five (5) seats; or one (1) space per fifteen (15) sq.m of gross floor area, whichever is greater.

7.2 Parking Provision

The centre currently provides for 2,810 spaces with a net centre GLA of 55,005 sq.m excluding the cinema. It is noted that this is a different parking value than previously noted on prior Development Applications. A recount of parking has culminated in the 2,810 spaces and as such is the agreed upon current parking provision.

An additional 19 spaces are also available and are located on the subject site, adjacent the nearby childcare centre. This leads to a total available parking provision of 2,829 spaces.

The proposed expansion is intended to comprise of an additional 1,725 sq.m GLA of retail. The development proposes a net decrease in parking supply of 123 spaces, with 104 spaces lost due to the expansion footprint and 19 spaces lost due to AV turnaround provisions. As such, the total parking provision postexpansion is 2,706 spaces.

Based on the proposed yield, Table 7-1 outlines the minimum parking requirement.

Table 7-1 SIDRA Outputs – High Street / Aquatic Place Intersection

Land Use	Yield	Parking Rate	Parking Requirement	Available Parking
Shopping Centre	55,005 + 1,725 = 56,730 sq.m	4.1 spaces per 100 sq.m	2,326 spaces	2,829 – 123 =
Cinema	3,392 sq.m	1 space per 15 sq.m	226 spaces	2,706 spaces
Total	60,122 sq.m		2,552 spaces	2,706 spaces (+154)

The minimum parking required for the expanded centre is 2,552 spaces. The post expansion provision is 2,706 spaces, providing an overall surplus of 154 spaces as indicated in Table 7-1, and exceeds the minimum parking rate of 4.1 spaces per 100 sq.m. Therefore, the proposed plans are deemed to provide sufficient parking for the overall centre post expansion.

8 Servicing Provision

8.1 Overview

Servicing will be provided as part of the expansion area, with a loading area to be located within proposed expansion north of High Street. This loading area will service the ALDI expansion only.

The loading area has been designed to be separate from the main parking area, with a wall enclosing the space on the eastern and western sides. Access by service vehicles will be via High Street. A swept path assessment has indicated that servicing will be achieved for the following vehicles:

- > Heavy rigid vehicle (HRV)
- > 19.0m Articulated Vehicle (AV)

Swept paths have been provided in **Appendix D**.

Several changes to the surrounding car parking layout have been made to facilitate the AV swept paths, including the provision of an additional turnaround area north of the propose development, which is further discussed below.

8.2 AV Route

Figure 8-1 below shows the route taken by heavy vehicles to access the proposed expansions

Legend:
Forward Movement
Reverse Movement

Shopping
Centre

Proposed
Sypension

Figure 8-1 AV servicing route

Source: Stockland

As shown, service vehicles will drive forwards to the loading area, reverse into the loading dock, then drive forwards out of the dock to the turnaround area. There, vehicles will turn around and drive forwards out of the car park and onto the local network via High Street.

8.3 Turnaround Provision

The turnaround area is designed to minimise conflicts with other motorists. As Figure 8-2 below provides additional detail.

Figure 8-2 AV turnaround provision

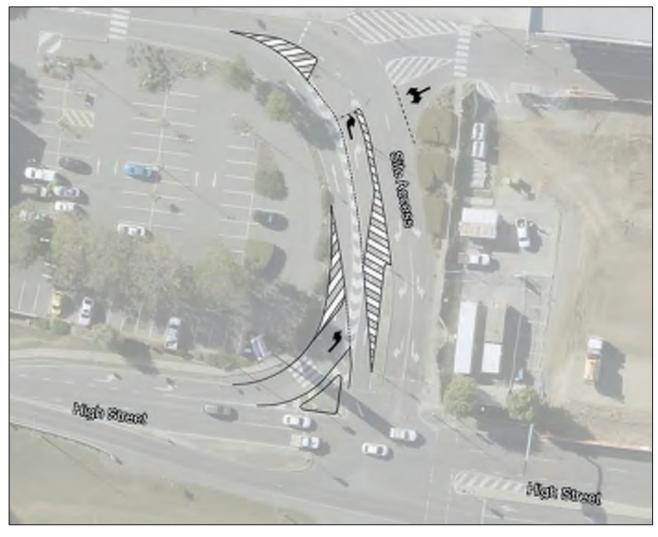
Source: Stockland

The AV turnaround swept path is attached at **Appendix D**.

Recommended signage and line marking provisions have been provided in Appendix E.

Swept paths indicate that heavy vehicles will be able to access the loading area and exit the site without impacting on parking spaces. Service vehicles will be primarily enclosed within the loading dock and turnaround area, therefore all parking aisle will be kept predominately clear of heavy vehicles for customer vehicle movements.

The parking area to the immediate south of the turnaround area has been amended to ensure the service vehicle movements do not impact on parking.



8.4 Access Amendment

As part of the proposed development, an updated access arrangement is proposed for intersection 7 to assist with the facilitation of AV movements. These changes primarily consist of changing the High Street low-angle exit to a high angle exit, and can be achieved via line marking works only and do not require any significant works or treatments.

Figure 8-3 details the proposed revised intersection arrangement.

Figure 8-3 AV turnaround provision

The swept paths for the proposed access arrangement are attached at **Appendix D** and as such, the proposed access does not impact the safety and efficiency of the intersection.

9 Summary

Cardno has been engaged by Stockland to undertake a Traffic Impact Assessment (TIA) for the proposed expansion of Stockland Rockhampton Centre, located 3km north-east of Rockhampton City. The expansion comprises of a new ALDI supermarket and 1,725sq.m of additional retail. The expansion is located on the south-western side of the existing site, and will be positioned over the existing car park.

Analysis was carried out to determine the existing centre generation and anticipated increase in generation as a result of the proposed expansion. The potential impact on the centre has been reviewed, with a focus on the operation of the access intersections and the parking provision.

9.1 Development Impact

The existing and proposed development has been assessed during a peak period, considered as the 85th percentile period which matches the top 15% busiest time period of the shopping year. The following conclusions have been made from the assessment:

- > The existing traffic survey data indicates the Thursday and Saturday peak generation volumes for the centre are 2,565 vph and 3,476 vph, respectively.
- > By applying the 85th percentile factor, the Thursday and Saturday peak generation volumes for the centre become 3,236 vph and 3,776 vph.
- > Regarding the retail component, the 85th percentile factor was used to calibrate the standard RMS generation curves for a shopping centre. The existing retail trip generation of 3,105 vph and 3,678 vph for the Thursday and Saturday peak periods, respectively, will be increased to 3,169 vph and 3,755 vph. This equates to an additional 65 vph and 77 vph for the Thursday and Saturday peak periods, respectively

9.2 Traffic Impact

The intersection assessment was undertaken for seven key intersections including four external intersections and three signalised site access intersections during the Thursday and Saturday peak periods. The following conclusions have been made from the assessment:

- > The assessment adopted a 1-2% p.a. growth rate for the state-controlled road network which is considered conservative but requested by TMR
- > The site access intersections operate within acceptable capacity thresholds with the expansion traffic
- > The external intersections operate within acceptable capacity thresholds with the expansion traffic
- > The ten-year design horizon traffic scenarios are not considered suitable given that the Rockhampton Ring Road is expected to be completed by 2026. Once completed, the Ring Road is expected to significantly reduce traffic volumes and render future traffic generation obsolete.

Overall, the assessment indicates that the access intersections operate sufficiently with the inclusion of the proposed expansion and do not cause a significantly detrimental impact to the existing road network.

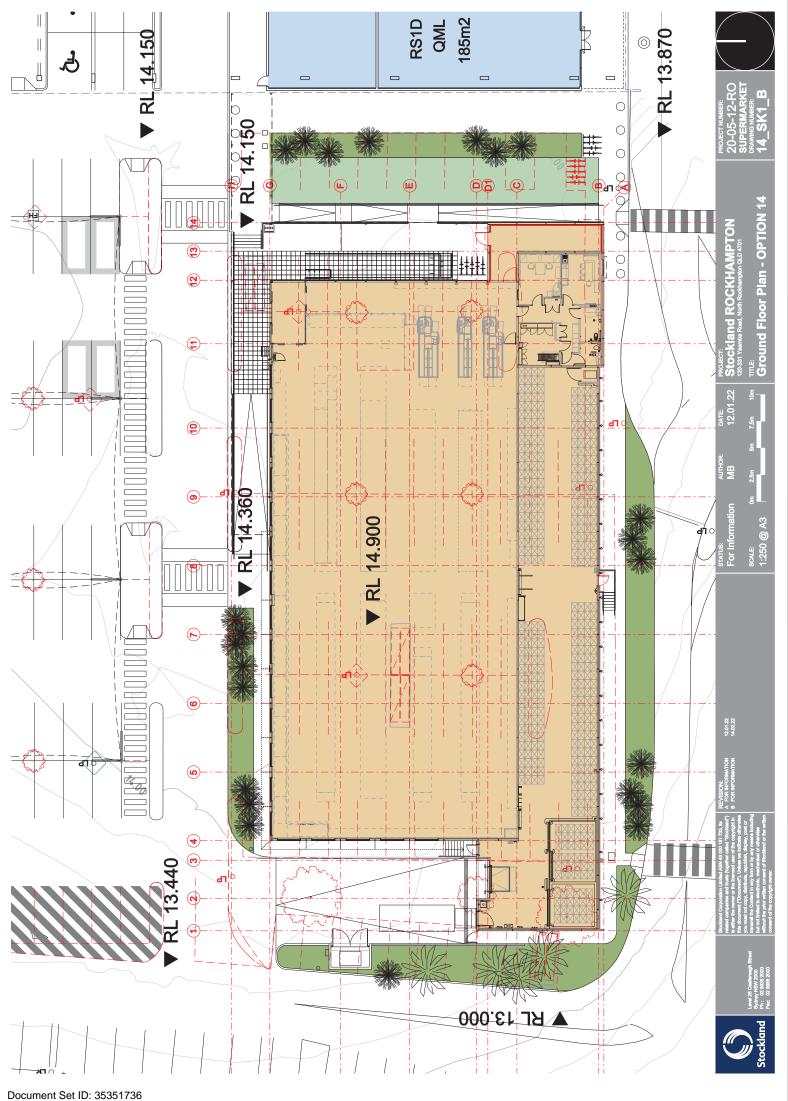
9.3 Parking Impact

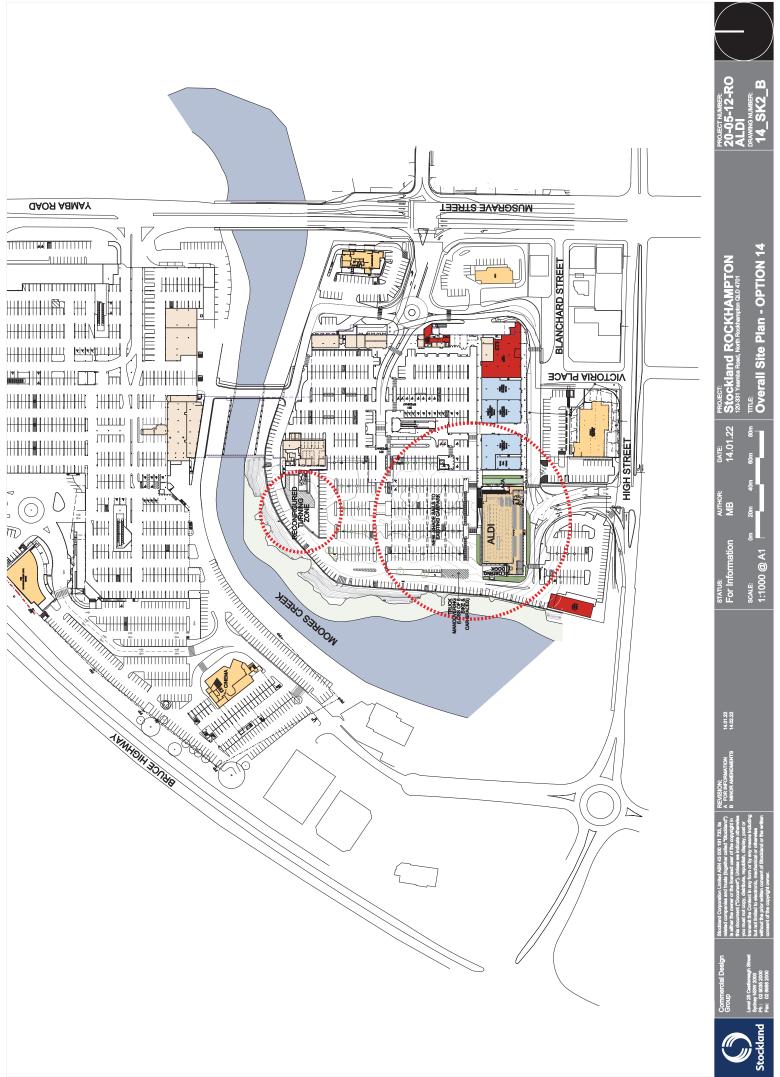
The centre currently provides 2,829 spaces. The 2,829-space provision has been recently confirmed via a recount of the available centre parking. Plans for the expansion indicate a net loss of 123 spaces. This brings the total provision post-expansion to 2,706 spaces.

This is in excess of the minimum parking rates outlined by Council which results in a parking requirement of at least 2,552 spaces. Therefore, the proposed parking provision is considered sufficient for the expansion.

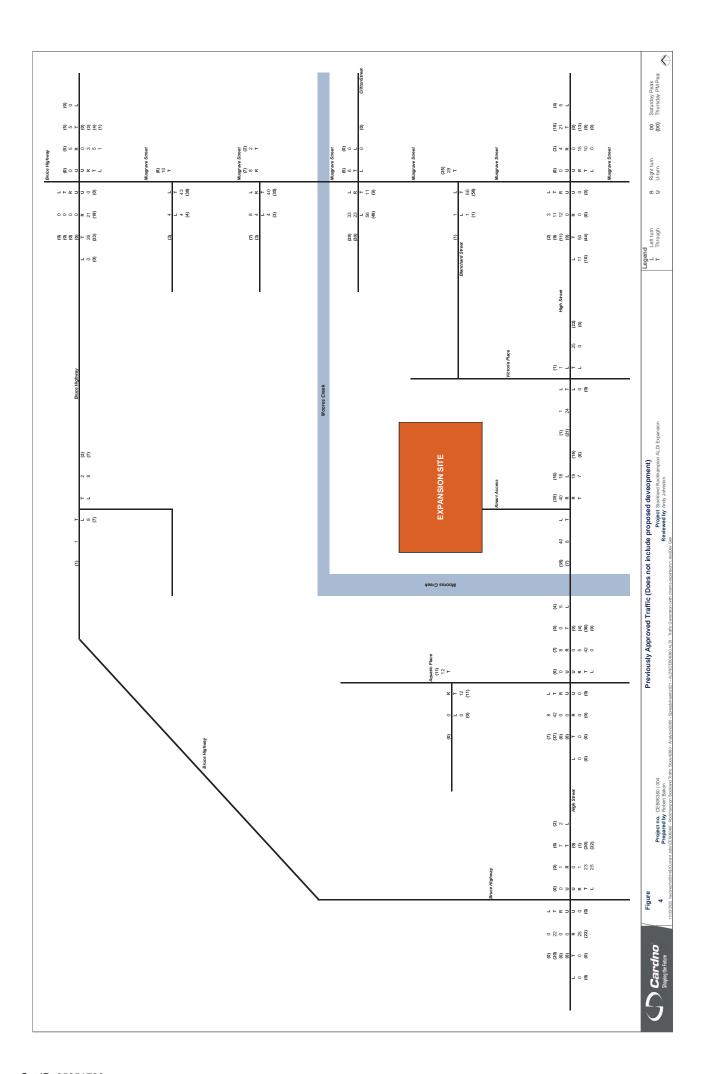
9.4 Servicing Impact

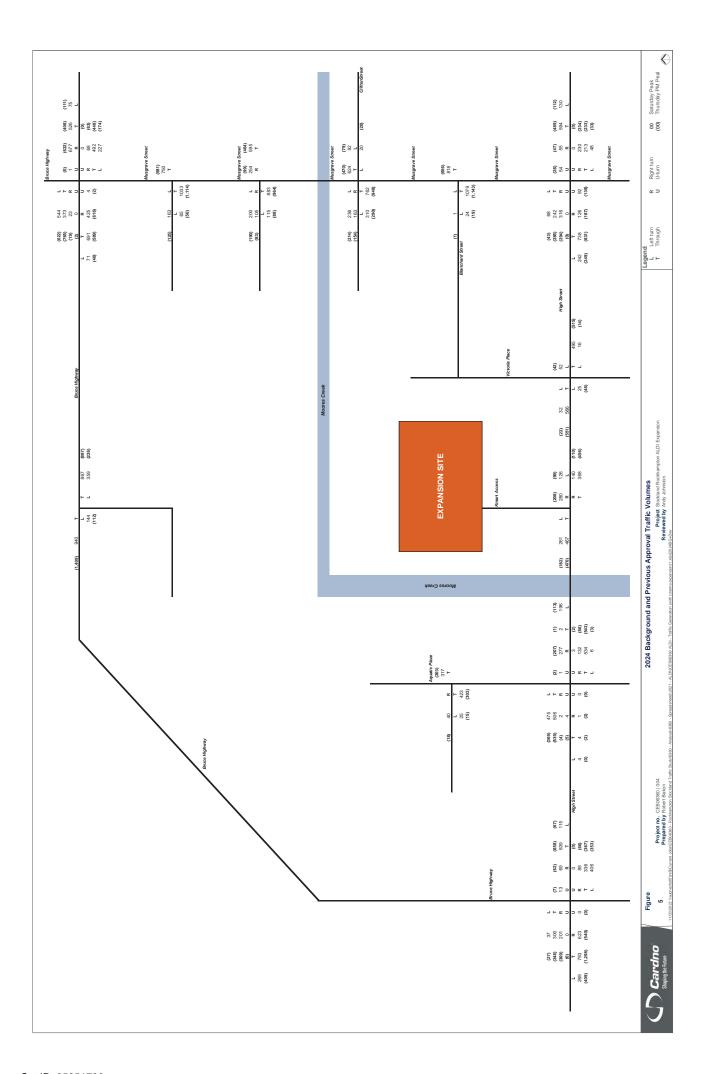
Swept paths have been prepared showing that service vehicles are able to suitably navigate the development. This includes the provision of an additional turnaround area north of the expansion site and the revised intersection access arrangement. Accordingly, suitable signage and line marking have been outlined to assist with assuring safe and efficient traffic operations within the car park resulting from the expansion.

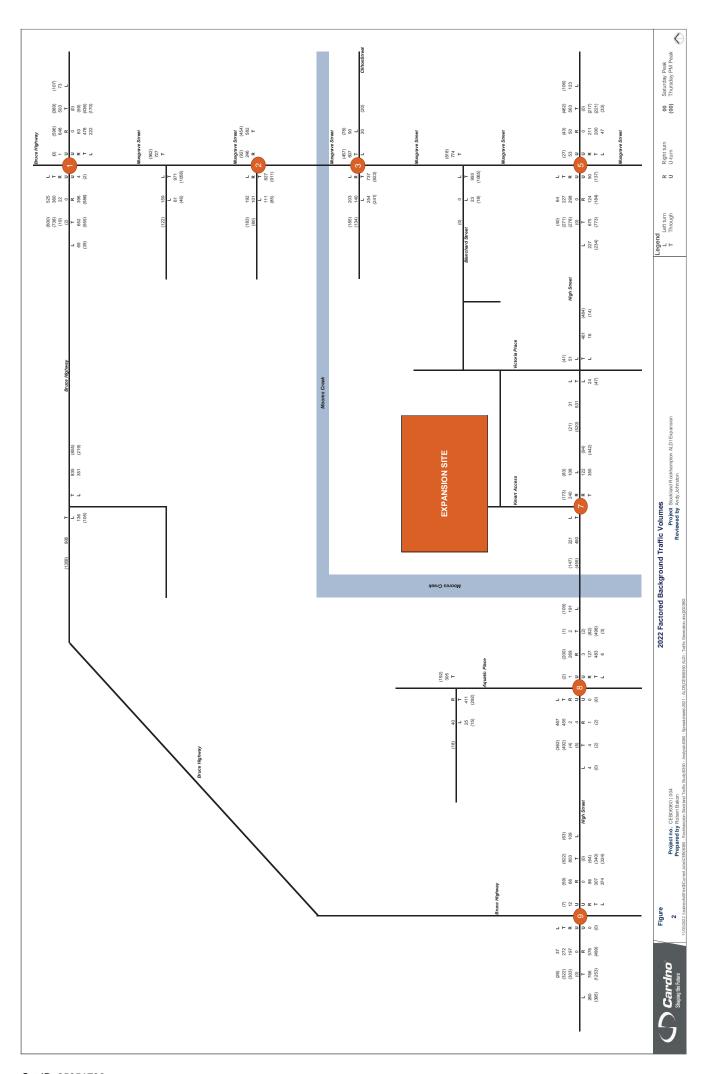

Stockland Rockhampton ALDI Expansion

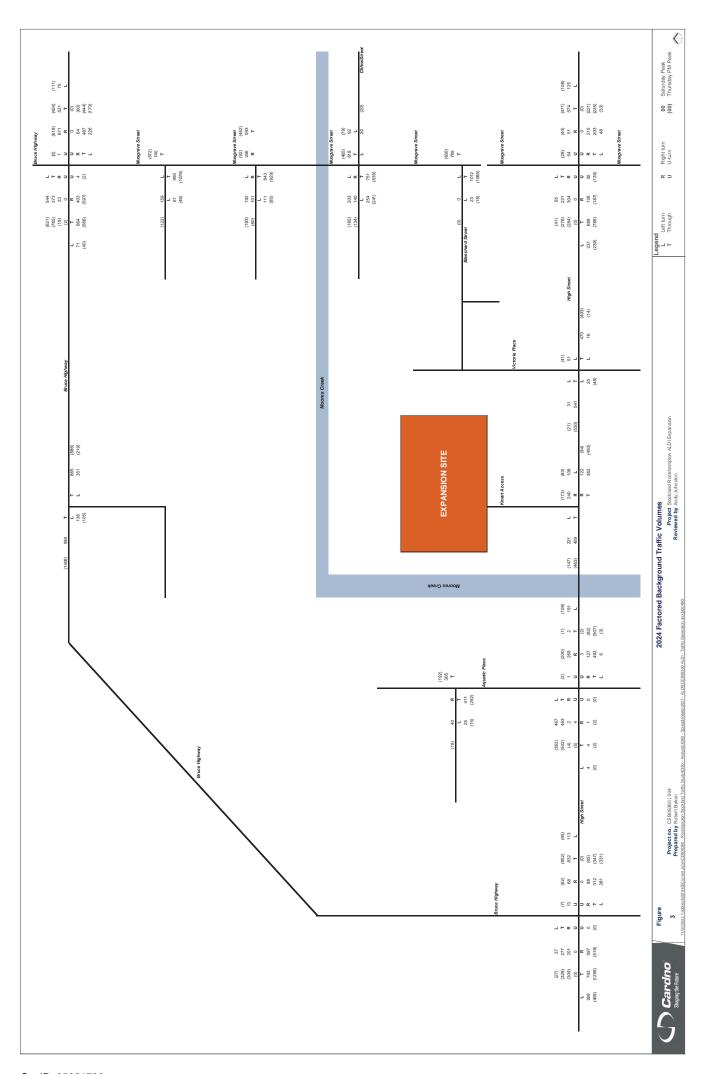

APPENDIX

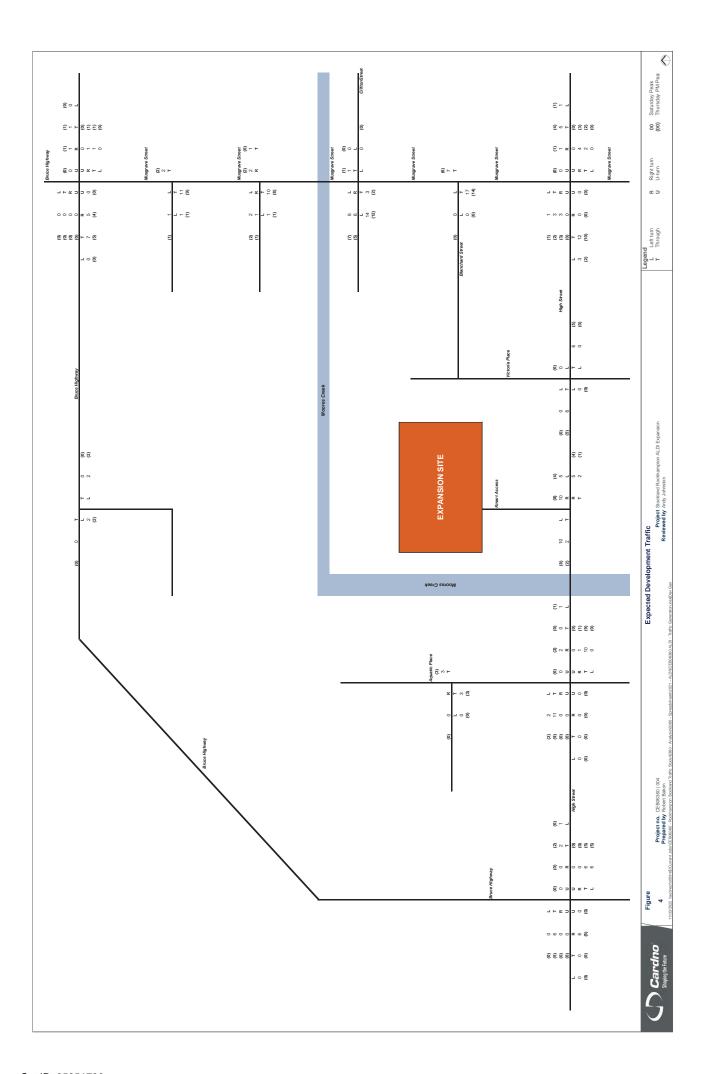
DEVELOPMENT PLANS

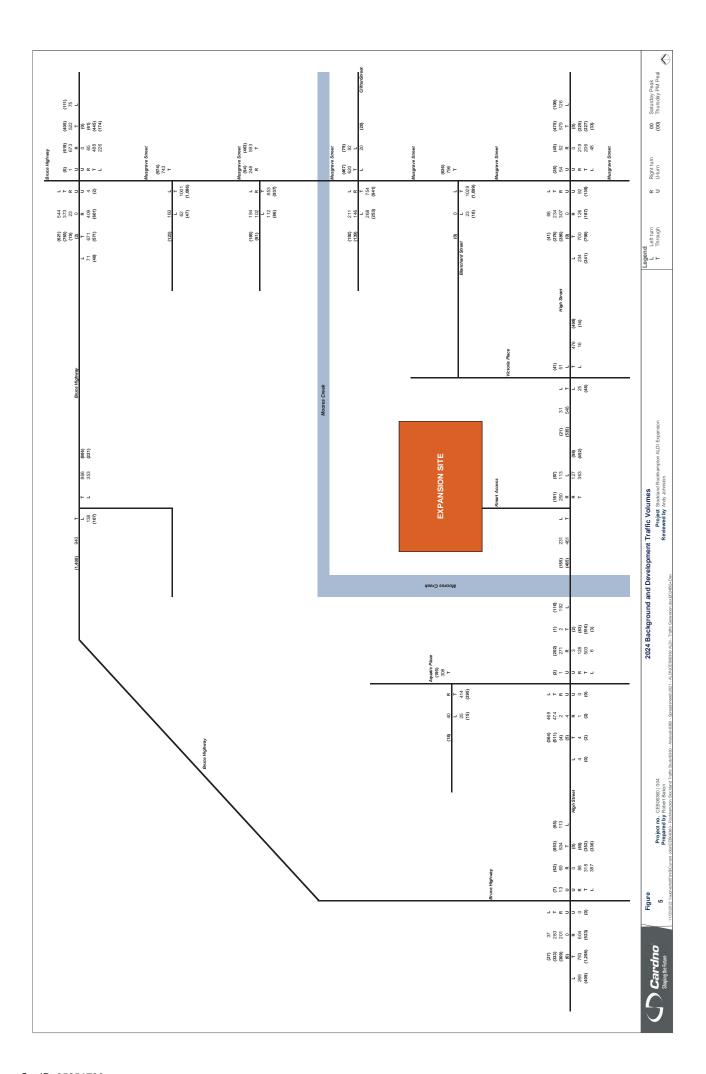

Stockland Rockhampton ALDI Expansion


APPENDIX


В


TRAFFIC GENERATION



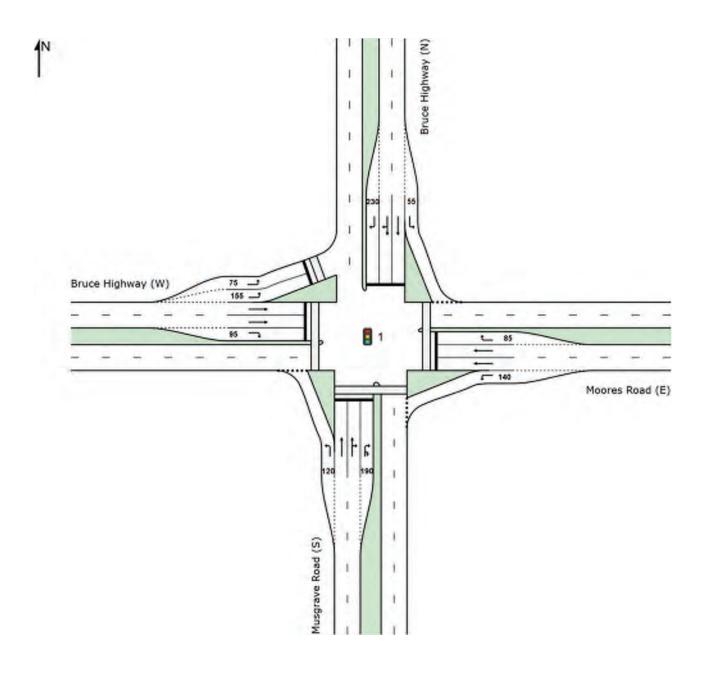


Stockland Rockhampton ALDI Expansion

APPENDIX

C

SIDRA ANALYSIS


SITE LAYOUT

Site: 1 [2022 BG Saturday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Created: Friday, 11 March 2022 3:50:06 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)

Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2022 BG Saturday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement P	erformanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	ı: Musgra	ive Road (S))									
1	L2	73	6.0	0.074	7.1	LOS A	0.1	0.6	0.02	0.59	0.02	56.2
2	T1	686	1.0	0.729	40.7	LOS C	22.6	136.9	0.88	0.77	0.88	30.7
3	R2	417	1.0	0.729	47.3	LOS D	22.4	135.8	0.88	0.82	0.88	32.8
3u	U	4	0.0	0.729	47.5	LOS D	21.5	130.0	0.88	0.83	0.88	27.3
Appro	ach	1180	1.3	0.729	41.0	LOS C	22.6	136.9	0.83	0.78	0.83	32.6
East:	Moores	Road (E)										
4	L2	234	0.0	0.187	11.0	LOS A	4.0	24.1	0.34	0.68	0.34	54.0
5	T1	503	0.0	0.605	57.5	LOS E	16.7	100.0	0.96	0.81	0.96	33.5
6	R2	66	0.0	0.670	86.9	LOS F	5.1	30.6	1.00	0.79	1.11	22.3
Appro	ach	803	0.0	0.670	46.4	LOS D	16.7	100.0	0.78	0.77	0.79	35.7
North	: Bruce H	lighway (N)										
7	L2	77	0.0	0.064	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	529	1.0	0.718	34.4	LOS C	22.9	140.9	0.81	0.72	0.81	33.3
9	R2	682	3.0	0.718	41.5	LOS C	22.9	140.9	0.83	0.81	0.83	34.3
Appro	ach	1288	2.0	0.718	36.6	LOS C	22.9	140.9	0.77	0.76	0.77	34.9
West:	Bruce H	ighway (W)										
10	L2	553	2.0	0.707	65.9	LOS E	18.9	115.6	0.99	0.85	0.99	26.5
11	T1	379	1.0	0.458	55.4	LOS D	12.1	73.3	0.92	0.76	0.92	34.1
12	R2	23	0.0	0.234	83.2	LOS F	1.7	10.2	0.99	0.71	0.99	23.5
Appro	ach	955	1.6	0.707	62.2	LOS E	18.9	115.6	0.96	0.81	0.96	29.4
All Ve	hicles	4226	1.3	0.729	45.4	LOS D	22.9	140.9	0.83	0.78	0.83	33.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	50	68.3	LOS F	0.2	0.2	0.96	0.96				
P2	East Full Crossing	50	50.5	LOS E	0.2	0.2	0.82	0.82				
P4	West Full Crossing	50	55.6	LOS E	0.2	0.2	0.86	0.86				
P4S	West Slip/Bypass Lane Crossing	53	48.1	LOS E	0.2	0.2	0.80	0.80				
All Pedestrians		203	55.5	LOS E			0.86	0.86				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2022 BG Saturday Peak]

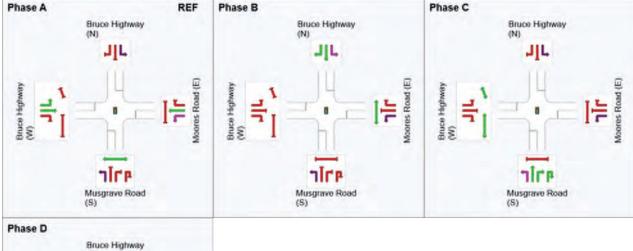
Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

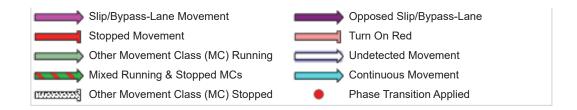

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	38	90	136
Green Time (sec)	32	46	40	8
Phase Time (sec)	38	52	46	14
Phase Split	25%	35%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:45 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2022 BG Thursday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement P	erformanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Musgra	ve Road (S))									
1	L2	41	0.0	0.037	7.0	LOS A	0.0	0.3	0.02	0.59	0.02	58.1
2	T1	584	1.0	0.756	39.4	LOS C	24.7	149.7	0.88	0.78	0.89	31.0
3	R2	617	0.0	0.756	46.0	LOS D	24.2	145.6	0.88	0.83	0.89	33.5
3u	U	2	0.0	0.756	46.2	LOS D	23.7	142.3	0.88	0.84	0.89	27.7
Appro	ach	1244	0.5	0.756	41.6	LOS C	24.7	149.7	0.85	0.80	0.86	32.9
East:	Moores	Road (E)										
4	L2	179	0.0	0.137	10.3	LOS A	2.8	16.6	0.32	0.67	0.32	54.6
5	T1	459	1.0	0.456	49.9	LOS D	14.0	85.0	0.89	0.75	0.89	35.9
6	R2	62	0.0	0.717	89.0	LOS F	4.9	29.1	1.00	0.81	1.17	21.9
Appro	ach	700	0.7	0.717	43.2	LOS D	14.0	85.0	0.75	0.73	0.77	37.0
North	: Bruce H	lighway (N)										
7	L2	113	1.0	0.115	8.3	LOS A	0.5	2.8	0.07	0.60	0.07	56.0
8	T1	409	4.0	0.769	43.4	LOS D	22.3	141.1	0.88	0.78	0.90	29.5
9	R2	627	6.0	0.769	50.8	LOS D	22.3	141.1	0.91	0.84	0.93	30.6
Appro	ach	1149	4.8	0.769	44.0	LOS D	22.3	141.1	0.82	0.80	0.84	31.8
West:	Bruce H	lighway (W)										
10	L2	632	4.0	0.673	60.2	LOS E	20.7	129.3	0.96	0.85	0.96	27.9
11	T1	777	1.0	0.771	56.4	LOS D	26.7	161.8	0.99	0.88	1.02	33.8
12	R2	20	0.0	0.231	84.7	LOS F	1.5	8.9	0.99	0.70	0.99	23.2
Appro	ach	1428	2.3	0.771	58.5	LOS E	26.7	161.8	0.97	0.86	0.99	31.1
All Ve	hicles	4522	2.2	0.771	47.8	LOS D	26.7	161.8	0.87	0.81	0.88	32.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	50	61.8	LOS F	0.2	0.2	0.91	0.91				
P2	East Full Crossing	50	57.3	LOS E	0.2	0.2	0.88	0.88				
P4	West Full Crossing	50	53.9	LOS E	0.2	0.2	0.85	0.85				
P4S	West Slip/Bypass Lane Crossing	53	46.5	LOS E	0.2	0.2	0.79	0.79				
All Pedestrians		203	54.8	LOS E			0.85	0.85				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2022 BG Thursday Peak]

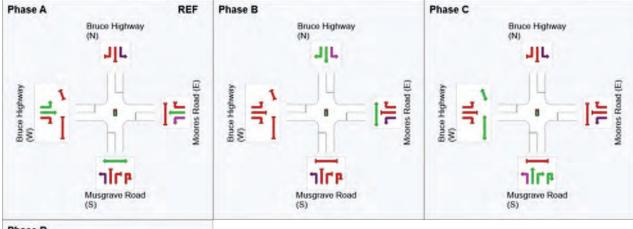
Intersection: Moores Road/Bruce Highway/Musgrave Street

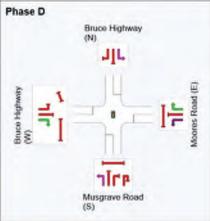
Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

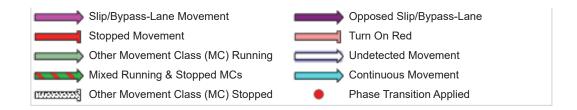

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	45	89	137
Green Time (sec)	39	38	42	7
Phase Time (sec)	45	44	48	13
Phase Split	30%	29%	32%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:45 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 BG Saturday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement F	erformanc	e - Vel	hicles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Musgra	ave Road (S)										
1	L2	75	6.0	0.077	7.1	LOS A	0.1	0.6	0.02	0.59	0.02	56.1
2	T1	699	1.0	0.742	40.9	LOS C	23.2	140.7	0.89	0.78	0.89	30.6
3	R2	424	1.0	0.742	47.6	LOS D	23.0	139.6	0.89	0.83	0.89	32.7
3u	U	4	0.0	0.742	47.8	LOS D	22.1	133.9	0.89	0.84	0.89	27.2
Appro	ach	1202	1.3	0.742	41.2	LOS C	23.2	140.7	0.83	0.78	0.83	32.5
East:	Moores	Road (E)										
4	L2	238	0.0	0.193	11.3	LOS A	4.2	25.4	0.35	0.68	0.35	53.7
5	T1	513	0.0	0.616	57.6	LOS E	17.0	102.1	0.96	0.81	0.96	33.4
6	R2	67	0.0	0.680	87.1	LOS F	5.2	31.1	1.00	0.80	1.12	22.2
Appro	ach	818	0.0	0.680	46.6	LOS D	17.0	102.1	0.79	0.77	0.80	35.6
North	: Bruce I	Highway (N)										
7	L2	79	0.0	0.066	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	548	1.0	0.745	34.8	LOS C	24.4	149.6	0.82	0.73	0.82	33.1
9	R2	706	3.0	0.745	41.9	LOS C	24.4	149.6	0.85	0.82	0.85	34.2
Appro	ach	1334	2.0	0.745	36.9	LOS C	24.4	149.6	0.79	0.77	0.79	34.7
West:	Bruce H	lighway (W)										
10	L2	573	2.0	0.733	67.0	LOS E	19.9	121.6	0.99	0.86	1.02	26.3
11	T1	393	1.0	0.475	55.6	LOS D	12.6	76.2	0.93	0.77	0.93	34.0
12	R2	24	0.0	0.244	83.3	LOS F	1.8	10.7	0.99	0.71	0.99	23.5
Appro	ach	989	1.6	0.733	62.9	LOS E	19.9	121.6	0.97	0.82	0.98	29.2
All Ve	hicles	4343	1.3	0.745	45.8	LOS D	24.4	149.6	0.84	0.79	0.85	32.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	50	68.3	LOS F	0.2	0.2	0.96	0.96				
P2	East Full Crossing	50	50.5	LOS E	0.2	0.2	0.82	0.82				
P4	West Full Crossing	50	55.6	LOS E	0.2	0.2	0.86	0.86				
P4S	West Slip/Bypass Lane Crossing	53	48.1	LOS E	0.2	0.2	0.80	0.80				
All Pedestrians		203	55.5	LOS E			0.86	0.86				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 BG Saturday Peak]

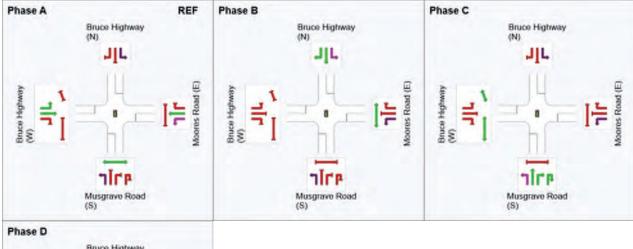
Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

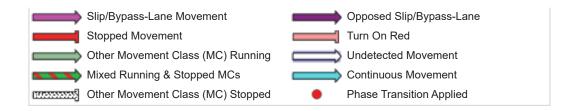

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	38	90	136
Green Time (sec)	32	46	40	8
Phase Time (sec)	38	52	46	14
Phase Split	25%	35%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:46 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 BG Thursday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand Fl Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Musgra	ive Road (S)										
1	L2	42	0.0	0.039	7.0	LOS A	0.1	0.3	0.02	0.59	0.02	58.1
2	T1	596	1.0	0.789	41.5	LOS C	26.3	159.3	0.91	0.82	0.93	30.1
3	R2	628	0.0	0.789	48.2	LOS D	25.7	154.9	0.91	0.85	0.93	32.7
3u	U	2	0.0	0.789	48.4	LOS D	25.2	151.4	0.91	0.86	0.93	27.0
Appro	ach	1268	0.5	0.789	43.7	LOS D	26.3	159.3	0.88	0.82	0.90	32.1
East:	Moores I	Road (E)										
4	L2	182	0.0	0.141	10.6	LOS A	2.9	17.5	0.32	0.67	0.32	54.4
5	T1	467	1.0	0.464	50.0	LOS D	14.3	86.8	0.89	0.75	0.89	35.9
6	R2	63	0.0	0.729	89.3	LOS F	4.9	29.7	1.00	0.81	1.18	21.9
Appro	ach	713	0.7	0.729	43.4	LOS D	14.3	86.8	0.76	0.74	0.77	36.9
North	: Bruce H	lighway (N)										
7	L2	117	1.0	0.122	9.5	LOS A	8.0	4.7	0.11	0.61	0.11	54.7
8	T1	425	4.0	0.779	42.7	LOS D	23.2	147.1	0.88	0.78	0.90	29.7
9	R2	651	6.0	0.779	50.1	LOS D	23.2	147.1	0.91	0.85	0.93	30.8
Appro	ach	1193	4.8	0.779	43.5	LOS D	23.2	147.1	0.82	0.80	0.84	32.0
West:	Bruce H	ighway (W)										
10	L2	654	4.0	0.717	60.6	LOS E	21.6	134.9	0.96	0.85	0.96	27.8
11	T1	805	1.0	0.799	58.2	LOS E	28.4	172.0	1.00	0.90	1.05	33.2
12	R2	20	0.0	0.231	84.7	LOS F	1.5	8.9	0.99	0.70	0.99	23.2
Appro	ach	1479	2.3	0.799	59.6	LOS E	28.4	172.0	0.98	0.88	1.01	30.8
All Ve	hicles	4653	2.2	0.799	48.7	LOS D	28.4	172.0	0.88	0.82	0.90	32.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	50	61.8	LOS F	0.2	0.2	0.91	0.91				
P2	East Full Crossing	50	56.5	LOS E	0.2	0.2	0.87	0.87				
P4	West Full Crossing	50	54.7	LOS E	0.2	0.2	0.86	0.86				
P4S	West Slip/Bypass Lane Crossing	53	47.3	LOS E	0.2	0.2	0.80	0.80				
All Pe	destrians	203	55.0	LOS E			0.86	0.86				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 BG Thursday Peak]

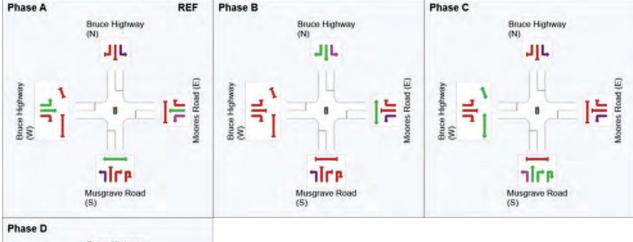
Intersection: Moores Road/Bruce Highway/Musgrave Street

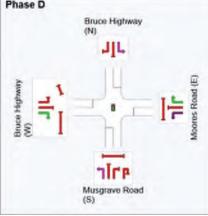
Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

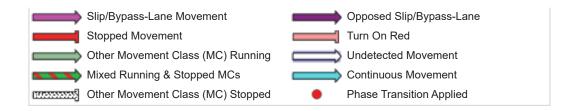

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	45	90	137
Green Time (sec)	39	39	41	7
Phase Time (sec)	45	45	47	13
Phase Split	30%	30%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:46 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 DEV Saturday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement F	Performanc	e - Vel	hicles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	ı: Musgra	ave Road (S))									
1	L2	75	6.0	0.078	7.2	LOS A	0.1	0.7	0.03	0.59	0.03	56.1
2	T1	706	1.0	0.751	41.2	LOS C	23.7	143.6	0.89	0.78	0.90	30.5
3	R2	431	1.0	0.751	47.9	LOS D	23.5	142.4	0.89	0.83	0.90	32.6
3u	U	4	0.0	0.751	48.1	LOS D	22.6	136.7	0.89	0.84	0.90	27.1
Appro	ach	1216	1.3	0.751	41.5	LOS C	23.7	143.6	0.84	0.79	0.84	32.4
East:	Moores	Road (E)										
4	L2	238	0.0	0.193	11.3	LOS A	4.2	25.4	0.35	0.68	0.35	53.7
5	T1	514	0.0	0.617	57.6	LOS E	17.1	102.4	0.96	0.81	0.96	33.4
6	R2	68	0.0	0.691	87.3	LOS F	5.3	31.7	1.00	0.80	1.13	22.2
Appro	ach	820	0.0	0.691	46.7	LOS D	17.1	102.4	0.79	0.77	0.80	35.6
North	: Bruce I	Highway (N)										
7	L2	79	0.0	0.067	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	549	1.0	0.747	34.8	LOS C	24.5	150.2	0.82	0.74	0.82	33.1
9	R2	708	3.0	0.747	41.9	LOS C	24.5	150.2	0.85	0.82	0.85	34.2
Appro	oach	1337	2.0	0.747	36.9	LOS C	24.5	150.2	0.79	0.77	0.79	34.7
West	Bruce F	lighway (W)										
10	L2	573	2.0	0.733	67.0	LOS E	19.9	121.6	0.99	0.86	1.02	26.3
11	T1	393	1.0	0.475	55.6	LOS D	12.6	76.2	0.93	0.77	0.93	34.0
12	R2	24	0.0	0.244	83.3	LOS F	1.8	10.7	0.99	0.71	0.99	23.5
Appro	oach	989	1.6	0.733	62.9	LOS E	19.9	121.6	0.97	0.82	0.98	29.2
All Ve	hicles	4362	1.3	0.751	45.9	LOS D	24.5	150.2	0.84	0.79	0.85	32.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P1	South Full Crossing	50	68.3	LOS F	0.2	0.2	0.96	0.96			
P2	East Full Crossing	50	50.5	LOS E	0.2	0.2	0.82	0.82			
P4	West Full Crossing	50	55.6	LOS E	0.2	0.2	0.86	0.86			
P4S	West Slip/Bypass Lane Crossing	53	48.1	LOS E	0.2	0.2	0.80	0.80			
All Pedestrians		203	55.5	LOS E			0.86	0.86			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 DEV Saturday Peak]

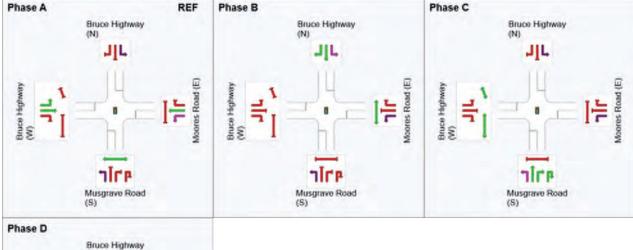
Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

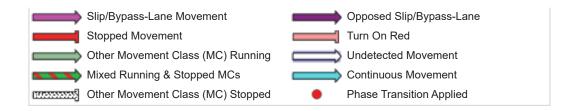

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	38	90	136
Green Time (sec)	32	46	40	8
Phase Time (sec)	38	52	46	14
Phase Split	25%	35%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:46 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 DEV Thursday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement P	erformanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	ı: Musgra	ive Road (S)										
1	L2	42	0.0	0.039	7.0	LOS A	0.1	0.3	0.02	0.59	0.02	58.1
2	T1	601	1.0	0.796	41.8	LOS C	26.7	161.5	0.91	0.82	0.93	30.0
3	R2	633	0.0	0.796	48.4	LOS D	26.1	157.1	0.91	0.85	0.94	32.6
3u	U	2	0.0	0.796	48.7	LOS D	25.6	153.6	0.91	0.86	0.94	27.0
Appro	ach	1278	0.5	0.796	43.9	LOS D	26.7	161.5	0.88	0.83	0.91	32.0
East:	Moores I	Road (E)										
4	L2	183	0.0	0.142	10.6	LOS A	2.9	17.6	0.32	0.67	0.32	54.4
5	T1	468	1.0	0.465	50.0	LOS D	14.4	87.0	0.89	0.75	0.89	35.9
6	R2	64	0.0	0.741	89.5	LOS F	5.0	30.3	1.00	0.82	1.20	21.8
Appro	ach	716	0.7	0.741	43.5	LOS D	14.4	87.0	0.76	0.74	0.78	36.9
North	: Bruce H	lighway (N)										
7	L2	117	1.0	0.123	9.5	LOS A	8.0	4.7	0.11	0.61	0.11	54.7
8	T1	426	4.0	0.781	42.7	LOS D	23.3	147.6	0.88	0.78	0.90	29.7
9	R2	652	6.0	0.781	50.2	LOS D	23.3	147.6	0.91	0.85	0.94	30.8
Appro	ach	1195	4.8	0.781	43.5	LOS D	23.3	147.6	0.82	0.80	0.84	31.9
West:	Bruce H	ighway (W)										
10	L2	654	4.0	0.717	60.6	LOS E	21.6	134.9	0.96	0.85	0.96	27.8
11	T1	805	1.0	0.799	58.2	LOS E	28.4	172.0	1.00	0.90	1.05	33.2
12	R2	20	0.0	0.231	84.7	LOS F	1.5	8.9	0.99	0.70	0.99	23.2
Appro	ach	1479	2.3	0.799	59.6	LOS E	28.4	172.0	0.98	0.88	1.01	30.8
All Ve	hicles	4667	2.2	0.799	48.7	LOS D	28.4	172.0	0.88	0.82	0.90	32.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate				
P1	South Full Crossing	50	61.8	LOS F	0.2	0.2	0.91	0.91				
P2	East Full Crossing	50	56.5	LOS E	0.2	0.2	0.87	0.87				
P4	West Full Crossing	50	54.7	LOS E	0.2	0.2	0.86	0.86				
P4S	West Slip/Bypass Lane Crossing	53	47.3	LOS E	0.2	0.2	0.80	0.80				
All Pedestrians		203	55.0	LOS E			0.86	0.86				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 DEV Thursday Peak]

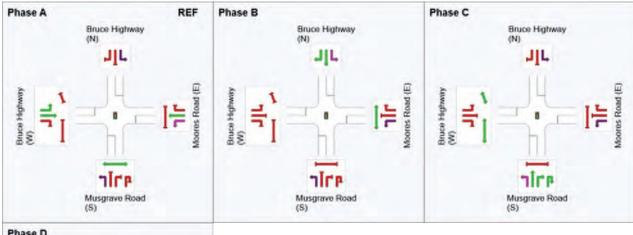
Intersection: Moores Road/Bruce Highway/Musgrave Street

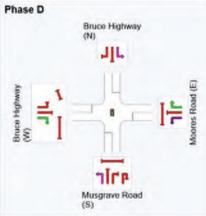
Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

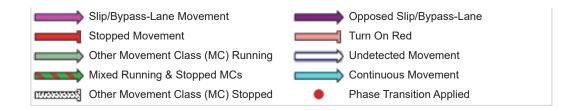

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	45	90	137
Green Time (sec)	39	39	41	7
Phase Time (sec)	45	45	47	13
Phase Split	30%	30%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Tuesday, 8 March 2022 10:05:47 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 APRV Saturday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	ement P	erformanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: Musgra	ve Road (S))									
1	L2	75	6.0	0.078	7.2	LOS A	0.1	0.7	0.03	0.59	0.03	56.1
2	T1	727	1.0	0.757	40.4	LOS C	24.4	147.9	0.89	0.78	0.89	30.8
3	R2	447	1.0	0.757	47.1	LOS D	24.2	146.7	0.89	0.83	0.90	32.9
3u	U	4	0.0	0.757	47.3	LOS D	23.2	140.8	0.89	0.84	0.90	27.4
Appro	ach	1254	1.3	0.757	40.8	LOS C	24.4	147.9	0.84	0.79	0.84	32.7
East:	Moores I	Road (E)										
4	L2	239	0.0	0.194	11.3	LOS A	4.3	25.5	0.35	0.68	0.35	53.7
5	T1	518	0.0	0.643	58.8	LOS E	17.4	104.4	0.97	0.82	0.97	33.1
6	R2	72	0.0	0.723	87.9	LOS F	5.6	33.4	1.00	0.82	1.16	22.1
Appro	ach	828	0.0	0.723	47.6	LOS D	17.4	104.4	0.80	0.78	0.81	35.2
North	: Bruce H	lighway (N)										
7	L2	79	0.0	0.067	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.7
8	T1	554	1.0	0.752	34.9	LOS C	24.7	152.0	0.83	0.74	0.83	33.1
9	R2	713	3.0	0.752	42.0	LOS C	24.7	152.0	0.85	0.82	0.85	34.1
Appro	ach	1345	2.0	0.752	37.0	LOS C	24.7	152.0	0.79	0.78	0.79	34.7
West:	Bruce H	ighway (W)										
10	L2	573	2.0	0.757	68.9	LOS E	20.3	124.0	1.00	0.87	1.05	25.9
11	T1	393	1.0	0.490	56.6	LOS E	12.7	77.0	0.93	0.78	0.93	33.7
12	R2	24	0.0	0.244	83.3	LOS F	1.8	10.7	0.99	0.71	0.99	23.5
Appro	ach	989	1.6	0.757	64.4	LOS E	20.3	124.0	0.97	0.83	1.00	28.8
All Ve	hicles	4417	1.3	0.757	46.2	LOS D	24.7	152.0	0.85	0.79	0.86	32.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians										
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate			
P1	South Full Crossing	50	69.3	LOS F	0.2	0.2	0.96	0.96			
P2	East Full Crossing	50	50.5	LOS E	0.2	0.2	0.82	0.82			
P4	West Full Crossing	50	54.7	LOS E	0.2	0.2	0.86	0.86			
P4S	West Slip/Bypass Lane Crossing	53	47.3	LOS E	0.2	0.2	0.80	0.80			
All Pedestrians		203	55.4	LOS E			0.86	0.86			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 APRV Saturday Peak]

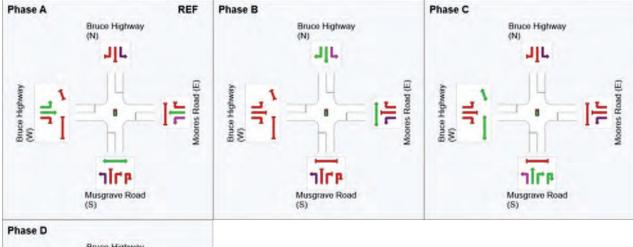
Intersection: Moores Road/Bruce Highway/Musgrave Street

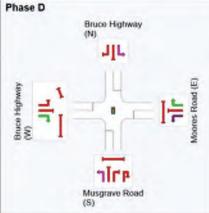
Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

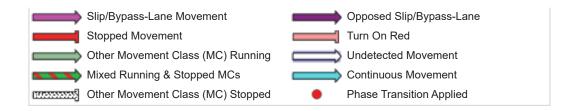

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	37	89	136
Green Time (sec)	31	46	41	8
Phase Time (sec)	37	52	47	14
Phase Split	25%	35%	31%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:06:26 AM
Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

Site: 1 [2024 APRV Thursday Peak]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Move	Movement Performance - Vehicles											
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	ı: Musgra	ive Road (S))									
1	L2	42	0.0	0.039	7.0	LOS A	0.1	0.3	0.02	0.59	0.02	58.1
2	T1	620	1.0	0.798	40.9	LOS C	27.3	165.3	0.91	0.82	0.93	30.4
3	R2	648	0.0	0.798	47.6	LOS D	26.7	160.8	0.91	0.85	0.93	32.9
3u	U	2	0.0	0.798	47.8	LOS D	26.2	157.1	0.91	0.86	0.93	27.2
Appro	ach	1313	0.5	0.798	43.1	LOS D	27.3	165.3	0.88	0.83	0.90	32.3
East:	Moores I	Road (E)										
4	L2	183	0.0	0.142	10.6	LOS A	2.9	17.6	0.32	0.67	0.32	54.4
5	T1	472	1.0	0.468	50.1	LOS D	14.5	87.7	0.90	0.75	0.90	35.9
6	R2	66	0.0	0.765	90.1	LOS F	5.2	31.4	1.00	0.83	1.23	21.7
Appro	ach	721	0.7	0.765	43.7	LOS D	14.5	87.7	0.76	0.74	0.78	36.8
North	: Bruce F	lighway (N)										
7	L2	117	1.0	0.124	9.9	LOS A	0.9	5.3	0.12	0.61	0.12	54.3
8	T1	429	4.0	0.807	44.8	LOS D	24.3	153.8	0.90	0.81	0.94	28.9
9	R2	655	6.0	0.807	52.3	LOS D	24.3	153.8	0.94	0.86	0.97	30.1
Appro	ach	1201	4.8	0.807	45.5	LOS D	24.3	153.8	0.84	0.82	0.88	31.2
West:	Bruce H	ighway (W)										
10	L2	655	4.0	0.720	60.6	LOS E	21.7	135.1	0.96	0.85	0.96	27.8
11	T1	805	1.0	0.799	58.2	LOS E	28.4	172.0	1.00	0.90	1.05	33.2
12	R2	20	0.0	0.231	84.7	LOS F	1.5	8.9	0.99	0.70	0.99	23.2
Appro	ach	1480	2.3	0.799	59.6	LOS E	28.4	172.0	0.98	0.88	1.01	30.8
All Ve	hicles	4715	2.2	0.807	49.0	LOS D	28.4	172.0	0.89	0.83	0.91	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate					
P1	South Full Crossing	50	61.8	LOS F	0.2	0.2	0.91	0.91					
P2	East Full Crossing	50	57.3	LOS E	0.2	0.2	0.88	0.88					
P4	West Full Crossing	50	53.9	LOS E	0.2	0.2	0.85	0.85					
P4S	West Slip/Bypass Lane Crossing	53	46.5	LOS E	0.2	0.2	0.79	0.79					
All Pe	destrians	203	54.8	LOS E			0.85	0.85					

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Site: 1 [2024 APRV Thursday Peak]

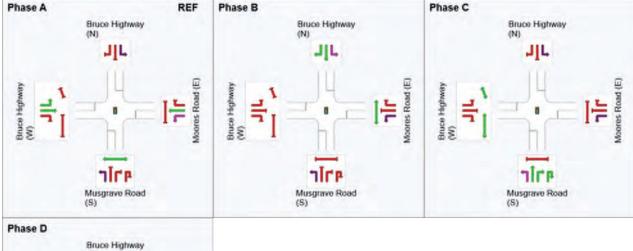
Intersection: Moores Road/Bruce Highway/Musgrave Street

Scenario: 2017 AM Configuration: Existing Site Category: (None)

Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

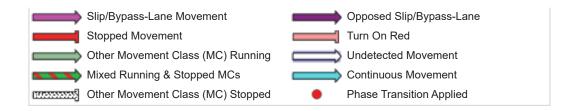

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	45	89	137
Green Time (sec)	39	38	42	7
Phase Time (sec)	45	44	48	13
Phase Split	30%	29%	32%	9%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



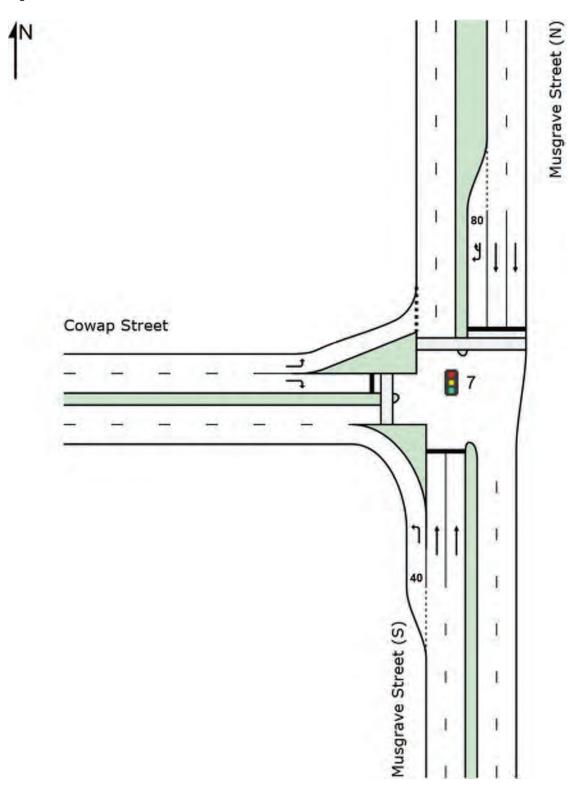
REF: Reference Phase VAR: Variable Phase

Normal Movement

Permitted/Opposed

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:06:26 AM
Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\1)
Musgrave Rd-Bruce Hwy.sip8

SITE LAYOUT


Site: 7 [2022 BG Saturday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Created: Friday, 11 March 2022 3:57:44 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Site: 7 [2022 BG Saturday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	ment F	Performanc	e - Vel	hicles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	9
South	: Musgr	ave Street (S	5)									
1	L2	111	0.0	0.060	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	827	1.0	0.520	15.8	LOS B	12.6	76.3	0.51	0.45	0.51	40.4
Appro	ach	938	0.9	0.520	14.6	LOS B	12.6	76.3	0.45	0.46	0.45	40.4
North:	Musgra	ave Street (N)									
8	T1	582	1.0	0.206	0.4	LOS A	0.4	2.7	0.03	0.02	0.03	59.2
9	R2	246	0.0	0.356	6.1	LOS A	0.4	2.2	0.04	0.59	0.04	45.9
9u	U	6	0.0	0.356	7.2	LOS A	0.4	2.2	0.04	0.59	0.04	49.6
Appro	ach	834	0.7	0.356	2.1	LOS A	0.4	2.7	0.03	0.20	0.03	55.5
West:	Cowap	Street										
10	L2	192	0.0	0.180	3.4	LOS A	2.1	12.6	0.24	0.38	0.24	44.5
12	R2	101	0.0	0.307	52.4	LOS D	5.6	33.8	0.91	0.75	0.91	12.8
Appro	ach	293	0.0	0.307	20.3	LOS B	5.6	33.8	0.47	0.51	0.47	27.1
All Vel	hicles	2065	0.7	0.520	10.4	LOSA	12.6	76.3	0.28	0.36	0.28	43.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov	5	Demand	Average		Average Back		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96
P4	West Full Crossing	50	27.8	LOS C	0.1	0.1	0.66	0.66
All Pe	destrians	100	43.6	LOS E			0.81	0.81

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:27 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2022 BG Saturday Peak]

Intersection: Musgrave Street/Cowap Street

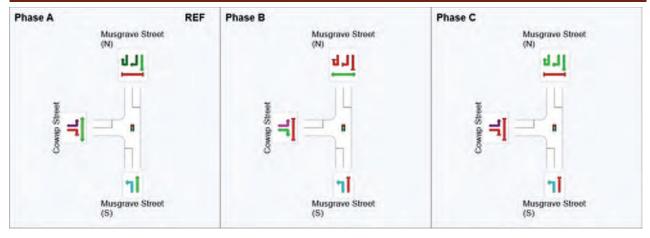
2017 AM Peak

Configuration: Existing Site Category: (None)

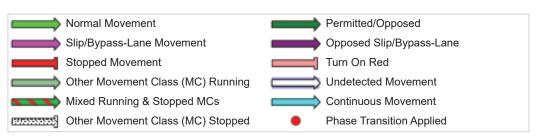
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	60	89
Green Time (sec)	54	23	35
Phase Time (sec)	60	29	41
Phase Split	46%	22%	32%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:27 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2) Musgrave St-Cowap St.sip8

Site: 7 [2022 BG Thursday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	: Musgr	ave Street (S	5)										
1	L2	85	0.0	0.046	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6	
2	T1	911	1.0	0.419	2.5	LOS A	3.0	18.0	0.11	0.10	0.11	55.7	
Appro	ach	996	0.9	0.419	2.8	LOS A	3.0	18.0	0.10	0.14	0.10	54.9	
North:	Musgra	ave Street (N)										
8	T1	454	3.0	0.162	0.4	LOS A	0.3	2.1	0.03	0.02	0.03	59.2	
9	R2	92	0.0	0.179	5.9	LOS A	0.1	0.6	0.02	0.58	0.02	46.2	
9u	U	1	0.0	0.179	7.1	LOS A	0.1	0.6	0.02	0.58	0.02	49.8	
Appro	ach	547	2.5	0.179	1.3	LOS A	0.3	2.1	0.03	0.12	0.03	57.2	
West:	Cowap	Street											
10	L2	183	0.0	0.177	2.1	LOS A	1.1	6.5	0.15	0.33	0.15	46.4	
12	R2	80	0.0	0.243	51.7	LOS D	4.4	26.4	0.90	0.73	0.90	12.9	
Appro	ach	263	0.0	0.243	17.2	LOS B	4.4	26.4	0.38	0.45	0.38	29.3	
All Ve	hicles	1806	1.3	0.419	4.4	LOS A	4.4	26.4	0.12	0.18	0.12	50.9	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov	5	Demand	Average		Average Back	Prop.	Effective	
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96
P4	West Full Crossing	50	16.8	LOS B	0.1	0.1	0.51	0.51
All Pe	destrians	100	38.0	LOS D			0.73	0.73

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:27 AM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2022 BG Thursday Peak]

Intersection: Musgrave Street/Cowap Street

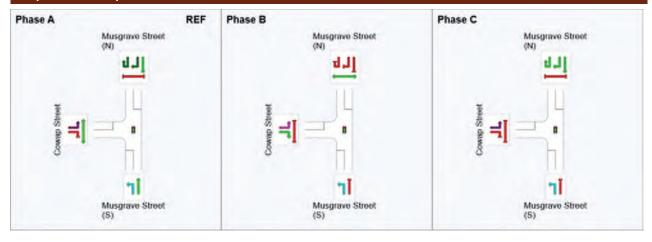
2017 AM Peak

Configuration: Existing Site Category: (None)

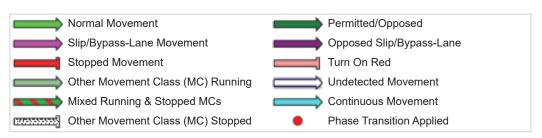
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:27 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2) Musgrave St-Cowap St.sip8

Site: 7 [2024 BG Saturday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	ment F	Performanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: Musgr	ave Street (S	5)									
1	L2	111	0.0	0.060	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	843	1.0	0.519	15.0	LOS B	12.4	75.1	0.50	0.44	0.50	41.0
Appro	ach	954	0.9	0.519	13.9	LOS A	12.4	75.1	0.44	0.45	0.44	41.1
North:	Musgra	ave Street (N)									
8	T1	593	1.0	0.209	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2
9	R2	246	0.0	0.364	6.1	LOS A	0.4	2.2	0.04	0.59	0.04	45.9
9u	U	6	0.0	0.364	7.2	LOS A	0.4	2.2	0.04	0.59	0.04	49.6
Appro	ach	845	0.7	0.364	2.1	LOS A	0.5	2.8	0.03	0.19	0.03	55.5
West:	Cowap	Street										
10	L2	192	0.0	0.182	3.4	LOS A	2.1	12.7	0.24	0.38	0.24	44.5
12	R2	101	0.0	0.307	52.4	LOS D	5.6	33.8	0.91	0.75	0.91	12.8
Appro	ach	293	0.0	0.307	20.3	LOS B	5.6	33.8	0.47	0.51	0.47	27.1
All Vel	hicles	2092	0.7	0.519	10.0	LOSA	12.4	75.1	0.28	0.35	0.28	43.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov	5	Demand	Average		Average Back		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96
P4	West Full Crossing	50	27.2	LOS C	0.1	0.1	0.65	0.65
All Pe	destrians	100	43.2	LOS E			0.80	0.80

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 BG Saturday Peak]

Intersection: Musgrave Street/Cowap Street

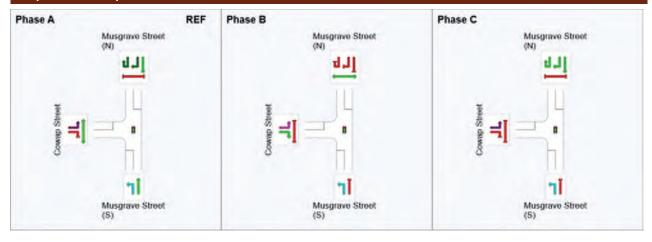
2017 AM Peak

Configuration: Existing Site Category: (None)

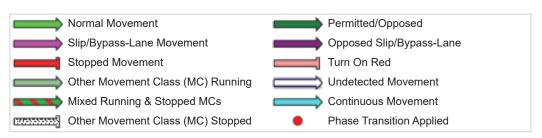
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	61	90
Green Time (sec)	55	23	34
Phase Time (sec)	61	29	40
Phase Split	47%	22%	31%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 BG Thursday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	South: Musgrave Street (S)												
1	L2	85	0.0	0.046	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6	
2	T1	929	1.0	0.421	2.0	LOS A	2.5	14.9	0.09	0.08	0.09	56.5	
Appro	ach	1014	0.9	0.421	2.3	LOS A	2.5	14.9	0.08	0.12	0.08	55.7	
North:	: Musgra	ave Street (N)										
8	T1	462	3.0	0.165	0.4	LOS A	0.3	2.1	0.03	0.02	0.03	59.2	
9	R2	92	0.0	0.186	5.9	LOS A	0.1	0.6	0.02	0.58	0.02	46.2	
9u	U	1	0.0	0.186	7.1	LOS A	0.1	0.6	0.02	0.58	0.02	49.8	
Appro	ach	555	2.5	0.186	1.3	LOS A	0.3	2.1	0.03	0.12	0.03	57.2	
West:	Cowap	Street											
10	L2	183	0.0	0.179	2.1	LOS A	1.1	6.5	0.15	0.33	0.15	46.4	
12	R2	80	0.0	0.243	51.7	LOS D	4.4	26.4	0.90	0.73	0.90	12.9	
Appro	ach	263	0.0	0.243	17.2	LOS B	4.4	26.4	0.38	0.45	0.38	29.3	
All Ve	hicles	1832	1.3	0.421	4.1	LOS A	4.4	26.4	0.11	0.17	0.11	51.4	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m						
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96				
P4	West Full Crossing	50	16.3	LOS B	0.1	0.1	0.50	0.50				
All Pe	destrians	100	37.8	LOS D			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 BG Thursday Peak]

Intersection: Musgrave Street/Cowap Street

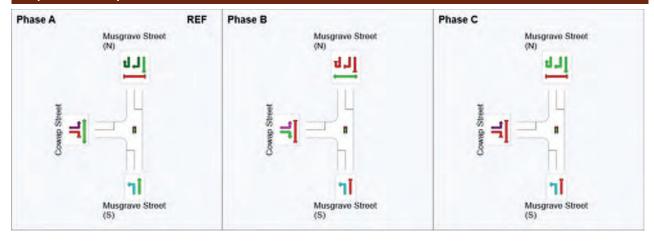
2017 AM Peak

Configuration: Existing Site Category: (None)

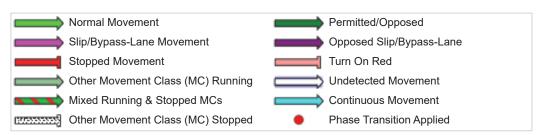
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	80	109
Green Time (sec)	74	23	15
Phase Time (sec)	80	29	21
Phase Split	62%	22%	16%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Dev Saturday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	lows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	South: Musgrave Street (S)												
1	L2	112	0.0	0.060	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6	
2	T1	853	1.0	0.526	15.1	LOS B	12.7	76.8	0.50	0.44	0.50	41.0	
Appro	ach	965	0.9	0.526	14.0	LOS A	12.7	76.8	0.44	0.45	0.44	41.0	
North:	Musgra	ive Street (N)										
8	T1	593	1.0	0.209	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2	
9	R2	248	0.0	0.367	6.1	LOS A	0.4	2.3	0.04	0.59	0.04	45.9	
9u	U	6	0.0	0.367	7.2	LOS A	0.4	2.3	0.04	0.59	0.04	49.6	
Appro	ach	847	0.7	0.367	2.1	LOS A	0.5	2.8	0.03	0.19	0.03	55.5	
West:	Cowap	Street											
10	L2	194	0.0	0.185	3.4	LOS A	2.1	12.9	0.24	0.39	0.24	44.5	
12	R2	102	0.0	0.310	52.4	LOS D	5.7	34.1	0.91	0.75	0.91	12.8	
Appro	ach	296	0.0	0.310	20.3	LOS B	5.7	34.1	0.47	0.51	0.47	27.1	
All Ve	hicles	2108	0.7	0.526	10.1	LOS A	12.7	76.8	0.28	0.36	0.28	43.5	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov	5	Demand	Average		Average Back		Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m						
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96				
P4	West Full Crossing	50	27.2	LOS C	0.1	0.1	0.65	0.65				
All Pe	destrians	100	43.2	LOS E			0.80	0.80				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Dev Saturday Peak]

Intersection: Musgrave Street/Cowap Street

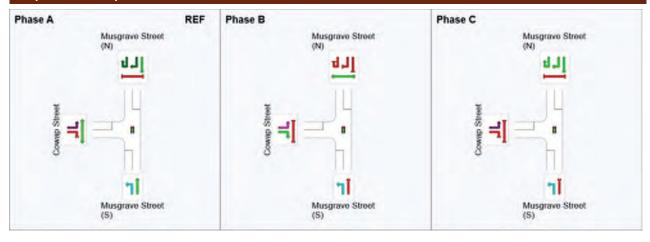
2017 AM Peak

Configuration: Existing Site Category: (None)

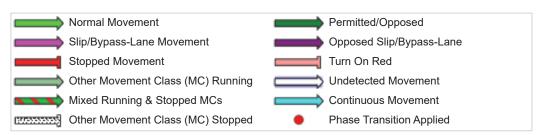
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	61	90
Green Time (sec)	55	23	34
Phase Time (sec)	61	29	40
Phase Split	47%	22%	31%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Dev Thursday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	South: Musgrave Street (S)												
1	L2	86	0.0	0.046	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6	
2	T1	937	1.0	0.431	2.5	LOS A	3.1	18.9	0.12	0.10	0.12	55.7	
Appro	ach	1023	0.9	0.431	2.8	LOSA	3.1	18.9	0.11	0.14	0.11	54.8	
North:	Musgra	ave Street (N)										
8	T1	463	3.0	0.166	0.4	LOS A	0.3	2.1	0.03	0.02	0.03	59.2	
9	R2	94	0.0	0.186	5.9	LOS A	0.1	0.7	0.02	0.58	0.02	46.2	
9u	U	1	0.0	0.186	7.1	LOS A	0.1	0.7	0.02	0.58	0.02	49.8	
Appro	ach	558	2.5	0.186	1.3	LOSA	0.3	2.1	0.03	0.12	0.03	57.2	
West:	Cowap	Street											
10	L2	185	0.0	0.181	2.1	LOS A	1.1	6.6	0.16	0.33	0.16	46.4	
12	R2	81	0.0	0.247	51.7	LOS D	4.5	26.7	0.90	0.74	0.90	12.9	
Appro	ach	266	0.0	0.247	17.2	LOS B	4.5	26.7	0.38	0.45	0.38	29.2	
All Ve	hicles	1847	1.3	0.431	4.4	LOSA	4.5	26.7	0.12	0.18	0.12	51.0	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov	5	Demand	Average		Average Back		Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m						
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96				
P4	West Full Crossing	50	16.8	LOS B	0.1	0.1	0.51	0.51				
All Pe	destrians	100	38.0	LOS D			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Dev Thursday Peak]

Intersection: Musgrave Street/Cowap Street

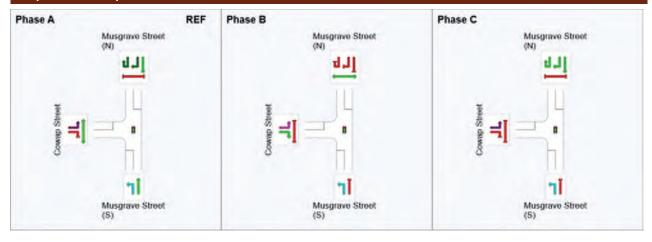
2017 AM Peak

Configuration: Existing Site Category: (None)

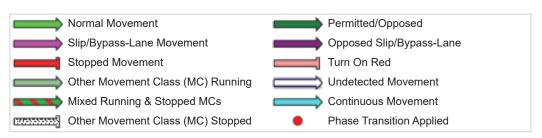
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Aprv Saturday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	Movement Performance - Vehicles												
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles		
South	South: Musgrave Street (S)												
1	L2	115	0.0	0.062	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6	
2	T1	883	1.0	0.549	15.2	LOS B	13.6	82.2	0.51	0.45	0.51	40.9	
Appro	ach	998	0.9	0.549	14.1	LOS A	13.6	82.2	0.45	0.46	0.45	40.9	
North:	Musgra	ave Street (N)										
8	T1	595	1.0	0.210	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2	
9	R2	254	0.0	0.382	6.3	LOS A	0.6	3.5	0.07	0.60	0.07	45.5	
9u	U	6	0.0	0.382	7.5	LOS A	0.6	3.5	0.07	0.60	0.07	49.3	
Appro	ach	855	0.7	0.382	2.2	LOS A	0.6	3.5	0.04	0.20	0.04	55.3	
West:	Cowap	Street											
10	L2	200	0.0	0.195	3.6	LOS A	2.4	14.1	0.25	0.39	0.25	44.2	
12	R2	105	0.0	0.320	52.5	LOS D	5.9	35.2	0.92	0.75	0.92	12.8	
Appro	ach	305	0.0	0.320	20.5	LOS B	5.9	35.2	0.48	0.52	0.48	27.0	
All Ve	hicles	2158	0.7	0.549	10.3	LOS A	13.6	82.2	0.29	0.36	0.29	43.2	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov	5	Demand	Average		Average Back		Prop.	Effective				
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m						
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96				
P4	West Full Crossing	50	27.2	LOS C	0.1	0.1	0.65	0.65				
All Pe	destrians	100	43.2	LOS E			0.80	0.80				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Aprv Saturday Peak]

Intersection: Musgrave Street/Cowap Street

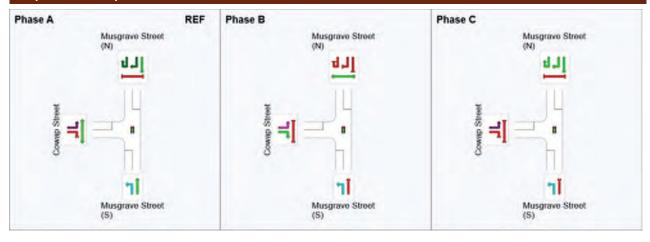
2017 AM Peak

Configuration: Existing Site Category: (None)

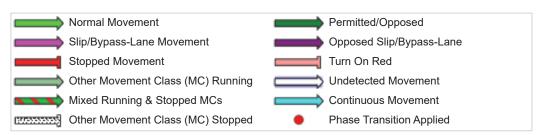
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	61	90
Green Time (sec)	55	23	34
Phase Time (sec)	61	29	40
Phase Split	47%	22%	31%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Aprv Thursday Peak]

Intersection: Musgrave Street/Cowap Street

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Move	ment F	Performanc	e - Vel	hicles								
Mov ID	Turn	Demand F Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: Musgr	ave Street (S	5)									
1	L2	88	0.0	0.047	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	964	1.0	0.443	2.6	LOS A	3.3	19.8	0.12	0.10	0.12	55.6
Appro	ach	1052	0.9	0.443	2.8	LOS A	3.3	19.8	0.11	0.14	0.11	54.8
North:	Musgra	ave Street (N)									
8	T1	464	3.0	0.166	0.4	LOS A	0.3	2.1	0.03	0.02	0.03	59.2
9	R2	99	0.0	0.199	5.9	LOS A	0.1	0.7	0.02	0.58	0.02	46.2
9u	U	1	0.0	0.199	7.1	LOS A	0.1	0.7	0.02	0.58	0.02	49.8
Appro	ach	564	2.5	0.199	1.4	LOS A	0.3	2.1	0.03	0.12	0.03	57.1
West:	Cowap	Street										
10	L2	190	0.0	0.188	2.1	LOS A	1.1	6.9	0.16	0.33	0.16	46.3
12	R2	83	0.0	0.253	51.8	LOS D	4.6	27.4	0.90	0.74	0.90	12.9
Appro	ach	273	0.0	0.253	17.2	LOS B	4.6	27.4	0.38	0.46	0.38	29.2
All Ve	hicles	1889	1.2	0.443	4.5	LOS A	4.6	27.4	0.12	0.18	0.12	50.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Ped	estrians						
Mov	5	Demand	Average		Average Back		Prop.	Effective
ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		
P3	North Full Crossing	50	59.3	LOS E	0.2	0.2	0.96	0.96
P4	West Full Crossing	50	16.8	LOS B	0.1	0.1	0.51	0.51
All Pe	destrians	100	38.0	LOS D			0.73	0.73

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

Site: 7 [2024 W Aprv Thursday Peak]

Intersection: Musgrave Street/Cowap Street

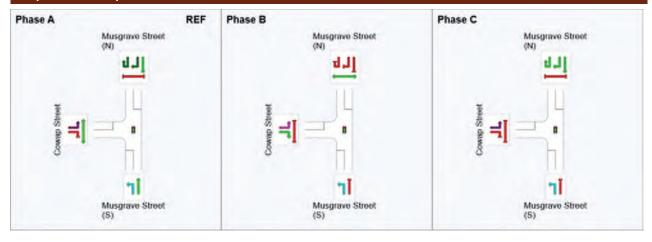
2017 AM Peak

Configuration: Existing Site Category: (None)

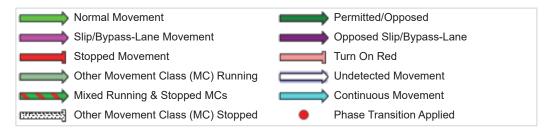
Signals - Fixed Time Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary


Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Phase Information section in the Detailed Output report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

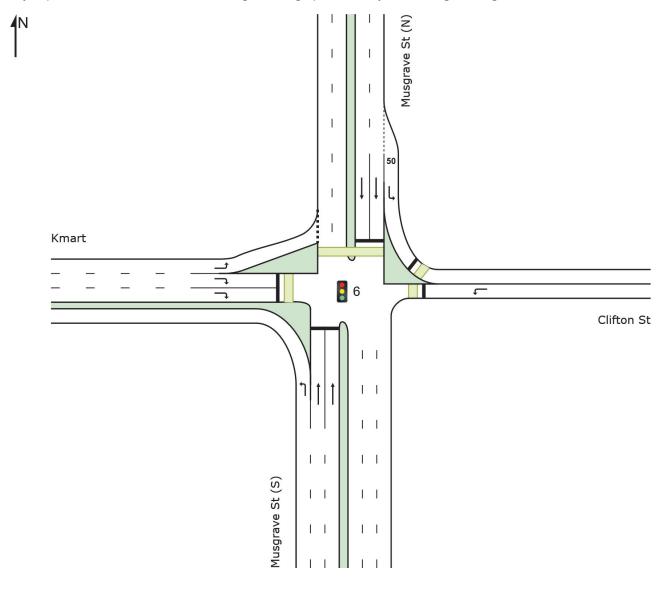
REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CARDNO PTY LTD | Processed: Wednesday, 9 March 2022 9:53:28 AM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\2)

Musgrave St-Cowap St.sip8

SITE LAYOUT


Site: 6 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Created: Friday, 11 March 2022 4:00:45 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU	MES	DEM, FLO	WS	Deg. Satn		Level of Service	QUE	ACK OF EUE	Prop. E Que	Stop		Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Mus	grave St ((S)											
1	L2	254	0.0	254	0.0	0.137	5.6	LOSA	0.0	0.0	0.00	0.53	0.00	37.0
2	T1	737	1.0	737	1.0	0.275	0.5	LOS A	0.6	3.8	0.03	0.03	0.03	58.5
Appr	oach	991	0.7	991	0.7	0.275	1.8	LOS A	0.6	3.8	0.02	0.15	0.02	53.3
East:	Cliftor	n St												
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr	oach	20	0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
North	n: Mus	grave St (N)											
7	L2	90	1.0	90	1.0	0.070	7.6	LOS A	0.5	2.8	0.09	0.55	0.09	46.7
8	T1	607	1.0	607	1.0	* 0.261	0.6	LOS A	0.5	3.1	0.03	0.02	0.03	58.1
Appr	oach	697	1.0	697	1.0	0.261	1.5	LOS A	0.5	3.1	0.04	0.09	0.04	54.8
West	: Kmaı	rt												
10	L2	203	1.0	203	1.0	0.184	1.8	LOS A	0.7	4.5	0.12	0.30	0.12	30.6
12	R2	140	0.0	140	0.0	* 0.175	46.7	LOS D	3.6	21.7	0.85	0.71	0.85	9.8
Appr	oach	343	0.6	343	0.6	0.184	20.1	LOS B	3.6	21.7	0.42	0.47	0.42	18.3
All Vehic	cles	2051	8.0	2051	0.8	0.275	5.5	LOSA	3.6	21.7	0.10	0.19	0.10	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
East: Clifton S	ped/h t	ped/h	sec		ped	m			sec	m	m/sec
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:15 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
2	L2 T1	254 823	0.0	254 823	0.0	0.137 * 0.305	5.6 0.5	LOS A	0.0	0.0	0.00	0.53	0.00	37.0 58.5
Appr	oacn : Cliftoi	1077 n St	0.0	1077	0.0	0.305	1.7	LOSA	0.7	4.4	0.02	0.15	0.02	53.7
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr	oach	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
North	n: Mus	grave St ((N)											
7	L2	78	1.0	78	1.0	0.061	7.6	LOS A	0.4	2.4	0.09	0.55	0.09	46.7
8	T1	457	3.0	457	3.0	0.202	0.6	LOS A	0.4	2.2	0.03	0.02	0.03	58.2
Appr	oach	535	2.7	535	2.7	0.202	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.5
West	t: Kmaı	rt												
10	L2	185	2.0	185	2.0	0.177	1.8	LOS A	0.7	4.1	0.12	0.30	0.12	30.6
12	R2	134	3.0	134	3.0	* 0.171	46.6	LOS D	3.5	21.4	0.85	0.71	0.85	9.8
Appr	oach	319	2.4	319	2.4	0.177	20.6	LOS B	3.5	21.4	0.43	0.47	0.43	18.0
All Vehic	cles	1951	1.1	1951	1.1	0.305	5.5	LOSA	3.5	21.4	0.10	0.19	0.10	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delav	Level of Service	AVERAGE QUE	BACK OF	Prop. E	ffective Stop	Travel Time	Travel	Aver. Speed
ID Sissaing	VOI.	FIOW	Delay	Service	[Ped	Dist]	Que	Rate	Tillle	DIST.	speeu '
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S ^{Slip/} Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:16 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Mus	grave St ((S)											
1 2 Appr	L2 T1	254 751 1005	0.0 1.0 0.7	254 751 1005	0.0 1.0 0.7	0.137 0.280 0.280	5.6 0.5 1.8	LOS A LOS A	0.0 0.6 0.6	0.0 3.9 3.9	0.00 0.03 0.02	0.53 0.03 0.15	0.00 0.03 0.02	37.0 58.5 53.4
	: Cliftor	n St												
4 Appr	L2 oach	20	0.0	20	0.0	* 0.233 0.233	73.0 73.0	LOS F	1.3	7.8 7.8	0.99	0.70	0.99	19.2 19.2
North	n: Mus	grave St (N)											
7 8	L2 T1	92 618	1.0	92 618	1.0	0.072 * 0.266	7.6 0.7	LOS A	0.5	2.8	0.09	0.55	0.09	46.7 58.1
Appr	oacn t: Kmaı	710 t	1.0	710	1.0	0.266	1.5	LOSA	0.5	3.1	0.04	0.09	0.04	54.8
10 12	R2	203	1.0 0.0	203 140	1.0	0.186 * 0.175	1.8 46.7	LOS A	0.7 3.6	4.5 21.7	0.12	0.30	0.12	30.6
Appr All Vehice		343 2078	0.6	2078	0.6	0.186	5.4	LOS A	3.6	21.7	0.42	0.47	0.42	18.3 42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	QUE		Prop. Et Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:16 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1	241 839	0.0	241 839	0.0	0.130 * 0.311	5.6 0.5	LOS A LOS A	0.0 0.7	0.0 4.5	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr		1080	0.0	1080	0.0	0.311	1.7	LOSA	0.7	4.5	0.03	0.03	0.02	54.0
East	Clifton	n St												
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr	oach	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
North	n: Mus	grave St (N)											
7	L2	79	1.0	79	1.0	0.062	7.6	LOS A	0.4	2.4	0.09	0.55	0.09	46.7
8	T1	465	3.0	465	3.0	0.205	0.6	LOS A	0.4	2.2	0.03	0.02	0.03	58.2
Appr	oach	544	2.7	544	2.7	0.205	1.6	LOS A	0.4	2.4	0.04	0.10	0.04	54.6
West	t: Kmaı	rt												
10	L2	185	2.0	185	2.0	0.179	1.8	LOS A	0.7	4.1	0.12	0.30	0.12	30.6
12	R2	134	3.0	134	3.0	* 0.171	46.6	LOS D	3.5	21.4	0.85	0.71	0.85	9.8
Appr	oach	319	2.4	319	2.4	0.179	20.6	LOS B	3.5	21.4	0.43	0.47	0.43	18.0
All Vehic	cles	1963	1.1	1963	1.1	0.311	5.5	LOSA	3.5	21.4	0.10	0.19	0.10	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
East: Clifton S	ped/h t	ped/h	sec		ped	m			sec	m	m/sec
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:17 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1	L2	268	0.0	268	0.0	0.144	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	37.0
2	T1	754	1.0	754	1.0	0.281	0.5	LOS A	0.6	3.9	0.03	0.03	0.03	58.5
Appr	oach	1022	0.7	1022	0.7	0.281	1.9	LOS A	0.6	3.9	0.02	0.16	0.02	53.2
East	: Clifto	n St												
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr	oach	20	0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
North	n: Mus	grave St ((N)											
7	L2	92	1.0	92	1.0	0.072	7.6	LOS A	0.5	2.8	0.09	0.55	0.09	46.7
8	T1	620	1.0	620	1.0	* 0.267	0.7	LOS A	0.5	3.2	0.03	0.03	0.03	58.1
Appr	oach	712	1.0	712	1.0	0.267	1.5	LOSA	0.5	3.2	0.04	0.09	0.04	54.8
West	t: Kmaı	rt												
10	L2	211	1.0	211	1.0	0.193	1.8	LOS A	0.8	4.7	0.12	0.30	0.12	30.6
12	R2	146	0.0	146	0.0	* 0.183	46.7	LOS D	3.8	22.7	0.86	0.71	0.86	9.8
Appr	oach	357	0.6	357	0.6	0.193	20.2	LOS B	3.8	22.7	0.42	0.47	0.42	18.2
All Vehic	cles	2111	0.8	2111	0.8	0.281	5.5	LOSA	3.8	22.7	0.10	0.19	0.10	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing			Aver. Delay	Level of Service				ffective Stop	Travel Time	Travel Aver. Dist. Speed		
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec	
East: Clifton S	t											
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
North: Musgra	ve St (N)										
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51	
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
West: Kmart												
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96	
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54	

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:17 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1	253 841	0.0	253 841	0.0	0.136 * 0.311	5.6 0.5	LOS A LOS A	0.0 0.7	0.0 4.5	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr	oach : Cliftoi	1094	0.0	1094	0.0	0.311	1.7	LOSA	0.7	4.5	0.02	0.14	0.02	53.8
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr	oach	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
North	n: Mus	grave St (N)											
7 8	L2 T1	79 467	1.0 3.0	79 467	1.0 3.0	0.062 0.206	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.2	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.2
Appr		546	2.7	546	2.7	0.206	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.6
Wes	t: Kmaı	rt												
10 12	L2 R2	192 139	2.0 3.0	192 139	2.0 3.0	0.186 * 0.177	1.8 46.7	LOS A LOS D	0.7 3.6	4.3 22.2	0.12 0.85	0.30 0.71	0.12 0.85	30.6 9.8
Appr	oach	331	2.4	331	2.4	0.186	20.7	LOS B	3.6	22.2	0.43	0.47	0.43	18.0
All Vehic	cles	1991	1.1	1991	1.1	0.311	5.5	LOSA	3.6	22.2	0.10	0.19	0.10	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance												
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed		
East: Clifton S	ped/h t	ped/h	sec		ped	m			sec	m	m/sec		
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47		
North: Musgra	ve St (N	l)											
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51		
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47		
West: Kmart													
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96		
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54		

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:18 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Musgrave St (S)														
1 2	L2 T1	310 762	0.0	310 762	0.0	0.167 0.284	5.6 0.5	LOS A	0.0	0.0 4.0	0.00	0.53	0.00	37.0 58.5
Appr	oach : Cliftoi	1072 n St	0.7	1072	0.7	0.284	2.0	LOSA	0.7	4.0	0.02	0.17	0.02	52.6
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr	oach	20	0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
North	n: Mus	grave St (N)											
7	L2	92	1.0	92	1.0	0.072	7.6	LOS A	0.5	2.8	0.09	0.55	0.09	46.7
8	T1	624	1.0	624	1.0	* 0.268	0.7	LOS A	0.5	3.2	0.03	0.03	0.03	58.1
Appr	oach	716	1.0	716	1.0	0.268	1.5	LOSA	0.5	3.2	0.04	0.09	0.04	54.9
West	t: Kmaı	rt												
10	L2	236	1.0	236	1.0	0.217	1.8	LOS A	0.9	5.5	0.12	0.30	0.12	30.6
12	R2	163	0.0	163	0.0	* 0.204	47.0	LOS D	4.2	25.5	0.86	0.72	0.86	9.7
Appr	oach	399	0.6	399	0.6	0.217	20.3	LOS B	4.2	25.5	0.42	0.47	0.42	18.2
All Vehic	cles	2207	0.8	2207	0.8	0.284	5.8	LOSA	4.2	25.5	0.11	0.21	0.11	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing			Aver. Delay	Level of Service				ffective Stop	Travel Time	Travel Aver. Dist. Speed		
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec	
East: Clifton S	t											
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
North: Musgra	ve St (N)										
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51	
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
West: Kmart												
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96	
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54	

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:54:21 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	CK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	South: Musgrave St (S)													
1 2 Appr	L2 T1	290 848 1138	0.0 0.0 0.0	290 848 1138	0.0 0.0 0.0	0.156 * 0.314 0.314	5.6 0.5 1.8	LOS A LOS A	0.0 0.8 0.8	0.0 4.5 4.5	0.00 0.03 0.02	0.53 0.03 0.16	0.00 0.03 0.02	37.0 58.4 53.3
	: Cliftor		0.0	1130	0.0	0.514	1.0	LOGA	0.0	4.5	0.02	0.10	0.02	55.5
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr		20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
North	n: Mus	grave St (N)											
7	L2	79	1.0	79	1.0	0.062	7.6	LOS A	0.4	2.4	0.09	0.55	0.09	46.7
8	T1	470	3.0	470	3.0	0.207	0.6	LOS A	0.4	2.3	0.03	0.02	0.03	58.2
Appr	oach	549	2.7	549	2.7	0.207	1.6	LOS A	0.4	2.4	0.04	0.10	0.04	54.6
West	t: Kmaı	t												
10	L2	214	2.0	214	2.0	0.208	1.8	LOS A	0.8	5.0	0.12	0.30	0.12	30.6
12	R2	154	3.0	154	3.0	* 0.197	46.9	LOS D	4.0	24.8	0.86	0.72	0.86	9.7
Appr	oach	368	2.4	368	2.4	0.208	20.7	LOS B	4.0	24.8	0.43	0.48	0.43	18.0
All Vehic	cles	2075	1.1	2075	1.1	0.314	5.8	LOSA	4.0	24.8	0.11	0.20	0.11	41.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE BACK OF QUEUE		Prop. Et Que	Stop	Travel Time	Travel Aver. Dist. Speed		
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec	
East: Clifton S	t											
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
North: Musgra	ve St (N)										
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51	
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47	
West: Kmart												
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96	
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54	

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:54:22 AM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3)
Clifton-Musgrave Rd.sip9

Site: 6 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:15 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:16 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:16 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

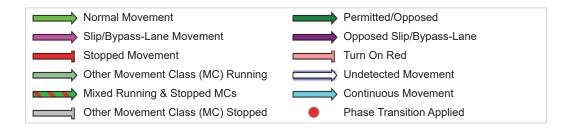
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:17 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

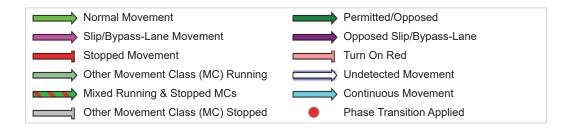
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:17 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

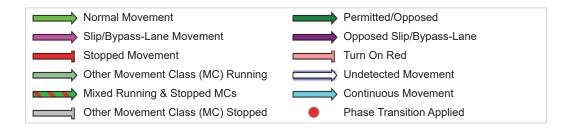
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:45:18 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:54:21 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

Site: 6 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: Musgrave St/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

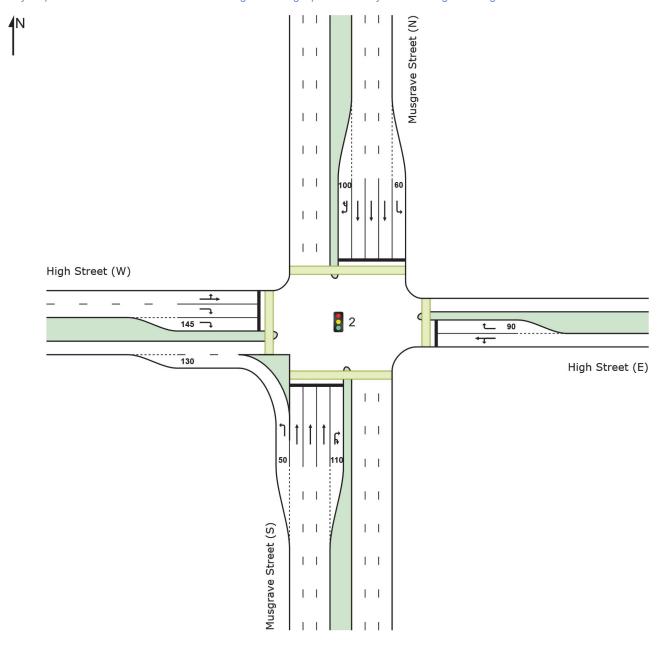
Phase A REF Phase B Musgrave St (N) Musgrave St (N) Musgrave St (S) Musgrave St (S) Musgrave St (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 10:54:22 AM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\3) Clifton-Musgrave Rd.sip9

SITE LAYOUT


Site: 2 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Created: Friday, 11 March 2022 4:02:16 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO¹ [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m m		Ttate	Cycles	km/h
Sout	th: Mus	grave Str	eet (S)											
1	L2	227	2.0	227	2.0	0.124	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	675	1.0	675	1.0	* 0.622	51.5	LOS D	14.2	85.8	0.91	0.76	0.91	19.4
3	R2	124	0.0	124	0.0	* 0.616	53.1	LOS D	13.0	78.2	0.88	0.81	0.88	20.4
3u	U	90	0.0	90	0.0	0.616	54.5	LOS D	13.0	78.2	0.88	0.81	0.88	22.6
Appı	roach	1116	1.0	1116	1.0	0.622	42.7	LOS D	14.2	85.8	0.72	0.72	0.72	22.9
East	t: High	Street (E)												
4	L2	47	0.0	47	0.0	0.517	57.2	LOS E	15.5	94.4	0.91	0.78	0.91	20.8
5	T1	200	2.0	200	2.0	0.517	51.6	LOS D	15.5	94.4	0.91	0.78	0.91	18.2
6	R2	211	0.0	211	0.0	* 0.631	67.4	LOS E	14.4	86.5	0.98	0.83	0.98	13.4
Appı	roach	458	0.9	458	0.9	0.631	59.5	LOS E	15.5	94.4	0.94	0.80	0.94	16.1
Nort	h: Mus	grave Stre	eet (N)											
7	L2	123	0.0	123	0.0	0.432	60.6	LOS E	7.6	45.7	0.88	0.78	0.88	14.2
8	T1	563	1.0	563	1.0	0.519	50.3	LOS D	11.3	68.7	0.87	0.72	0.87	19.7
9	R2	50	4.0	50	4.0	0.308	49.6	LOS D	5.5	33.5	0.76	0.76	0.76	15.9
9u	U	53	0.0	53	0.0	0.308	51.0	LOS D	5.5	33.5	0.76	0.76	0.76	13.9
App	roach	789	1.0	789	1.0	0.519	51.9	LOS D	11.3	68.7	0.86	0.73	0.86	18.2
Wes	t: High	Street (W	/)											
10	L2	64	2.0	64	2.0	0.613	46.7	LOS D	16.6	100.6	0.83	0.73	0.83	18.0
11	T1	227	1.0	227	1.0	* 0.613	41.1	LOS C	16.6	100.6	0.83	0.73	0.83	21.1
12	R2	298	2.0	298	2.0	0.452	56.4	LOS D	8.9	54.4	0.85	0.78	0.85	19.6
Appı	roach	589	1.6	589	1.6	0.613	49.5	LOS D	16.6	100.6	0.84	0.75	0.84	19.9
All Vehi	icles	2952	1.1	2952	1.1	0.631	49.1	LOS D	16.6	100.6	0.81	0.74	0.81	19.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a			Prop. Effective Que Stop		Travel Time	Travel Dist. S	Aver. Speed	
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		' m/sec	
South: Musgra	ave Stre	et (S)										
P1 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	100.9	52.0	0.52	

East: High Str	eet (E)										
P2 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	88.4	37.0	0.42
North: Musgra	ve Stree	t (N)									
P3 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	100.9	52.0	0.52
West: High St	reet (W)										
P4 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	90.9	39.0	0.43
All Pedestrians	200	200	60.7	LOS F	0.2	0.2	0.90	0.90	95.3	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:26 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	IMES HV]	DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.	ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sou	th: Mus	grave Str	eet (S)											
1	L2	234	4.0	234	4.0	0.130	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	773	0.0	773	0.0	* 0.748	51.5	LOS D	16.4	98.7	0.96	0.82	0.98	19.4
3	R2	184	2.0	184	2.0	* 0.752	45.3	LOS D	18.7	113.5	0.89	0.84	0.91	22.5
3u	U	137	0.0	137	0.0	0.752	46.7	LOS D	18.7	113.5	0.89	0.84	0.91	24.8
App	roach	1328	1.0	1328	1.0	0.752	42.2	LOS C	18.7	113.5	0.77	0.77	0.79	23.1
East	t: High	Street (E)												
4	L2	33	0.0	33	0.0	0.600	58.4	LOS E	15.6	95.5	0.95	0.81	0.95	20.6
5	T1	221	2.0	221	2.0	0.600	52.9	LOS D	15.6	95.5	0.95	0.81	0.95	18.0
6	R2	217	0.0	217	0.0	* 0.744	69.1	LOS E	14.7	88.4	1.00	0.86	1.07	13.2
App	roach	471	0.9	471	0.9	0.744	60.7	LOS E	15.6	95.5	0.97	0.83	1.01	15.8
Nort	h: Mus	grave Stre	eet (N)											
7	L2	106	0.0	106	0.0	0.400	58.6	LOS E	6.2	37.2	0.88	0.77	0.88	14.5
8	T1	462	2.0	462	2.0	0.448	47.6	LOS D	8.6	52.6	0.85	0.70	0.85	20.4
9	R2	43	17.0	43	17.0	0.172	38.2	LOS C	2.9	19.1	0.64	0.72	0.64	18.6
9u	U	27	0.0	27	0.0	0.172	39.4	LOS C	2.9	19.1	0.64	0.72	0.64	16.8
App	roach	638	2.6	638	2.6	0.448	48.5	LOS D	8.6	52.6	0.84	0.71	0.84	19.1
Wes	t: High	Street (W	/)											
10	L2	40	3.0	40	3.0	0.737	50.5	LOS D	18.6	114.2	0.92	0.80	0.94	17.2
11	T1	271	2.0	271	2.0	* 0.737	44.9	LOS D	18.6	114.2	0.92	0.80	0.94	20.1
12	R2	278	2.0	278	2.0	0.483	57.1	LOS E	8.1	49.8	0.89	0.78	0.89	19.4
App	roach	589	2.1	589	2.1	0.737	51.0	LOS D	18.6	114.2	0.91	0.79	0.91	19.6
All Vehi	icles	3026	1.5	3026	1.5	0.752	48.1	LOS D	18.7	114.2	0.84	0.77	0.86	20.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Per	forman	ce							
Mov	Input	Dem. Flow	Aver. Delav	· ·		BACK OF	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
	ped/h	ped/h	sec	55.1.55	[Ped ped	Dist]	α	Rate	sec		m/sec
South: Musg											
P1 Full	50	50	62.4	LOS F	0.2	0.2	0.94	0.94	102.4	52.0	0.51

East: High Str	eet (E)										
P2 Full	50	50	57.7	LOS E	0.2	0.2	0.91	0.91	86.2	37.0	0.43
North: Musgra	ave Street	(N)									
P3 Full	50	50	62.4	LOS F	0.2	0.2	0.94	0.94	102.4	52.0	0.51
West: High St	reet (W)										
P4 Full	50	50	58.6	LOS E	0.2	0.2	0.92	0.92	88.6	39.0	0.44
All Pedestrians	200	200	60.3	LOS F	0.2	0.2	0.93	0.93	94.9	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:27 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovement		rmance										
Mov ID	Turn	INPl VOLUI [Total veh/h		DEMA FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave Stre	eet (S)											
1	L2	231	2.0	231	2.0	0.126	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	688	1.0	688	1.0	* 0.634	51.6	LOS D	14.5	87.8	0.91	0.76	0.91	19.4
3	R2	126	0.0	126	0.0	* 0.628	53.2	LOS D	13.4	80.1	0.88	0.81	0.88	20.4
3u	U	92	0.0	92	0.0	0.628	54.7	LOS D	13.4	80.1	0.88	0.81	0.88	22.6
Appr	oach	1137	1.0	1137	1.0	0.634	42.8	LOS D	14.5	87.8	0.72	0.72	0.72	22.9
East	: High	Street (E)												
4	L2	48	0.0	48	0.0	0.540	58.3	LOS E	15.9	97.2	0.92	0.79	0.92	20.5
5	T1	203	2.0	203	2.0	0.540	52.8	LOS D	15.9	97.2	0.92	0.79	0.92	17.9
6	R2	215	0.0	215	0.0	* 0.620	66.5	LOS E	14.6	87.5	0.97	0.83	0.97	13.6
Appr	oach	466	0.9	466	0.9	0.620	59.7	LOS E	15.9	97.2	0.95	0.81	0.95	16.1
North	n: Mus	grave Stre	et (N)											
7	L2	125	0.0	125	0.0	0.439	60.7	LOS E	7.8	46.6	0.88	0.78	0.88	14.1
8	T1	574	1.0	574	1.0	0.529	50.4	LOS D	11.6	70.3	0.87	0.72	0.87	19.7
9	R2	51	4.0	51	4.0	0.314	49.7	LOS D	5.6	34.3	0.76	0.76	0.76	15.9
9u	U	54	0.0	54	0.0	0.314	51.1	LOS D	5.6	34.3	0.76	0.76	0.76	13.8
Appr	oach	804	1.0	804	1.0	0.529	52.0	LOS D	11.6	70.3	0.86	0.74	0.86	18.2
Wes	t: High	Street (W)											
10	L2	65	2.0	65	2.0	0.640	48.1	LOS D	17.3	105.1	0.85	0.75	0.85	17.7
11	T1	231	1.0	231	1.0	* 0.640	42.5	LOS C	17.3	105.1	0.85	0.75	0.85	20.6
12	R2	304	2.0	304	2.0	0.445	55.2	LOS D	8.9	54.7	0.84	0.78	0.84	19.9
Appr	oach	600	1.6	600	1.6	0.640	49.6	LOS D	17.3	105.1	0.85	0.76	0.85	19.9
All Vehic	cles	3007	1.1	3007	1.1	0.640	49.2	LOS D	17.3	105.1	0.82	0.75	0.82	19.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Peri	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delav	Level of a		BACK OF EUE	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
				0011100	[Ped	Quo	Rate	TIMIC			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Stre	et (S)									
P1 Full	50	50	61.8	LOS F	0.2	0.2	0.91	0.91	101.8	52.0	0.51

East: High Str	eet (E)										
P2 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	88.4	37.0	0.42
North: Musgra	ve Street	(N)									
P3 Full	50	50	61.8	LOS F	0.2	0.2	0.91	0.91	101.8	52.0	0.51
West: High Str	eet (W)										
P4 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	90.9	39.0	0.43
All Pedestrians	200	200	61.1	LOS F	0.2	0.2	0.90	0.90	95.7	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:27 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m m		Male	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	239	4.0	239	4.0	0.132	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	788	0.0	788	0.0	* 0.746	52.1	LOS D	18.7	111.9	0.93	0.80	0.95	19.2
3	R2	187	2.0	187	2.0	* 0.757	47.7	LOS D	20.3	123.1	0.89	0.85	0.91	21.8
3u	U	139	0.0	139	0.0	0.757	49.1	LOS D	20.3	123.1	0.89	0.85	0.91	24.1
Appr	roach	1353	1.0	1353	1.0	0.757	43.1	LOS D	20.3	123.1	0.76	0.76	0.77	22.8
East	: High	Street (E)												
4	L2	33	0.0	33	0.0	0.613	62.4	LOS E	17.1	104.1	0.96	0.81	0.96	19.7
5	T1	225	2.0	225	2.0	0.613	56.9	LOS E	17.1	104.1	0.96	0.81	0.96	17.1
6	R2	221	0.0	221	0.0	* 0.776	75.2	LOS F	16.3	97.9	1.00	0.88	1.10	12.3
Appr	roach	479	0.9	479	0.9	0.776	65.7	LOS E	17.1	104.1	0.98	0.84	1.02	14.9
Nortl	h: Mus	grave Stre	eet (N)											
7	L2	108	0.0	108	0.0	0.363	58.8	LOS E	6.5	38.8	0.85	0.77	0.85	14.5
8	T1	471	2.0	471	2.0	0.422	48.2	LOS D	9.0	55.3	0.83	0.68	0.83	20.3
9	R2	44	17.0	44	17.0	0.175	40.1	LOS C	3.2	20.9	0.63	0.72	0.63	18.1
9u	U	28	0.0	28	0.0	0.175	41.3	LOS C	3.2	20.9	0.63	0.72	0.63	16.2
Appr	roach	651	2.6	651	2.6	0.422	49.1	LOS D	9.0	55.3	0.81	0.70	0.81	19.0
Wes	t: High	Street (W	/)											
10	L2	41	3.0	41	3.0	0.756	54.2	LOS D	20.6	126.1	0.93	0.82	0.95	16.3
11	T1	276	2.0	276	2.0	* 0.756	48.6	LOS D	20.6	126.1	0.93	0.82	0.95	19.1
12	R2	284	2.0	284	2.0	0.506	61.5	LOS E	9.0	55.1	0.90	0.78	0.90	18.5
Appr	oach	601	2.1	601	2.1	0.756	55.1	LOS D	20.6	126.1	0.92	0.80	0.93	18.6
All Vehi	cles	3084	1.5	3084	1.5	0.776	50.2	LOS D	20.6	126.1	0.83	0.77	0.85	19.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Per	forman	ce							
Mov ID Crossing	Input	Dem. Flow	Aver. Delav	· ·		BACK OF	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
י כון	, , ,			CCIVICC	[Ped	Dist]	Que	Rate			
South: Musg	ped/h rave Stre	ped/h et (S)	sec		ped	m			sec	m	m/sec
P1 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49

East: High Str	eet (E)										
P2 Full	50	50	59.1	LOS E	0.2	0.2	0.89	0.89	87.5	37.0	0.42
North: Musgra	ve Street	(N)									
P3 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49
West: High Str	eet (W)										
P4 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	90.0	39.0	0.43
All Pedestrians	200	200	62.5	LOSF	0.2	0.2	0.91	0.91	97.1	45.0	0.46

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:28 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	VOLU [Total	MES HV]	DEM/ FLO' [Total	WS HV]	Deg. Satn	Delay	Level of Service	95% BA QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sou	th: Mus	grave Str	eet (S)											
1	L2	234	2.0	234	2.0	0.128	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	700	1.0	700	1.0	* 0.649	51.8	LOS D	14.9	90.5	0.91	0.76	0.91	19.3
3	R2	126	0.0	126	0.0	* 0.648	54.5	LOS D	13.6	81.6	0.90	0.82	0.90	20.1
3u	U	92	0.0	92	0.0	0.648	56.0	LOS D	13.6	81.6	0.90	0.82	0.90	22.3
App	roach	1152	1.0	1152	1.0	0.649	43.1	LOS D	14.9	90.5	0.72	0.73	0.72	22.7
East	t: High	Street (E)												
4	L2	48	0.0	48	0.0	0.532	57.4	LOS E	16.0	97.5	0.92	0.79	0.92	20.8
5	T1	206	2.0	206	2.0	0.532	51.9	LOS D	16.0	97.5	0.92	0.79	0.92	18.1
6	R2	219	0.0	219	0.0	* 0.632	66.6	LOS E	14.9	89.4	0.98	0.83	0.98	13.5
App	roach	473	0.9	473	0.9	0.632	59.3	LOS E	16.0	97.5	0.95	0.81	0.95	16.1
Nort	h: Mus	grave Stre	eet (N)											
7	L2	126	0.0	126	0.0	0.442	60.8	LOS E	7.8	47.0	0.88	0.78	0.88	14.1
8	T1	579	1.0	579	1.0	0.534	50.5	LOS D	11.7	71.1	0.87	0.72	0.87	19.7
9	R2	52	4.0	52	4.0	0.327	50.9	LOS D	5.8	35.3	0.78	0.76	0.78	15.6
9u	U	54	0.0	54	0.0	0.327	52.3	LOS D	5.8	35.3	0.78	0.76	0.78	13.6
Арр	roach	811	1.0	811	1.0	0.534	52.2	LOS D	11.7	71.1	0.86	0.74	0.86	18.1
Wes	t: High	Street (W	/)											
10	L2	66	2.0	66	2.0	0.631	47.0	LOS D	17.3	104.9	0.84	0.74	0.84	18.0
11	T1	234	1.0	234	1.0	* 0.631	41.4	LOS C	17.3	104.9	0.84	0.74	0.84	21.0
12	R2	307	2.0	307	2.0	0.449	55.3	LOS D	9.0	55.4	0.85	0.78	0.85	19.9
Арр	roach	607	1.6	607	1.6	0.631	49.0	LOS D	17.3	104.9	0.84	0.76	0.84	20.1
All Vehi	icles	3043	1.1	3043	1.1	0.649	49.2	LOS D	17.3	104.9	0.82	0.75	0.82	19.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Per	forman	ce							
Mov ID Crossing	Input	Dem. Flow	Aver. Delav	· ·		BACK OF	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
	, vo			CCIVICC	[Ped	Dist]	Quo	Rate			
South: Musg	ped/h rave Stre	ped/h et (S)	sec	_	ped	m	_	_	sec	111	m/sec
P1 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	100.9	52.0	0.52

East: High Str	eet (E)										
P2 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	88.4	37.0	0.42
North: Musgra	ve Stree	t (N)									
P3 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	100.9	52.0	0.52
West: High St	reet (W)										
P4 Full	50	50	60.9	LOS F	0.2	0.2	0.90	0.90	90.9	39.0	0.43
All Pedestrians	200	200	60.7	LOS F	0.2	0.2	0.90	0.90	95.3	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:29 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEMA FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	241	4.0	241	4.0	0.133	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	798	0.0	798	0.0	* 0.756	52.4	LOS D	19.0	114.2	0.94	0.81	0.96	19.2
3	R2	187	2.0	187	2.0	* 0.777	49.4	LOS D	20.8	126.4	0.91	0.85	0.94	21.3
3u	U	139	0.0	139	0.0	0.777	50.8	LOS D	20.8	126.4	0.91	0.85	0.94	23.6
Appr	oach	1365	1.0	1365	1.0	0.777	43.7	LOS D	20.8	126.4	0.76	0.77	0.79	22.6
East	: High	Street (E)												
4	L2	33	0.0	33	0.0	0.618	62.5	LOS E	17.2	105.1	0.96	0.81	0.96	19.7
5	T1	227	2.0	227	2.0	0.618	56.9	LOS E	17.2	105.1	0.96	0.81	0.96	17.1
6	R2	225	0.0	225	0.0	* 0.757	73.4	LOS F	16.4	98.3	1.00	0.87	1.07	12.6
Appr	oach	485	0.9	485	0.9	0.757	65.0	LOS E	17.2	105.1	0.98	0.84	1.01	15.0
Nort	h: Mus	grave Stre	eet (N)											
7	L2	109	0.0	109	0.0	0.367	58.8	LOS E	6.5	39.2	0.85	0.77	0.85	14.5
8	T1	475	2.0	475	2.0	0.425	48.2	LOS D	9.1	55.8	0.83	0.68	0.83	20.3
9	R2	45	17.0	45	17.0	0.182	41.1	LOS C	3.3	21.7	0.65	0.72	0.65	17.8
9u	U	28	0.0	28	0.0	0.182	42.4	LOS C	3.3	21.7	0.65	0.72	0.65	15.9
Appr	oach	657	2.6	657	2.6	0.425	49.2	LOS D	9.1	55.8	0.81	0.70	0.81	18.9
Wes	t: High	Street (W	/)											
10	L2	41	3.0	41	3.0	0.761	54.4	LOS D	20.8	127.4	0.94	0.82	0.95	16.2
11	T1	278	2.0	278	2.0	* 0.761	48.8	LOS D	20.8	127.4	0.94	0.82	0.95	19.0
12	R2	286	2.0	286	2.0	0.488	60.2	LOS E	8.9	54.6	0.89	0.78	0.89	18.8
Appr	oach	605	2.1	605	2.1	0.761	54.5	LOS D	20.8	127.4	0.91	0.80	0.92	18.7
All Vehi	cles	3112	1.5	3112	1.5	0.777	50.3	LOS D	20.8	127.4	0.84	0.77	0.85	19.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Per	forman	ce							
Mov ID Crossing	Input	Dem. Flow	Aver. Delav	· ·		BACK OF	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
י כון	, , ,			CCIVICC	[Ped	Dist]	Que	Rate			
South: Musg	ped/h rave Stre	ped/h et (S)	sec		ped	m			sec	m	m/sec
P1 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49

East: High Str	eet (E)										
P2 Full	50	50	59.1	LOS E	0.2	0.2	0.89	0.89	87.5	37.0	0.42
North: Musgra	ve Street	(N)									
P3 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49
West: High Str	eet (W)										
P4 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	90.0	39.0	0.43
All Pedestrians	200	200	62.5	LOSF	0.2	0.2	0.91	0.91	97.1	45.0	0.46

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:29 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO¹ [Total		Deg. Satn		Level of Service	95% BA QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	% -	veh/h	% -	v/c	sec		veh	m Î				km/h
Sou	th: Mus	grave Str	eet (S)											
1	L2	242	2.0	242	2.0	0.132	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	738	1.0	738	1.0	* 0.663	50.8	LOS D	15.8	95.5	0.91	0.77	0.91	19.6
3	R2	126	0.0	126	0.0	* 0.648	54.5	LOS D	13.6	81.6	0.90	0.82	0.90	20.1
3u	U	92	0.0	92	0.0	0.648	56.0	LOS D	13.6	81.6	0.90	0.82	0.90	22.3
App	roach	1198	1.0	1198	1.0	0.663	42.6	LOS D	15.8	95.5	0.72	0.73	0.72	22.9
East	t: High	Street (E)												
4	L2	48	0.0	48	0.0	0.561	58.6	LOS E	16.7	101.7	0.93	0.80	0.93	20.5
5	T1	213	2.0	213	2.0	0.561	53.1	LOS D	16.7	101.7	0.93	0.80	0.93	17.9
6	R2	230	0.0	230	0.0	* 0.663	67.1	LOS E	15.8	94.5	0.98	0.83	0.98	13.5
App	roach	491	0.9	491	0.9	0.663	60.2	LOS E	16.7	101.7	0.96	0.81	0.96	15.9
Nort	h: Mus	grave Stre	eet (N)											
7	L2	130	0.0	130	0.0	0.438	59.5	LOS E	8.0	47.9	0.87	0.78	0.87	14.3
8	T1	594	1.0	594	1.0	0.529	49.3	LOS D	11.9	72.0	0.86	0.72	0.86	20.0
9	R2	55	4.0	55	4.0	0.335	51.0	LOS D	5.9	36.4	0.78	0.77	0.78	15.6
9u	U	54	0.0	54	0.0	0.335	52.4	LOS D	5.9	36.4	0.78	0.77	0.78	13.6
App	roach	833	1.0	833	1.0	0.529	51.2	LOS D	11.9	72.0	0.86	0.73	0.86	18.3
Wes	t: High	Street (W	/)											
10	L2	68	2.0	68	2.0	0.670	48.5	LOS D	18.4	112.0	0.87	0.76	0.87	17.6
11	T1	242	1.0	242	1.0	* 0.670	42.9	LOS D	18.4	112.0	0.87	0.76	0.87	20.5
12	R2	316	2.0	316	2.0	0.462	55.4	LOS D	9.4	57.3	0.85	0.78	0.85	19.8
App	roach	626	1.6	626	1.6	0.670	49.8	LOS D	18.4	112.0	0.86	0.77	0.86	19.9
All Vehi	icles	3148	1.1	3148	1.1	0.670	49.1	LOS D	18.4	112.0	0.82	0.75	0.82	19.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Peri	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delav	Level of a		BACK OF EUE	Prop. E	ffective Stop	Travel Time	Travel Dist. S	Aver.
				0011100	[Ped	Dist]	Quo	Rate	TIMIC		
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Stre	et (S)									
P1 Full	50	50	61.8	LOS F	0.2	0.2	0.91	0.91	101.8	52.0	0.51

East: High Str	eet (E)										
P2 Full	50	50	59.1	LOS E	0.2	0.2	0.89	0.89	87.5	37.0	0.42
North: Musgra	ve Stree	t (N)									
P3 Full	50	50	61.8	LOS F	0.2	0.2	0.91	0.91	101.8	52.0	0.51
West: High St	reet (W)										
P4 Full	50	50	60.0	LOS E	0.2	0.2	0.90	0.90	90.0	39.0	0.43
All Pedestrians	200	200	60.7	LOS F	0.2	0.2	0.90	0.90	95.3	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:30 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM/ FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sou	th: Mus	grave Str	eet (S)											
1	L2	249	4.0	249	4.0	0.138	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	831	0.0	831	0.0	* 0.757	51.4	LOS D	19.6	117.4	0.93	0.80	0.96	19.4
3	R2	187	2.0	187	2.0	* 0.797	51.3	LOS D	21.4	130.0	0.93	0.86	0.97	20.8
3u	U	139	0.0	139	0.0	0.797	52.7	LOS D	21.4	130.0	0.93	0.86	0.97	23.1
App	roach	1406	1.0	1406	1.0	0.797	43.5	LOS D	21.4	130.0	0.77	0.77	0.79	22.7
Eas	t: High	Street (E)												
4	L2	33	0.0	33	0.0	0.632	62.7	LOS E	17.7	107.9	0.96	0.82	0.96	19.6
5	T1	233	2.0	233	2.0	0.632	57.2	LOS E	17.7	107.9	0.96	0.82	0.96	17.1
6	R2	234	0.0	234	0.0	* 0.787	75.0	LOS F	17.3	104.0	1.00	0.88	1.10	12.4
App	roach	500	0.9	500	0.9	0.787	65.9	LOS E	17.7	107.9	0.98	0.85	1.03	14.8
Nort	th: Mus	grave Stre	eet (N)											
7	L2	112	0.0	112	0.0	0.362	57.6	LOS E	6.6	39.8	0.84	0.77	0.84	14.7
8	T1	489	2.0	489	2.0	0.423	47.1	LOS D	9.3	56.8	0.82	0.67	0.82	20.6
9	R2	47	17.0	47	17.0	0.191	42.2	LOS C	3.4	22.8	0.66	0.73	0.66	17.5
9u	U	28	0.0	28	0.0	0.191	43.5	LOS D	3.4	22.8	0.66	0.73	0.66	15.6
App	roach	676	2.6	676	2.6	0.423	48.4	LOS D	9.3	56.8	0.81	0.69	0.81	19.1
Wes	st: High	Street (W	/)											
10	L2	43	3.0	43	3.0	* 0.783	55.1	LOS D	21.7	133.2	0.95	0.84	0.98	16.1
11	T1	285	2.0	285	2.0	0.783	49.5	LOS D	21.7	133.2	0.95	0.84	0.98	18.8
12	R2	294	2.0	294	2.0	0.502	60.3	LOS E	9.2	56.4	0.89	0.78	0.89	18.7
Арр	roach	622	2.1	622	2.1	0.783	55.0	LOS D	21.7	133.2	0.92	0.81	0.94	18.6
All Veh	icles	3204	1.5	3204	1.5	0.797	50.3	LOS D	21.7	133.2	0.84	0.77	0.86	19.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Peri	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service		BACK OF EUE	Prop. Ei Que	ffective Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	· m/sec
South: Musgra	ave Stre										
P1 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49

East: High Str	eet (E)										
P2 Full	50	50	58.2	LOS E	0.2	0.2	0.88	0.88	86.7	37.0	0.43
North: Musgra	ve Street	t (N)									
P3 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	105.5	52.0	0.49
West: High St	reet (W)										
P4 Full	50	50	59.1	LOS E	0.2	0.2	0.89	0.89	89.1	39.0	0.44
All Pedestrians	200	200	62.1	LOS F	0.2	0.2	0.91	0.91	96.7	45.0	0.47

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:31 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	34	79	112
Green Time (sec)	28	39	27	32
Phase Time (sec)	34	45	33	38
Phase Split	23%	30%	22%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:26 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

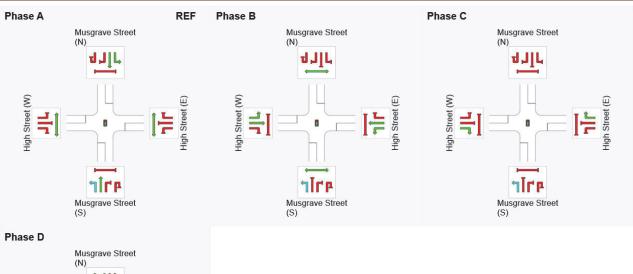
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

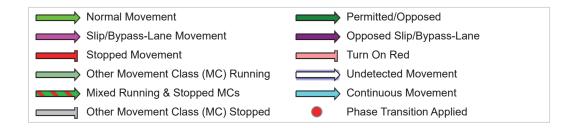

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	31	69	97
Green Time (sec)	25	32	22	37
Phase Time (sec)	31	38	28	43
Phase Split	22%	27%	20%	31%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence



Musgrave Street
(N)

Musgrave Street
(E)

Musgrave Street
(S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:27 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

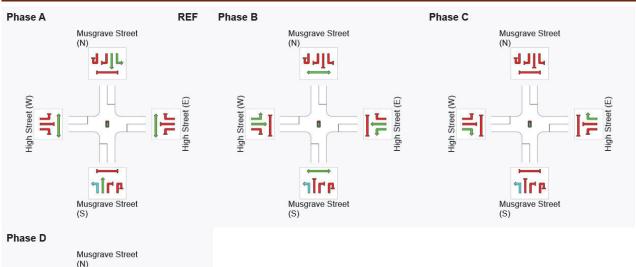
2017 AM Peak Configuration: Existing Site Category: (None)

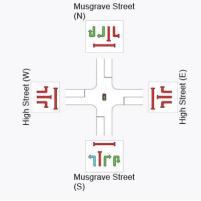
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

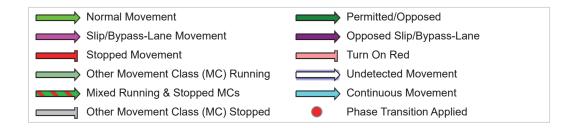
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	34	78	112
Green Time (sec)	28	38	28	32
Phase Time (sec)	34	44	34	38
Phase Split	23%	29%	23%	25%


See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:27 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

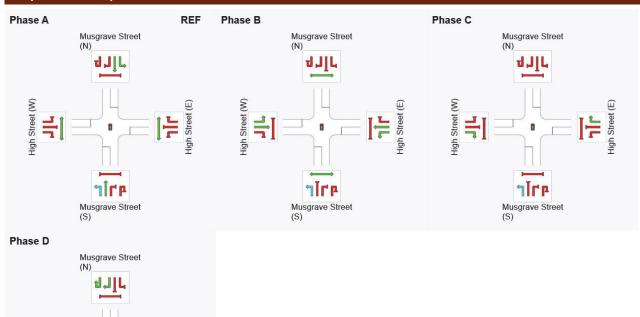
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	35	75	104
Green Time (sec)	29	34	23	40
Phase Time (sec)	35	40	29	46
Phase Split	23%	27%	19%	31%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

Musgrave Street

High Street (W)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:28 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

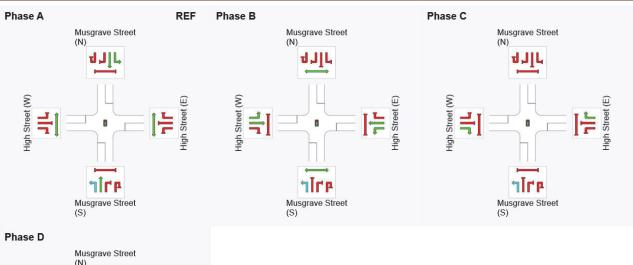
2017 AM Peak Configuration: Existing Site Category: (None)

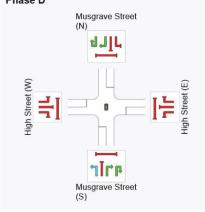
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	34	79	113
Green Time (sec)	28	39	28	31
Phase Time (sec)	34	45	34	37
Phase Split	23%	30%	23%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:29 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

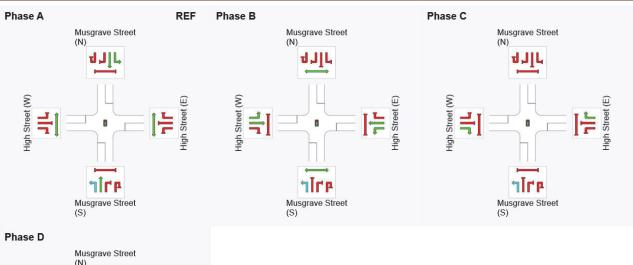
2017 AM Peak Configuration: Existing Site Category: (None)

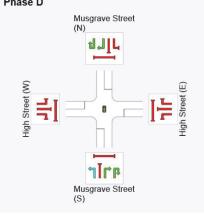
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D


Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	0	35	75	105
Green Time (sec)	29	34	24	39
Phase Time (sec)	35	40	30	45
Phase Split	23%	27%	20%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:29 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

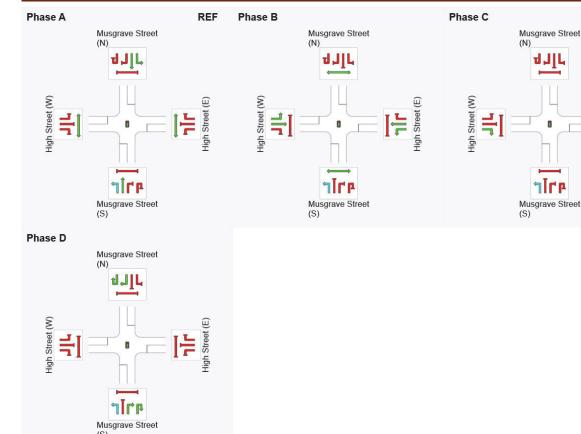
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

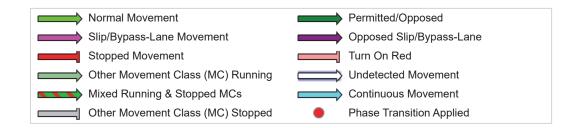
Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary


Phase	Α	В	С	D
Phase Change Time (sec)	0	35	79	113
Green Time (sec)	29	38	28	31
Phase Time (sec)	35	44	34	37
Phase Split	23%	29%	23%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:30 PM

Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)

Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: Musgrave Street/High Street

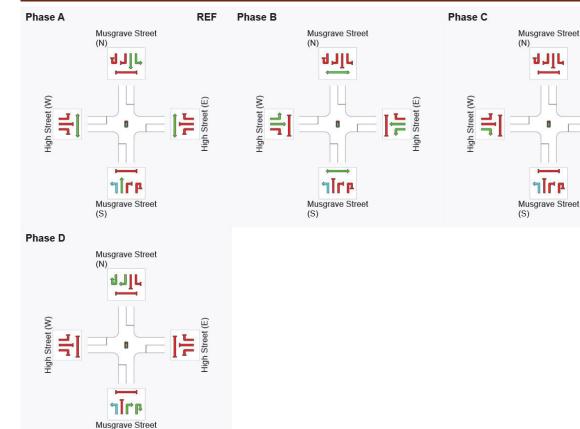
2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

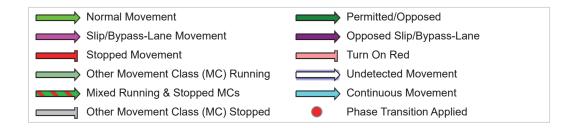
Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary


Phase	Α	В	С	D
Phase Change Time (sec)	0	36	76	106
Green Time (sec)	30	34	24	38
Phase Time (sec)	36	40	30	44
Phase Split	24%	27%	20%	29%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

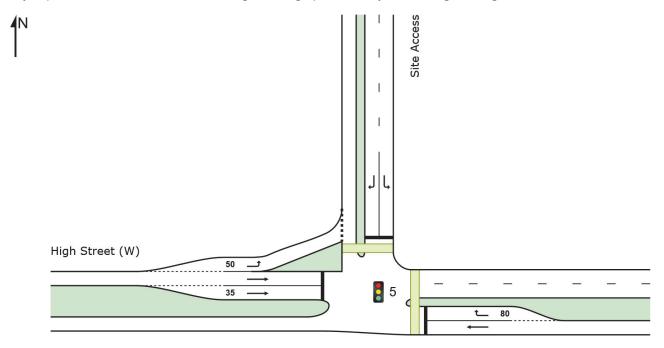
Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 1:35:31 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\5)
Musgrave Rd-High St.sip9

SITE LAYOUT

Site: 5 [2022 BG Saturday Peak (Site Folder: General)]


Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

High Street (E)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Created: Friday, 11 March 2022 4:03:58 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7)
High St-Site Access.sip9

Site: 5 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	355	1.0	355	1.0	0.397	5.4	LOS A	3.8	22.8	0.35	0.30	0.35	48.5
6	R2	122	7.0	122	7.0	* 0.324	18.4	LOS B	2.3	15.1	0.67	0.73	0.67	24.9
Appro	oach	477	2.5	477	2.5	0.397	8.7	LOS A	3.8	22.8	0.44	0.41	0.44	41.4
North	: Site	Access												
7	L2	108	0.0	108	0.0	0.108	9.8	LOS A	1.7	10.0	0.52	0.57	0.52	28.4
9	R2	240	0.0	240	0.0	* 0.365	19.0	LOS B	5.7	34.5	0.79	0.73	0.79	23.9
Appro	oach	348	0.0	348	0.0	0.365	16.1	LOS B	5.7	34.5	0.70	0.68	0.70	25.0
West	: High	Street (W	')											
10	L2	221	0.0	221	0.0	0.174	6.8	LOS A	1.2	6.9	0.28	0.63	0.28	40.8
11	T1	450	0.0	450	0.0	* 0.417	21.2	LOS B	6.0	35.9	0.86	0.71	0.86	31.0
Appro	oach	671	0.0	671	0.0	0.417	16.4	LOS B	6.0	35.9	0.67	0.69	0.67	33.2
All Vehic	eles	1496	0.8	1496	0.8	0.417	13.9	LOSA	6.0	35.9	0.60	0.60	0.60	33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73
North: Site Acc	cess										
P3 Full	50	50	25.0	LOS C	0.1	0.1	0.88	0.88	52.0	35.0	0.67
All Pedestrians	100	100	25.9	LOS C	0.1	0.1	0.89	0.89	56.3	39.5	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:52 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak
Configuration: Existing
Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	442	0.0	442	0.0	0.491	5.7	LOS A	5.2	31.4	0.40	0.34	0.40	48.0
6	R2	94	19.0	94	19.0	* 0.248	18.3	LOS B	1.7	12.5	0.64	0.71	0.64	25.0
Appro	oach	536	3.3	536	3.3	0.491	7.9	LOS A	5.2	31.4	0.44	0.41	0.44	43.2
North	: Site	Access												
7	L2	83	2.0	83	2.0	0.080	8.7	LOS A	1.2	7.2	0.47	0.55	0.47	29.3
9	R2	173	0.0	173	0.0	* 0.263	18.3	LOS B	4.0	23.8	0.75	0.70	0.75	24.3
Appro	oach	256	0.6	256	0.6	0.263	15.2	LOS B	4.0	23.8	0.66	0.65	0.66	25.6
West	: High	Street (W	/)											
10	L2	147	1.0	147	1.0	0.114	2.4	LOS A	0.6	3.9	0.25	0.37	0.25	29.2
11	T1	455	0.0	455	0.0	* 0.474	23.2	LOS B	6.3	38.1	0.90	0.74	0.90	29.7
Appro	oach	602	0.2	602	0.2	0.474	18.1	LOS B	6.3	38.1	0.74	0.65	0.74	29.6
All Vehic	eles	1394	1.5	1394	1.5	0.491	13.6	LOSA	6.3	38.1	0.61	0.56	0.61	33.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73
North: Site Acc	cess										
P3 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	53.8	35.0	0.65
All Pedestrians	100	100	26.8	LOS C	0.1	0.1	0.91	0.91	57.2	39.5	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:53 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak
Configuration: Existing

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High :	Street (E)												
5	T1	362	1.0	362	1.0	0.405	5.4	LOS A	3.9	23.5	0.36	0.31	0.36	48.5
6	R2	122	7.0	122	7.0	* 0.326	18.4	LOS B	2.4	15.1	0.67	0.73	0.67	24.8
Appro	oach	484	2.5	484	2.5	0.405	8.7	LOS A	3.9	23.5	0.44	0.41	0.44	41.4
North	: Site	Access												
7	L2	108	0.0	108	0.0	0.108	9.8	LOS A	1.7	10.0	0.52	0.57	0.52	28.4
9	R2	240	0.0	240	0.0	* 0.365	19.0	LOS B	5.7	34.5	0.79	0.73	0.79	23.9
Appro	oach	348	0.0	348	0.0	0.365	16.1	LOS B	5.7	34.5	0.70	0.68	0.70	25.0
West	: High	Street (W	')											
10	L2	221	0.0	221	0.0	0.174	6.8	LOS A	1.2	6.9	0.28	0.63	0.28	40.8
11	T1	459	0.0	459	0.0	* 0.425	21.3	LOS B	6.1	36.7	0.87	0.72	0.87	31.0
Appro	oach	680	0.0	680	0.0	0.425	16.5	LOS B	6.1	36.7	0.68	0.69	0.68	33.1
All Vehic	eles	1512	0.8	1512	0.8	0.425	13.9	LOSA	6.1	36.7	0.61	0.60	0.61	33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73
North: Site Acc	cess										
P3 Full	50	50	25.0	LOS C	0.1	0.1	0.88	0.88	52.0	35.0	0.67
All Pedestrians	100	100	25.9	LOS C	0.1	0.1	0.89	0.89	56.3	39.5	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:53 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate		Aver. Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	450	0.0	450	0.0	0.500	5.7	LOS A	5.4	32.4	0.40	0.35	0.40	48.0
6	R2	94	19.0	94	19.0	* 0.249	18.3	LOS B	1.8	12.5	0.64	0.71	0.64	25.0
Appr	oach	544	3.3	544	3.3	0.500	7.9	LOS A	5.4	32.4	0.44	0.41	0.44	43.2
North	n: Site	Access												
7	L2	83	2.0	83	2.0	0.080	8.7	LOS A	1.2	7.2	0.47	0.55	0.47	29.3
9	R2	173	0.0	173	0.0	* 0.263	18.3	LOS B	4.0	23.8	0.75	0.70	0.75	24.3
Appr	oach	256	0.6	256	0.6	0.263	15.2	LOS B	4.0	23.8	0.66	0.65	0.66	25.6
West	:: High	Street (W	/)											
10	L2	147	1.0	147	1.0	0.114	6.5	LOS A	0.6	3.9	0.25	0.61	0.25	41.1
11	T1	463	0.0	463	0.0	* 0.482	23.3	LOS B	6.5	38.9	0.90	0.75	0.90	29.6
Appr	oach	610	0.2	610	0.2	0.482	19.2	LOS B	6.5	38.9	0.75	0.72	0.75	31.3
All Vehic	cles	1410	1.5	1410	1.5	0.500	14.1	LOSA	6.5	38.9	0.61	0.59	0.61	34.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73
North: Site Acc	cess										
P3 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	53.8	35.0	0.65
All Pedestrians	100	100	26.8	LOS C	0.1	0.1	0.91	0.91	57.2	39.5	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:54 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	363	1.0	363	1.0	0.406	5.4	LOS A	3.9	23.6	0.36	0.31	0.36	48.5
6	R2	127	7.0	127	7.0	* 0.340	18.5	LOS B	2.5	15.9	0.68	0.73	0.68	24.8
Appro	oach	490	2.6	490	2.6	0.406	8.8	LOS A	3.9	23.6	0.44	0.42	0.44	41.2
North	: Site	Access												
7	L2	113	0.0	113	0.0	0.113	9.9	LOS A	1.8	10.5	0.52	0.57	0.52	28.4
9	R2	250	0.0	250	0.0	* 0.380	19.1	LOS B	6.0	36.1	0.79	0.73	0.79	23.9
Appro	oach	363	0.0	363	0.0	0.380	16.2	LOS B	6.0	36.1	0.71	0.68	0.71	25.0
West	: High	Street (W	')											
10	L2	231	0.0	231	0.0	0.182	6.9	LOS A	1.3	8.0	0.30	0.63	0.30	40.5
11	T1	461	0.0	461	0.0	* 0.427	21.3	LOS B	6.1	36.9	0.87	0.72	0.87	31.0
Appro	oach	692	0.0	692	0.0	0.427	16.5	LOS B	6.1	36.9	0.68	0.69	0.68	33.1
All Vehic	eles	1545	0.8	1545	0.8	0.427	14.0	LOSA	6.1	36.9	0.61	0.60	0.61	33.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73	
North: Site Acc	cess											
P3 Full	50	50	25.0	LOS C	0.1	0.1	0.88	0.88	52.0	35.0	0.67	
All Pedestrians	100	100	25.9	LOS C	0.1	0.1	0.89	0.89	56.3	39.5	0.70	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:54 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE	ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High :	Street (E)												
5	T1	452	0.0	452	0.0	0.502	5.7	LOS A	5.4	32.6	0.40	0.35	0.40	47.9
6	R2	98	19.0	98	19.0	* 0.260	18.4	LOS B	1.8	13.1	0.65	0.72	0.65	24.9
Appro	oach	550	3.4	550	3.4	0.502	8.0	LOS A	5.4	32.6	0.45	0.42	0.45	43.0
North	: Site	Access												
7	L2	87	2.0	87	2.0	0.083	8.7	LOS A	1.2	7.6	0.48	0.55	0.48	29.3
9	R2	181	0.0	181	0.0	* 0.275	18.3	LOS B	4.2	25.0	0.76	0.70	0.76	24.3
Appro	oach	268	0.6	268	0.6	0.275	15.2	LOS B	4.2	25.0	0.67	0.65	0.67	25.6
West	: High	Street (W	/)											
10	L2	155	1.0	155	1.0	0.120	6.7	LOS A	8.0	4.7	0.27	0.62	0.27	40.9
11	T1	465	0.0	465	0.0	* 0.484	23.3	LOS B	6.5	39.0	0.90	0.75	0.90	29.6
Appro	oach	620	0.3	620	0.3	0.484	19.1	LOS B	6.5	39.0	0.75	0.72	0.75	31.4
All Vehic	eles	1438	1.5	1438	1.5	0.502	14.1	LOSA	6.5	39.0	0.62	0.59	0.62	33.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	ffective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73	
North: Site Acc	cess											
P3 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	53.8	35.0	0.65	
All Pedestrians	100	100	26.8	LOS C	0.1	0.1	0.91	0.91	57.2	39.5	0.69	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	368	1.0	368	1.0	0.412	5.4	LOS A	4.0	24.0	0.36	0.31	0.36	48.5
6	R2	140	7.0	140	7.0	* 0.376	18.7	LOS B	2.8	18.0	0.70	0.74	0.70	24.6
Appro	oach	508	2.7	508	2.7	0.412	9.1	LOS A	4.0	24.0	0.45	0.43	0.45	40.7
North	: Site	Access												
7	L2	126	0.0	126	0.0	0.126	9.9	LOS A	2.0	11.8	0.52	0.58	0.52	28.3
9	R2	280	0.0	280	0.0	* 0.426	19.4	LOS B	6.9	41.3	0.81	0.74	0.81	23.7
Appro	oach	406	0.0	406	0.0	0.426	16.5	LOS B	6.9	41.3	0.72	0.69	0.72	24.8
West	: High	Street (W	')											
10	L2	261	0.0	261	0.0	0.208	7.0	LOS A	1.6	9.3	0.31	0.64	0.31	40.4
11	T1	467	0.0	467	0.0	* 0.432	21.3	LOS B	6.2	37.4	0.87	0.72	0.87	30.9
Appro	oach	728	0.0	728	0.0	0.432	16.2	LOS B	6.2	37.4	0.67	0.69	0.67	33.3
All Vehic	eles	1642	0.8	1642	0.8	0.432	14.0	LOSA	6.9	41.3	0.61	0.61	0.61	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed	
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73	
North: Site Acc	cess											
P3 Full	50	50	25.0	LOS C	0.1	0.1	0.88	0.88	52.0	35.0	0.67	
All Pedestrians	100	100	25.9	LOS C	0.1	0.1	0.89	0.89	56.3	39.5	0.70	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High	Street (E)												
5	T1	456	0.0	456	0.0	0.507	5.7	LOS A	5.5	33.1	0.40	0.35	0.40	47.9
6	R2	110	19.0	110	19.0	* 0.293	18.6	LOS B	2.1	15.1	0.66	0.72	0.66	24.8
Appro	oach	566	3.7	566	3.7	0.507	8.2	LOS A	5.5	33.1	0.45	0.42	0.45	42.6
North	: Site	Access												
7	L2	99	2.0	99	2.0	0.095	8.8	LOS A	1.4	8.7	0.48	0.55	0.48	29.2
9	R2	208	0.0	208	0.0	* 0.317	18.6	LOS B	4.9	29.3	0.77	0.71	0.77	24.1
Appro	oach	307	0.6	307	0.6	0.317	15.4	LOS B	4.9	29.3	0.68	0.66	0.68	25.4
West	: High	Street (W	')											
10	L2	182	1.0	182	1.0	0.143	6.7	LOS A	0.9	5.6	0.27	0.62	0.27	40.8
11	T1	470	0.0	470	0.0	* 0.490	23.3	LOS B	6.6	39.5	0.91	0.75	0.91	29.6
Appro	oach	652	0.3	652	0.3	0.490	18.7	LOS B	6.6	39.5	0.73	0.71	0.73	31.6
All Vehic	eles	1525	1.6	1525	1.6	0.507	14.1	LOSA	6.6	39.5	0.62	0.60	0.62	33.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. E	ffective Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	60.7	44.0	0.73	
North: Site Ac	cess											
P3 Full	50	50	26.8	LOS C	0.1	0.1	0.91	0.91	53.8	35.0	0.65	
All Pedestrians	100	100	26.8	LOS C	0.1	0.1	0.91	0.91	57.2	39.5	0.69	

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

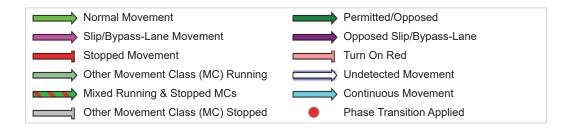
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	41	0	12
Green Time (sec)	18	6	23
Phase Time (sec)	24	12	29
Phase Split	37%	18%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase A Phase B Phase C Site Access Site Access Site Access Street (W) Street (W) High Street (W) High Street (E)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:52 PM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	43	0	14
Green Time (sec)	16	8	23
Phase Time (sec)	22	14	29
Phase Split	34%	22%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase A Phase B Phase C Site Access Site Access Site Access Street (W) Street (W) High Street (W) High Street (E)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:53 PM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 BG Saturday Peak (Site Folder: General)]

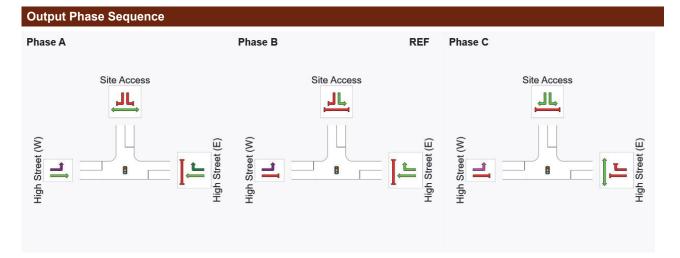
Intersection: High Street/Kmart

2017 AM Peak

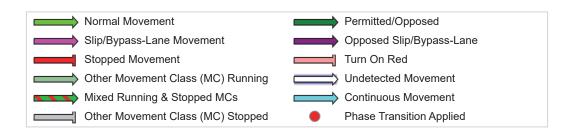
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	41	0	12
Green Time (sec)	18	6	23
Phase Time (sec)	24	12	29
Phase Split	37%	18%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:53 PM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

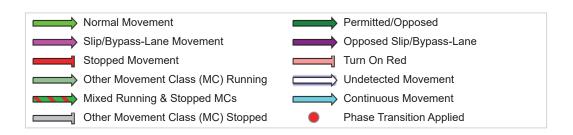
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	43	0	14
Green Time (sec)	16	8	23
Phase Time (sec)	22	14	29
Phase Split	34%	22%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase B REF Phase C Site Access (W) to a street (E) H (W) to a street (E) H

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:54 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7)
High St-Site Access.sip9

Site: 5 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	41	0	12
Green Time (sec)	18	6	23
Phase Time (sec)	24	12	29
Phase Split	37%	18%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase B REF Phase C Site Access (a) years years

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:54 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7)
High St-Site Access.sip9

Site: 5 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

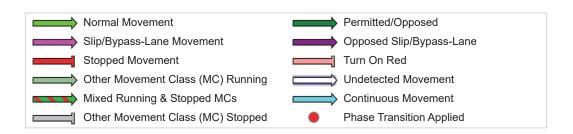
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	43	0	14
Green Time (sec)	16	8	23
Phase Time (sec)	22	14	29
Phase Split	34%	22%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase B REF Phase C Site Access With Streed (a) the streed (b) the streed (b) the streed (b) the streed (c) the s

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7)
High St-Site Access.sip9

Site: 5 [2024 W Aprv Saturday Peak (Site Folder: General)]

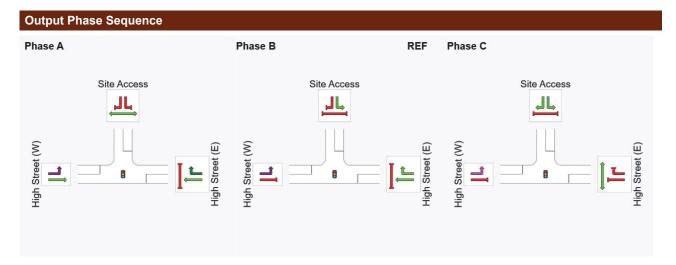
Intersection: High Street/Kmart

2017 AM Peak

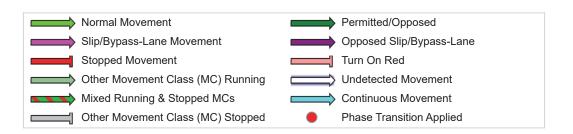
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	41	0	12
Green Time (sec)	18	6	23
Phase Time (sec)	24	12	29
Phase Split	37%	18%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM
Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Site: 5 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: High Street/Kmart

2017 AM Peak

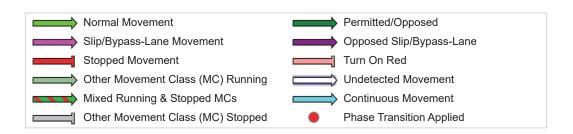
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 65 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	43	0	14
Green Time (sec)	16	8	23
Phase Time (sec)	22	14	29
Phase Split	34%	22%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase B REF Phase C Site Access Site Access (a) years (b) H (b) Young (c) H (c) Young (c) H (d) Young (c) H (e) Young (c) H (f) Young (c) H (g) Young (c) H

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 11 March 2022 2:34:55 PM Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\7) High St-Site Access.sip9

Version: 1, Version Date: 19/05/2022

Document Set ID: 35351736

Site: 4 [2024 W Aprv Thursday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INF VOLU	PUT IMES	DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No	Aver. Speed
1.0		[Total	HV]	[Total	HV]	oa	Dolay	0011100	[Veh.	Dist]	Quo	Rate	Cycles	Ороса
		veh/h	%	veh/h	%	v/c	sec		veh	m ¯				km/h
Sout	h: Aqu	atic Stree	et (S)											
1	L2	1	0.0	1	0.0	0.007	2.4	LOS A	0.0	0.2	0.54	0.47	0.54	33.1
2	T1	2	0.0	2	0.0	0.007	2.4	LOS A	0.0	0.2	0.54	0.47	0.54	25.3
3	R2	2	0.0	2	0.0	0.007	5.1	LOS A	0.0	0.2	0.54	0.47	0.54	41.2
3u	U	1	0.0	11	0.0	0.007	5.9	LOS A	0.0	0.2	0.54	0.47	0.54	22.0
Appr	oach	6	0.0	6	0.0	0.007	3.9	LOS A	0.0	0.2	0.54	0.47	0.54	31.6
East:	High	Street (W	/)											
4	L2	3	33.0	3	33.0	0.263	5.6	LOS A	1.3	9.3	0.35	0.49	0.35	43.6
5	T1	543	0.0	543	0.0	0.263	5.1	LOS A	1.3	9.3	0.35	0.52	0.35	47.3
6	R2	86	0.0	86	0.0	0.263	9.7	LOS A	1.3	9.1	0.36	0.56	0.36	43.9
6u	U	2	0.0	2	0.0	0.263	11.9	LOS A	1.3	9.1	0.36	0.56	0.36	50.4
Appr	oach	634	0.2	634	0.2	0.263	5.7	LOSA	1.3	9.3	0.35	0.52	0.35	46.8
North	n: Aqua	atic Stree	t (N)											
7	L2	113	0.0	113	0.0	0.369	4.1	LOS A	2.8	19.5	0.70	0.64	0.70	34.4
8	T1	1	0.0	1	0.0	0.369	4.0	LOS A	2.8	19.5	0.70	0.64	0.70	23.6
9	R2	207	1.0	207	1.0	0.369	6.8	LOS A	2.8	19.5	0.70	0.64	0.70	26.5
9u	U	2	0.0	2	0.0	0.369	7.6	LOS A	2.8	19.5	0.70	0.64	0.70	33.2
Appr	oach	323	0.6	323	0.6	0.369	5.9	LOSA	2.8	19.5	0.70	0.64	0.70	29.3
West	:: High	Street (V	V)											
10	L2	369	0.0	369	0.0	0.291	4.6	LOS A	1.4	10.1	0.21	0.49	0.21	35.6
11	T1	539	0.0	539	0.0	0.371	4.6	LOS A	2.1	14.9	0.21	0.43	0.21	49.4
12	R2	4	0.0	4	0.0	0.371	9.2	LOS A	2.1	14.9	0.21	0.43	0.21	36.0
12u	U	5	0.0	5	0.0	0.371	11.3	LOS A	2.1	14.9	0.21	0.43	0.21	33.0
Appr	oach	917	0.0	917	0.0	0.371	4.6	LOS A	2.1	14.9	0.21	0.45	0.21	43.8
All Vehic	cles	1880	0.2	1880	0.2	0.371	5.2	LOSA	2.8	19.5	0.35	0.51	0.35	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:44 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

▼ Site: 4 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total	MES HV]	DEMA FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	h: Aqu	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.56	0.45	0.56	34.5
2	T1	4	0.0	4	0.0	0.013	2.6	LOS A	0.1	0.4	0.56	0.45	0.56	25.7
3	R2	1	0.0	1	0.0	0.013	5.3	LOS A	0.1	0.4	0.56	0.45	0.56	43.2
3u	U	1	0.0	1	0.0	0.013	6.1	LOS A	0.1	0.4	0.56	0.45	0.56	22.2
Appr	oach	10	0.0	10	0.0	0.013	3.2	LOS A	0.1	0.4	0.56	0.45	0.56	30.4
East:	High	Street (W)											
4	L2	6	0.0	6	0.0	0.271	5.3	LOS A	1.4	9.8	0.40	0.52	0.40	43.0
5	T1	483	1.0	483	1.0	0.271	5.3	LOS A	1.4	9.8	0.40	0.55	0.40	46.5
6	R2	127	0.0	127	0.0	0.271	10.0	LOS A	1.4	9.6	0.40	0.61	0.40	42.8
6u	U	3	0.0	3	0.0	0.271	12.2	LOS A	1.4	9.6	0.40	0.61	0.40	49.2
Appr	oach	619	0.8	619	8.0	0.271	6.3	LOSA	1.4	9.8	0.40	0.57	0.40	45.7
North	n: Aqua	atic Street	: (N)											
7	L2	191	1.0	191	1.0	0.503	3.7	LOS A	4.0	28.0	0.72	0.65	0.72	34.9
8	T1	2	0.0	2	0.0	0.503	3.6	LOS A	4.0	28.0	0.72	0.65	0.72	24.1
9	R2	269	1.0	269	1.0	0.503	6.4	LOS A	4.0	28.0	0.72	0.65	0.72	26.9
9u	U	1	0.0	1	0.0	0.503	7.2	LOS A	4.0	28.0	0.72	0.65	0.72	34.0
Appr	oach	463	1.0	463	1.0	0.503	5.3	LOSA	4.0	28.0	0.72	0.65	0.72	30.2
West	t: High	Street (W	/)											
10	L2	467	0.0	467	0.0	0.333	4.7	LOS A	1.8	12.7	0.26	0.50	0.26	35.3
11	T1	455	0.0	455	0.0	0.354	4.8	LOS A	1.9	13.6	0.27	0.45	0.27	48.8
12	R2	2	0.0	2	0.0	0.354	9.4	LOS A	1.9	13.6	0.27	0.45	0.27	35.3
12u	U	4	0.0	4	0.0	0.354	11.6	LOS A	1.9	13.6	0.27	0.45	0.27	32.7
Appr		928	0.0	928	0.0	0.354	4.8	LOSA	1.9	13.6	0.26	0.47	0.26	42.0
All Vehic	cles	2020	0.5	2020	0.5	0.503	5.4	LOSA	4.0	28.0	0.41	0.54	0.41	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:41 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

▼ Site: 4 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehicle Movement Performance														
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	% -	veh/h	% -	v/c	sec		veh	m Î				km/h
Sout	h: Aqua	atic Street	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.3	LOS A	0.0	0.2	0.52	0.46	0.52	33.3
2	T1	2	0.0	2	0.0	0.007	2.2	LOS A	0.0	0.2	0.52	0.46	0.52	25.5
3	R2	2	0.0	2	0.0	0.007	4.9	LOS A	0.0	0.2	0.52	0.46	0.52	41.5
3u	U	1	0.0	1	0.0	0.007	5.7	LOS A	0.0	0.2	0.52	0.46	0.52	22.2
Appr	oach	6	0.0	6	0.0	0.007	3.7	LOS A	0.0	0.2	0.52	0.46	0.52	31.8
East:	High	Street (W)											
4	L2	3	33.0	3	33.0	0.241	5.5	LOS A	1.2	8.3	0.33	0.48	0.33	43.8
5	T1	498	0.0	498	0.0	0.241	5.0	LOS A	1.2	8.3	0.34	0.51	0.34	47.5
6	R2	82	0.0	82	0.0	0.241	9.7	LOS A	1.2	8.1	0.34	0.56	0.34	44.0
6u	U	2	0.0	2	0.0	0.241	11.8	LOS A	1.2	8.1	0.34	0.56	0.34	50.5
Appr	oach	585	0.2	585	0.2	0.241	5.7	LOSA	1.2	8.3	0.34	0.52	0.34	46.9
North	n: Aqua	atic Street	(N)											
7	L2	109	0.0	109	0.0	0.344	3.6	LOS A	2.5	17.3	0.66	0.60	0.66	34.9
8	T1	1	0.0	1	0.0	0.344	3.5	LOS A	2.5	17.3	0.66	0.60	0.66	24.1
9	R2	200	1.0	200	1.0	0.344	6.3	LOS A	2.5	17.3	0.66	0.60	0.66	26.9
9u	U	2	0.0	2	0.0	0.344	7.1	LOS A	2.5	17.3	0.66	0.60	0.66	33.9
Appr	oach	312	0.6	312	0.6	0.344	5.3	LOS A	2.5	17.3	0.66	0.60	0.66	29.8
West	:: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.280	4.6	LOS A	1.4	9.6	0.20	0.48	0.20	35.6
11	T1	492	0.0	492	0.0	0.339	4.5	LOS A	1.8	12.9	0.20	0.42	0.20	49.5
12	R2	4	0.0	4	0.0	0.339	9.2	LOS A	1.8	12.9	0.20	0.42	0.20	36.1
12u	U	5	0.0	5	0.0	0.339	11.3	LOS A	1.8	12.9	0.20	0.42	0.20	33.1
Appr	oach	863	0.0	863	0.0	0.339	4.6	LOS A	1.8	12.9	0.20	0.45	0.20	43.7
All Vehic	cles	1766	0.2	1766	0.2	0.344	5.1	LOSA	2.5	17.3	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:42 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

▼ Site: 4 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEMA FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout		atic Street	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.57	0.46	0.57	34.4
2	T1	4	0.0	4	0.0	0.013	2.6	LOS A	0.1	0.4	0.57	0.46	0.57	25.7
3	R2	1	0.0	1	0.0	0.013	5.3	LOS A	0.1	0.4	0.57	0.46	0.57	43.2
3u	U	1	0.0	1	0.0	0.013	6.1	LOS A	0.1	0.4	0.57	0.46	0.57	22.2
Appr		10	0.0	10	0.0	0.013	3.3	LOS A	0.1	0.4	0.57	0.46	0.57	30.4
East:	High	Street (W)											
4	L2	6	0.0	6	0.0	0.275	5.3	LOS A	1.4	10.0	0.40	0.52	0.40	43.0
5	T1	492	1.0	492	1.0	0.275	5.3	LOS A	1.4	10.0	0.40	0.55	0.40	46.5
6	R2	127	0.0	127	0.0	0.275	10.0	LOS A	1.4	9.8	0.41	0.61	0.41	42.8
6u	U	3	0.0	3	0.0	0.275	12.2	LOS A	1.4	9.8	0.41	0.61	0.41	49.2
Appr	oach	628	8.0	628	8.0	0.275	6.3	LOS A	1.4	10.0	0.40	0.57	0.40	45.7
North	n: Aqua	atic Street	(N)											
7	L2	191	1.0	191	1.0	0.505	3.8	LOS A	4.0	28.3	0.73	0.65	0.73	34.8
8	T1	2	0.0	2	0.0	0.505	3.7	LOS A	4.0	28.3	0.73	0.65	0.73	24.0
9	R2	269	1.0	269	1.0	0.505	6.5	LOS A	4.0	28.3	0.73	0.65	0.73	26.9
9u	U	1	0.0	1	0.0	0.505	7.3	LOS A	4.0	28.3	0.73	0.65	0.73	33.9
Appr	oach	463	1.0	463	1.0	0.505	5.4	LOS A	4.0	28.3	0.73	0.65	0.73	30.2
West	t: High	Street (W	')											
10	L2	467	0.0	467	0.0	0.359	4.8	LOS A	2.0	13.9	0.27	0.50	0.27	35.2
11	T1	463	0.0	463	0.0	0.335	4.7	LOS A	1.8	12.8	0.26	0.44	0.26	49.0
12	R2	2	0.0	2	0.0	0.335	9.4	LOS A	1.8	12.8	0.26	0.44	0.26	35.5
12u	U	4	0.0	4	0.0	0.335	11.5	LOS A	1.8	12.8	0.26	0.44	0.26	32.7
Appr		936	0.0	936	0.0	0.359	4.8	LOSA	2.0	13.9	0.26	0.47	0.26	42.1
All Vehic	cles	2037	0.5	2037	0.5	0.505	5.4	LOSA	4.0	28.3	0.41	0.54	0.41	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:42 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

Site: 4 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO¹ [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.3	LOS A	0.0	0.2	0.53	0.46	0.53	33.3
2	T1	2	0.0	2	0.0	0.007	2.2	LOS A	0.0	0.2	0.53	0.46	0.53	25.4
3	R2	2	0.0	2	0.0	0.007	4.9	LOS A	0.0	0.2	0.53	0.46	0.53	41.4
3u	U	1	0.0	1	0.0	0.007	5.8	LOS A	0.0	0.2	0.53	0.46	0.53	22.2
Appr	oach	6	0.0	6	0.0	0.007	3.7	LOS A	0.0	0.2	0.53	0.46	0.53	31.8
East	: High :	Street (W)											
4	L2	3	33.0	3	33.0	0.244	5.5	LOS A	1.2	8.4	0.34	0.48	0.34	43.7
5	T1	507	0.0	507	0.0	0.244	5.0	LOS A	1.2	8.4	0.34	0.51	0.34	47.5
6	R2	82	0.0	82	0.0	0.244	9.7	LOS A	1.2	8.3	0.34	0.56	0.34	44.0
6u	U	2	0.0	2	0.0	0.244	11.8	LOS A	1.2	8.3	0.34	0.56	0.34	50.5
Appr	oach	594	0.2	594	0.2	0.244	5.7	LOSA	1.2	8.4	0.34	0.52	0.34	46.9
Nortl	h: Aqua	atic Street	(N)											
7	L2	109	0.0	109	0.0	0.347	3.7	LOS A	2.5	17.6	0.67	0.61	0.67	34.8
8	T1	1	0.0	1	0.0	0.347	3.6	LOS A	2.5	17.6	0.67	0.61	0.67	24.0
9	R2	200	1.0	200	1.0	0.347	6.4	LOS A	2.5	17.6	0.67	0.61	0.67	26.8
9u	U	2	0.0	2	0.0	0.347	7.2	LOS A	2.5	17.6	0.67	0.61	0.67	33.8
Appr	oach	312	0.6	312	0.6	0.347	5.4	LOSA	2.5	17.6	0.67	0.61	0.67	29.7
Wes	t: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.281	4.6	LOS A	1.4	9.6	0.20	0.48	0.20	35.6
11	T1	502	0.0	502	0.0	0.345	4.5	LOS A	1.9	13.3	0.20	0.42	0.20	49.5
12	R2	4	0.0	4	0.0	0.345	9.2	LOS A	1.9	13.3	0.20	0.42	0.20	36.1
12u	U	5	0.0	5	0.0	0.345	11.3	LOS A	1.9	13.3	0.20	0.42	0.20	33.1
Appr	oach	873	0.0	873	0.0	0.345	4.6	LOSA	1.9	13.3	0.20	0.45	0.20	43.7
All Vehi	cles	1785	0.2	1785	0.2	0.347	5.1	LOSA	2.5	17.6	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:43 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

▼ Site: 4 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO\ [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Aqua	atic Street	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.9	LOS A	0.1	0.4	0.58	0.47	0.58	34.2
2	T1	4	0.0	4	0.0	0.013	2.8	LOS A	0.1	0.4	0.58	0.47	0.58	25.6
3	R2	1	0.0	1	0.0	0.013	5.5	LOS A	0.1	0.4	0.58	0.47	0.58	42.9
3u	U	1	0.0	1	0.0	0.013	6.3	LOS A	0.1	0.4	0.58	0.47	0.58	22.0
Appr	oach	10	0.0	10	0.0	0.013	3.4	LOSA	0.1	0.4	0.58	0.47	0.58	30.2
East	: High :	Street (W)											
4	L2	6	0.0	6	0.0	0.299	5.3	LOS A	1.6	11.2	0.42	0.53	0.42	42.8
5	T1	534	1.0	534	1.0	0.299	5.4	LOS A	1.6	11.2	0.42	0.56	0.42	46.4
6	R2	132	0.0	132	0.0	0.299	10.1	LOS A	1.6	10.9	0.42	0.62	0.42	42.8
6u	U	3	0.0	3	0.0	0.299	12.2	LOS A	1.6	10.9	0.42	0.62	0.42	49.2
Appr	oach	675	8.0	675	8.0	0.299	6.4	LOSA	1.6	11.2	0.42	0.57	0.42	45.6
North	n: Aqua	atic Street	(N)											
7	L2	196	1.0	196	1.0	0.536	4.9	LOS A	4.8	33.7	0.78	0.73	0.82	33.8
8	T1	2	0.0	2	0.0	0.536	4.7	LOS A	4.8	33.7	0.78	0.73	0.82	23.1
9	R2	277	1.0	277	1.0	0.536	7.5	LOS A	4.8	33.7	0.78	0.73	0.82	26.1
9u	U	1	0.0	1	0.0	0.536	8.3	LOS A	4.8	33.7	0.78	0.73	0.82	32.6
Appr	oach	476	1.0	476	1.0	0.536	6.4	LOS A	4.8	33.7	0.78	0.73	0.82	29.3
Wes	t: High	Street (W	')											
10	L2	475	0.0	475	0.0	0.370	4.9	LOS A	2.1	14.5	0.28	0.51	0.28	35.1
11	T1	506	0.0	506	0.0	0.366	4.8	LOS A	2.1	14.7	0.27	0.45	0.27	48.8
12	R2	2	0.0	2	0.0	0.366	9.4	LOS A	2.1	14.7	0.27	0.45	0.27	35.3
12u	U	4	0.0	4	0.0	0.366	11.5	LOS A	2.1	14.7	0.27	0.45	0.27	32.6
Appr	oach	987	0.0	987	0.0	0.370	4.9	LOSA	2.1	14.7	0.28	0.48	0.28	42.2
All Vehic	cles	2148	0.5	2148	0.5	0.536	5.7	LOSA	4.8	33.7	0.43	0.56	0.44	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:44 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

▼ Site: 4 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO¹ [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m ¹			- ,	km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.57	0.46	0.57	34.4
2	T1	4	0.0	4	0.0	0.013	2.6	LOS A	0.1	0.4	0.57	0.46	0.57	25.7
3	R2	1	0.0	1	0.0	0.013	5.4	LOS A	0.1	0.4	0.57	0.46	0.57	43.1
3u	U	1	0.0	1	0.0	0.013	6.2	LOS A	0.1	0.4	0.57	0.46	0.57	22.1
Appr	oach	10	0.0	10	0.0	0.013	3.3	LOS A	0.1	0.4	0.57	0.46	0.57	30.3
East	High	Street (W)											
4	L2	6	0.0	6	0.0	0.281	5.3	LOSA	1.5	10.3	0.40	0.52	0.40	42.9
5	T1	503	1.0	503	1.0	0.281	5.4	LOS A	1.5	10.3	0.41	0.55	0.41	46.5
6	R2	128	0.0	128	0.0	0.281	10.1	LOS A	1.4	10.1	0.41	0.61	0.41	42.8
6u	U	3	0.0	3	0.0	0.281	12.2	LOS A	1.4	10.1	0.41	0.61	0.41	49.2
Appr	oach	640	8.0	640	8.0	0.281	6.3	LOS A	1.5	10.3	0.41	0.57	0.41	45.7
North	n: Aqua	atic Street	(N)											
7	L2	192	1.0	192	1.0	0.512	4.0	LOSA	4.2	29.5	0.74	0.67	0.75	34.5
8	T1	2	0.0	2	0.0	0.512	3.9	LOS A	4.2	29.5	0.74	0.67	0.75	23.8
9	R2	271	1.0	271	1.0	0.512	6.7	LOS A	4.2	29.5	0.74	0.67	0.75	26.7
9u	U	1	0.0	1	0.0	0.512	7.5	LOS A	4.2	29.5	0.74	0.67	0.75	33.6
Appr	oach	466	1.0	466	1.0	0.512	5.6	LOSA	4.2	29.5	0.74	0.67	0.75	30.0
West	:: High	Street (W	/)											
10	L2	469	0.0	469	0.0	0.361	4.8	LOS A	2.0	14.0	0.27	0.51	0.27	35.2
11	T1	474	0.0	474	0.0	0.343	4.8	LOS A	1.9	13.3	0.26	0.45	0.26	48.9
12	R2	2	0.0	2	0.0	0.343	9.4	LOS A	1.9	13.3	0.26	0.45	0.26	35.4
12u	U	4	0.0	4	0.0	0.343	11.5	LOS A	1.9	13.3	0.26	0.45	0.26	32.7
Appr	oach	949	0.0	949	0.0	0.361	4.8	LOSA	2.0	14.0	0.27	0.48	0.27	42.1
All Vehic	cles	2065	0.5	2065	0.5	0.512	5.5	LOSA	4.2	29.5	0.42	0.55	0.42	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:43 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

Site: 4 [2024 W Dev Thursday Peak (Site Folder: General)]

Intersection: High Street/Acquatic Place

Scenario: 2017 AM Peak Configuration: Existing Site Category: (None)

Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO¹ [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	% -	veh/h	% -	v/c	sec		veh	m ¹				km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.4	LOS A	0.0	0.2	0.53	0.46	0.53	33.2
2	T1	2	0.0	2	0.0	0.007	2.3	LOS A	0.0	0.2	0.53	0.46	0.53	25.4
3	R2	2	0.0	2	0.0	0.007	5.0	LOS A	0.0	0.2	0.53	0.46	0.53	41.4
3u	U	1	0.0	1	0.0	0.007	5.8	LOS A	0.0	0.2	0.53	0.46	0.53	22.1
Appr	oach	6	0.0	6	0.0	0.007	3.8	LOS A	0.0	0.2	0.53	0.46	0.53	31.7
East	: High	Street (W)											
4	L2	3	33.0	3	33.0	0.249	5.6	LOS A	1.2	8.6	0.34	0.49	0.34	43.7
5	T1	516	0.0	516	0.0	0.249	5.0	LOS A	1.2	8.6	0.34	0.51	0.34	47.4
6	R2	83	0.0	83	0.0	0.249	9.7	LOS A	1.2	8.5	0.35	0.56	0.35	44.0
6u	U	2	0.0	2	0.0	0.249	11.8	LOS A	1.2	8.5	0.35	0.56	0.35	50.5
Appr	oach	604	0.2	604	0.2	0.249	5.7	LOS A	1.2	8.6	0.34	0.52	0.34	46.9
North	n: Aqua	atic Street	(N)											
7	L2	110	0.0	110	0.0	0.352	3.8	LOS A	2.6	18.0	0.68	0.62	0.68	34.7
8	T1	1	0.0	1	0.0	0.352	3.7	LOS A	2.6	18.0	0.68	0.62	0.68	23.9
9	R2	202	1.0	202	1.0	0.352	6.5	LOS A	2.6	18.0	0.68	0.62	0.68	26.8
9u	U	2	0.0	2	0.0	0.352	7.3	LOS A	2.6	18.0	0.68	0.62	0.68	33.6
Appr	oach	315	0.6	315	0.6	0.352	5.5	LOS A	2.6	18.0	0.68	0.62	0.68	29.6
Wes	t: High	Street (W	/)											
10	L2	364	0.0	364	0.0	0.284	4.6	LOS A	1.4	9.7	0.20	0.48	0.20	35.6
11	T1	511	0.0	511	0.0	0.352	4.6	LOS A	2.0	13.7	0.21	0.43	0.21	49.5
12	R2	4	0.0	4	0.0	0.352	9.2	LOS A	2.0	13.7	0.21	0.43	0.21	36.1
12u	U	5	0.0	5	0.0	0.352	11.3	LOS A	2.0	13.7	0.21	0.43	0.21	33.1
Appr	oach	884	0.0	884	0.0	0.352	4.6	LOSA	2.0	13.7	0.21	0.45	0.21	43.7
All Vehic	cles	1809	0.2	1809	0.2	0.352	5.1	LOSA	2.6	18.0	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 2:46:43 PM Project: \\aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\8)

High St-Aquatic Pl.sip9

Site: 3 [2024 W Aprv Thusday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

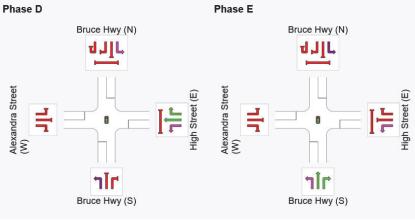
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	36	49	83	110
Green Time (sec)	30	7	28	21	34
Phase Time (sec)	36	13	34	27	40
Phase Split	24%	9%	23%	18%	27%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:36 PM

Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)

High St-Alexandra St.sip9

Site: 3 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street

Scenario: 2021 Saturday Background Traffic

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO' [Total		Satn	Delay	Service	QUE [Veh.	:UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	HV] %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
Sout	h: Bru	ce Hwy (S	5)											
1	L2	260	3.0	260	3.0	0.182	9.3	LOS A	3.7	22.7	0.26	0.66	0.26	55.7
2	T1	766	2.0	766	2.0	0.459	31.8	LOS C	19.5	119.3	0.76	0.67	0.76	43.6
3	R2	576	0.0	576	0.0	* 0.750	68.3	LOS E	20.3	121.7	1.00	0.86	1.04	21.8
Appr	oach	1602	1.4	1602	1.4	0.750	41.3	LOS C	20.3	121.7	0.76	0.74	0.78	35.5
East	: High	Street (E)												
4	L2	374	0.0	374	0.0	0.319	16.3	LOS B	11.1	66.7	0.49	0.70	0.49	41.3
5	T1	307	2.0	307	2.0	* 0.672	65.6	LOS E	13.9	85.2	1.00	0.83	1.01	19.1
6	R2	86	1.0	86	1.0	0.672	71.2	LOS F	13.7	83.3	1.00	0.83	1.01	21.3
Appr	oach	767	0.9	767	0.9	0.672	42.2	LOS C	13.9	85.2	0.75	0.77	0.75	27.1
North	n: Bruc	e Hwy (N)											
7	L2	109	0.0	109	0.0	0.099	12.2	LOS A	2.1	12.6	0.36	0.67	0.36	47.7
8	T1	803	3.0	803	3.0	0.759	51.4	LOS D	28.3	174.8	0.96	0.84	0.97	35.4
9	R2	66	0.0	66	0.0	* 0.662	84.7	LOS F	5.9	35.5	1.00	0.80	1.08	24.1
9u	U	12	0.0	12	0.0	0.662	84.9	LOS F	5.9	35.5	1.00	0.80	1.08	25.4
Appr	oach	990	2.4	990	2.4	0.759	49.7	LOS D	28.3	174.8	0.90	0.82	0.91	34.8
West	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.490	65.5	LOS E	10.5	62.9	0.91	0.76	0.91	27.8
11	T1	272	0.0	272	0.0	* 0.490	59.5	LOS E	11.1	66.8	0.91	0.76	0.91	20.3
12	R2	197	4.0	197	4.0	0.490	64.8	LOS E	11.1	66.8	0.90	0.79	0.90	27.3
Appr	oach	506	1.6	506	1.6	0.490	62.0	LOS E	11.1	66.8	0.91	0.77	0.91	24.0
All Vehic	cles	3865	1.6	3865	1.6	0.759	46.3	LOS D	28.3	174.8	0.81	0.77	0.82	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m		11010	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	65.5	LOS F	0.2	0.2	0.94	0.94	129.3	83.0	0.64
North: Bruce H	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	67.4	LOS F	0.2	0.2	0.95	0.95	118.1	66.0	0.56

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:32 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		veh/h	HV] %	veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Bru	ce Hwy (S	5)											
1	L2	395	5.0	395	5.0	0.279	9.7	LOSA	6.2	38.8	0.28	0.67	0.28	55.0
2	T1	1253	3.0	1253	3.0	* 0.760	33.6	LOS C	37.1	229.1	0.86	0.77	0.86	42.7
3	R2	499	0.0	499	0.0	0.611	63.4	LOS E	16.5	99.0	0.96	0.83	0.96	22.9
Appr	oach	2147	2.7	2147	2.7	0.760	36.1	LOS C	37.1	229.1	0.78	0.77	0.78	38.8
East	: High	Street (E)												
4	L2	324	0.0	324	0.0	0.296	18.7	LOS B	10.6	63.4	0.52	0.71	0.52	39.6
5	T1	340	0.0	340	0.0	* 0.783	72.0	LOS F	15.2	91.2	1.00	0.89	1.11	17.9
6	R2	64	0.0	64	0.0	0.783	77.7	LOS F	15.0	89.9	1.00	0.89	1.11	20.2
Appr	oach	728	0.0	728	0.0	0.783	48.8	LOS D	15.2	91.2	0.79	0.81	0.85	24.8
North	n: Bruc	e Hwy (N)											
7	L2	63	2.0	63	2.0	0.057	12.1	LOS A	1.2	7.1	0.35	0.66	0.35	47.8
8	T1	822	5.0	822	5.0	0.762	50.9	LOS D	28.6	180.5	0.96	0.85	0.97	35.5
9	R2	59	0.0	59	0.0	* 0.690	87.4	LOS F	5.1	30.6	1.00	0.80	1.13	23.7
9u	U	7	0.0	7	0.0	0.690	87.7	LOS F	5.1	30.6	1.00	0.80	1.13	25.0
Appr	oach	951	4.5	951	4.5	0.762	50.9	LOS D	28.6	180.5	0.92	0.83	0.94	34.8
Wes	t: Alexa	andra Stre	et (W)											
10	L2	26	0.0	26	0.0	0.693	67.2	LOS E	13.6	81.9	0.94	0.79	0.95	27.5
11	T1	322	0.0	322	0.0	* 0.693	61.3	LOS E	13.7	83.3	0.94	0.79	0.95	19.9
12	R2	303	4.0	303	4.0	0.693	67.5	LOS E	15.7	98.0	0.96	0.82	0.96	26.7
Appr	oach	651	1.9	651	1.9	0.693	64.4	LOS E	15.7	98.0	0.95	0.81	0.96	23.8
All Vehic	cles	4477	2.5	4477	2.5	0.783	45.4	LOS D	37.1	229.1	0.83	0.79	0.85	33.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	formand	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	UE	Prop. Et Que	Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	62.7	LOS F	0.2	0.2	0.92	0.92	126.5	83.0	0.66
North: Bruce I	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	66.0	LOS F	0.2	0.2	0.94	0.94	116.7	66.0	0.57

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organization: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:33 PM
Project: \\aubnec6505\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S		VO11/11	70	V/ O	300		VOIT					1311//11
1	L2	269	3.0	269	3.0	0.190	9.6	LOS A	4.0	24.5	0.27	0.66	0.27	55.5
2	T1	793	2.0	793	2.0	0.498	34.4	LOS C	21.1	129.1	0.79	0.70	0.79	42.3
3	R2	597	0.0	597	0.0	* 0.753	67.7	LOS E	21.0	125.8	1.00	0.87	1.04	21.9
Appr	oach	1659	1.4	1659	1.4	0.753	42.4	LOS C	21.1	129.1	0.78	0.75	0.79	35.1
East	: High	Street (E)												
4	L2	381	0.0	381	0.0	0.330	16.8	LOS B	11.7	69.9	0.50	0.71	0.50	40.9
5	T1	312	2.0	312	2.0	* 0.749	69.8	LOS E	14.8	90.4	1.00	0.87	1.08	18.3
6	R2	88	1.0	88	1.0	0.749	75.5	LOS F	14.5	88.5	1.00	0.87	1.08	20.5
Appr	oach	781	0.9	781	0.9	0.749	44.6	LOS D	14.8	90.4	0.76	0.79	0.79	26.3
North	n: Bruc	e Hwy (N)											
7	L2	113	0.0	113	0.0	0.104	12.6	LOS A	2.2	13.4	0.37	0.67	0.37	47.4
8	T1	832	3.0	832	3.0	* 0.769	51.2	LOS D	29.5	182.2	0.96	0.85	0.98	35.4
9	R2	68	0.0	68	0.0	0.459	77.0	LOS F	5.8	34.6	0.99	0.78	0.99	25.6
9u	U	13	0.0	13	0.0	0.459	77.3	LOS F	5.8	34.6	0.99	0.78	0.99	26.8
Appr	oach	1026	2.4	1026	2.4	0.769	49.0	LOS D	29.5	182.2	0.90	0.83	0.91	35.1
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.498	65.6	LOS E	10.7	64.2	0.91	0.76	0.91	27.8
11	T1	277	0.0	277	0.0	* 0.498	59.6	LOS E	11.3	68.2	0.91	0.76	0.91	20.2
12	R2	201	4.0	201	4.0	0.498	64.9	LOS E	11.3	68.2	0.91	0.79	0.91	27.3
Appr	oach	515	1.6	515	1.6	0.498	62.1	LOS E	11.3	68.2	0.91	0.77	0.91	24.0
All Vehic	cles	3981	1.6	3981	1.6	0.769	47.1	LOS D	29.5	182.2	0.82	0.78	0.84	31.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	e							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	133.1	83.0	0.62
North: Bruce H	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	69.3	LOSF	0.2	0.2	0.96	0.96	120.0	66.0	0.55

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:33 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S		VO11/11	70	V/ 5			7011					1(11)/11
1	L2	409	5.0	409	5.0	0.289	9.9	LOS A	6.7	42.1	0.30	0.67	0.30	54.8
2	T1	1298	3.0	1298	3.0	* 0.794	33.3	LOS C	38.4	237.5	0.86	0.78	0.86	42.8
3	R2	518	0.0	518	0.0	0.615	62.7	LOS E	17.1	102.4	0.96	0.84	0.96	23.0
Appr	oach	2225	2.7	2225	2.7	0.794	35.9	LOS C	38.4	237.5	0.78	0.77	0.78	39.0
East	High	Street (E)												
4	L2	331	0.0	331	0.0	0.310	20.2	LOS B	11.4	68.6	0.55	0.72	0.55	38.5
5	T1	347	0.0	347	0.0	* 0.799	72.9	LOS F	15.6	93.8	1.00	0.90	1.13	17.8
6	R2	65	0.0	65	0.0	0.799	78.5	LOS F	15.4	92.4	1.00	0.90	1.13	20.1
Appr	oach	743	0.0	743	0.0	0.799	49.9	LOS D	15.6	93.8	0.80	0.82	0.87	24.5
North	n: Bruc	e Hwy (N)											
7	L2	65	2.0	65	2.0	0.060	12.4	LOS A	1.2	7.6	0.36	0.66	0.36	47.5
8	T1	852	5.0	852	5.0	0.807	54.9	LOS D	31.2	196.7	0.98	0.89	1.03	34.2
9	R2	62	0.0	62	0.0	* 0.823	92.3	LOS F	5.6	33.3	1.00	0.86	1.32	22.9
9u	U	7	0.0	7	0.0	0.823	92.5	LOS F	5.6	33.3	1.00	0.86	1.32	24.2
Appr	oach	986	4.5	986	4.5	0.823	54.7	LOS D	31.2	196.7	0.94	0.88	1.01	33.6
Wes	: Alexa	andra Stre	et (W)											
10	L2	27	0.0	27	0.0	0.713	67.7	LOS E	13.9	83.6	0.94	0.80	0.97	27.4
11	T1	328	0.0	328	0.0	* 0.713	61.8	LOS E	14.0	85.3	0.94	0.80	0.97	19.8
12	R2	309	4.0	309	4.0	0.713	68.1	LOS E	16.3	102.0	0.96	0.83	0.98	26.6
Appr	oach	664	1.9	664	1.9	0.713	64.9	LOS E	16.3	102.0	0.95	0.82	0.97	23.7
All Vehic	cles	4618	2.5	4618	2.5	0.823	46.3	LOS D	38.4	237.5	0.84	0.81	0.87	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of . Service		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	62.7	LOS F	0.2	0.2	0.92	0.92	126.5	83.0	0.66
North: Bruce I	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	66.0	LOS F	0.2	0.2	0.94	0.94	116.7	66.0	0.57

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:34 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA		Prop. E		Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO\ [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	:UE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	m m		Nate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	269	3.0	269	3.0	0.190	9.6	LOS A	4.0	24.6	0.27	0.66	0.27	55.5
2	T1	793	2.0	793	2.0	0.498	34.4	LOS C	21.1	129.1	0.79	0.70	0.79	42.3
3	R2	604	0.0	604	0.0	* 0.762	68.1	LOS E	21.3	128.0	1.00	0.87	1.04	21.8
Appr	oach	1666	1.4	1666	1.4	0.762	42.6	LOS D	21.3	129.1	0.78	0.75	0.80	35.0
East	: High	Street (E)												
4	L2	387	0.0	387	0.0	0.336	16.9	LOS B	11.9	71.5	0.50	0.71	0.50	40.9
5	T1	318	2.0	318	2.0	* 0.760	70.3	LOS E	15.1	92.3	1.00	0.88	1.09	18.2
6	R2	88	1.0	88	1.0	0.760	75.9	LOS F	14.8	90.3	1.00	0.88	1.09	20.4
Appr	oach	793	0.9	793	0.9	0.760	44.8	LOS D	15.1	92.3	0.76	0.80	0.80	26.2
North	n: Bruc	e Hwy (N)											
7	L2	113	0.0	113	0.0	0.104	12.9	LOS A	2.3	13.8	0.38	0.68	0.38	47.1
8	T1	834	3.0	834	3.0	* 0.772	51.3	LOS D	29.6	183.1	0.96	0.85	0.98	35.4
9	R2	69	0.0	69	0.0	0.465	77.1	LOS F	5.8	35.0	0.99	0.78	0.99	25.6
9u	U	13	0.0	13	0.0	0.465	77.3	LOS F	5.8	35.0	0.99	0.78	0.99	26.8
Appr	oach	1029	2.4	1029	2.4	0.772	49.2	LOS D	29.6	183.1	0.90	0.83	0.91	35.0
Wes	t: Alexa	andra Stre	et (W)											
10	L2	37	0.0	37	0.0	0.504	65.7	LOS E	10.8	65.1	0.91	0.76	0.91	27.8
11	T1	283	0.0	283	0.0	* 0.504	59.6	LOS E	11.4	69.1	0.91	0.76	0.91	20.2
12	R2	201	4.0	201	4.0	0.504	65.0	LOS E	11.4	69.1	0.91	0.79	0.91	27.3
Appr	oach	521	1.5	521	1.5	0.504	62.1	LOS E	11.4	69.1	0.91	0.77	0.91	23.9
All Vehic	cles	4009	1.6	4009	1.6	0.772	47.3	LOS D	29.6	183.1	0.82	0.78	0.84	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of . Service	AVERAGE QUE I Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	133.1	83.0	0.62
North: Bruce I	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	69.3	LOSF	0.2	0.2	0.96	0.96	120.0	66.0	0.55

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:35 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 W Dev Thusday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	MES HV]	FLO		Satn	Delay	Service	QUE [Veh.		Que	Stop		Speed
		veh/h	нv ј %	veh/h	HV] %	v/c	sec		ι ven. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Bru	ce Hwy (S	5)											
1	L2	409	5.0	409	5.0	0.290	9.9	LOS A	6.7	42.1	0.30	0.67	0.30	54.8
2	T1	1298	3.0	1298	3.0	* 0.806	33.4	LOS C	38.1	235.5	0.86	0.78	0.86	42.8
3	R2	523	0.0	523	0.0	0.621	62.8	LOS E	17.3	103.6	0.96	0.84	0.96	23.0
Appr	oach	2230	2.7	2230	2.7	0.806	36.0	LOS C	38.1	235.5	0.78	0.77	0.78	38.9
East	: High	Street (E)												
4	L2	336	0.0	336	0.0	0.316	20.3	LOS B	11.7	70.1	0.55	0.72	0.55	38.5
5	T1	352	0.0	352	0.0	* 0.808	73.4	LOS F	15.9	95.5	1.00	0.91	1.14	17.7
6	R2	65	0.0	65	0.0	0.808	79.1	LOS F	15.7	94.1	1.00	0.91	1.14	20.0
Appr	oach	753	0.0	753	0.0	0.808	50.2	LOS D	15.9	95.5	0.80	0.82	0.88	24.4
North	n: Bruc	e Hwy (N)											
7	L2	65	2.0	65	2.0	0.060	12.4	LOS A	1.2	7.6	0.36	0.66	0.36	47.5
8	T1	853	5.0	853	5.0	0.808	54.9	LOS D	31.3	197.1	0.98	0.89	1.03	34.2
9	R2	62	0.0	62	0.0	* 0.823	92.3	LOS F	5.6	33.3	1.00	0.86	1.32	22.9
9u	U	7	0.0	7	0.0	0.823	92.5	LOS F	5.6	33.3	1.00	0.86	1.32	24.2
Appr	oach	987	4.5	987	4.5	0.823	54.7	LOS D	31.3	197.1	0.94	0.88	1.01	33.5
West	t: Alexa	andra Stre	et (W)											
10	L2	27	0.0	27	0.0	0.721	67.9	LOS E	14.1	84.3	0.94	0.81	0.97	27.4
11	T1	333	0.0	333	0.0	* 0.721	62.0	LOS E	14.2	86.0	0.94	0.81	0.97	19.7
12	R2	309	4.0	309	4.0	0.721	68.3	LOS E	16.6	103.5	0.96	0.84	0.99	26.6
Appr	oach	669	1.8	669	1.8	0.721	65.1	LOS E	16.6	103.5	0.95	0.82	0.98	23.6
All Vehic	cles	4639	2.5	4639	2.5	0.823	46.5	LOS D	38.1	235.5	0.84	0.81	0.87	32.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of . Service		BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	62.7	LOS F	0.2	0.2	0.92	0.92	126.5	83.0	0.66
North: Bruce I	Hwy (N)										

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	66.0	LOS F	0.2	0.2	0.94	0.94	116.7	66.0	0.57

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organization: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:35 PM
Project: \\aubnec6505\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMA		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S												
1	L2	269	3.0	269	3.0	0.192	9.8	LOS A	4.1	25.5	0.28	0.66	0.28	55.3
2	T1	793	2.0	793	2.0	0.498	34.4	LOS C	21.1	129.1	0.79	0.70	0.79	42.3
3	R2	623	0.0	623	0.0	* 0.786	69.5	LOS E	22.4	134.4	1.00	0.88	1.07	21.5
Appr	oach	1685	1.4	1685	1.4	0.786	43.5	LOS D	22.4	134.4	0.79	0.76	0.81	34.6
East	: High	Street (E)												
4	L2	406	0.0	406	0.0	0.354	17.5	LOS B	12.9	77.5	0.52	0.71	0.52	40.4
5	T1	336	2.0	336	2.0	* 0.796	72.0	LOS F	16.1	98.4	1.00	0.90	1.12	17.9
6	R2	89	1.0	89	1.0	0.796	77.7	LOS F	15.8	96.4	1.00	0.90	1.13	20.1
Appr	oach	831	0.9	831	0.9	0.796	46.0	LOS D	16.1	98.4	0.76	0.81	0.83	25.8
North	h: Bruc	e Hwy (N)											
7	L2	115	0.0	115	0.0	0.107	13.2	LOS A	2.4	14.4	0.39	0.68	0.39	46.8
8	T1	839	3.0	839	3.0	* 0.776	51.6	LOS D	29.9	184.9	0.96	0.86	0.98	35.3
9	R2	69	0.0	69	0.0	0.465	77.1	LOS F	5.8	35.0	0.99	0.78	0.99	25.6
9u	U	13	0.0	13	0.0	0.465	77.3	LOS F	5.8	35.0	0.99	0.78	0.99	26.8
Appr	oach	1036	2.4	1036	2.4	0.776	49.4	LOS D	29.9	184.9	0.90	0.83	0.92	34.9
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.521	65.9	LOS E	11.3	67.8	0.92	0.77	0.92	27.7
11	T1	300	0.0	300	0.0	* 0.521	59.8	LOS E	11.8	71.2	0.91	0.76	0.91	20.2
12	R2	201	4.0	201	4.0	0.521	65.2	LOS E	11.8	71.2	0.91	0.80	0.91	27.2
Appr	oach	538	1.5	538	1.5	0.521	62.3	LOS E	11.8	71.2	0.91	0.77	0.91	23.8
All Vehic	cles	4090	1.6	4090	1.6	0.796	47.9	LOS D	29.9	184.9	0.83	0.79	0.86	31.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of . Service	AVERAGE QUE I Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S		
	ped/h	ped/h	sec		ped	m			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	133.1	83.0	0.62	
North: Bruce I	Hwy (N)											

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	69.3	LOSF	0.2	0.2	0.96	0.96	120.0	66.0	0.55

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:36 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2024 W Aprv Thusday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S		VO11/11	70	V/ 5			7511					1(11)/11
1	L2	409	5.0	409	5.0	0.292	10.2	LOS A	6.9	43.7	0.31	0.67	0.31	54.6
2	T1	1298	3.0	1298	3.0	* 0.828	36.1	LOS C	39.6	244.9	0.87	0.81	0.89	41.4
3	R2	540	0.0	540	0.0	0.641	63.1	LOS E	17.9	107.5	0.96	0.84	0.96	22.9
Appr	oach	2247	2.6	2247	2.6	0.828	37.9	LOS C	39.6	244.9	0.79	0.79	0.80	38.0
East	: High	Street (E)												
4	L2	353	0.0	353	0.0	0.335	21.1	LOS B	12.7	76.1	0.57	0.72	0.57	38.0
5	T1	367	0.0	367	0.0	* 0.799	72.1	LOS F	16.4	98.3	1.00	0.90	1.13	17.9
6	R2	66	0.0	66	0.0	0.799	77.8	LOS F	16.1	96.9	1.00	0.90	1.13	20.2
Appr	oach	786	0.0	786	0.0	0.799	49.7	LOS D	16.4	98.3	0.81	0.82	0.87	24.5
North	n: Bruc	e Hwy (N)											
7	L2	67	2.0	67	2.0	0.063	12.7	LOS A	1.3	8.0	0.37	0.66	0.37	47.2
8	T1	858	5.0	858	5.0	0.831	57.8	LOS E	32.4	204.2	0.99	0.92	1.07	33.3
9	R2	62	0.0	62	0.0	* 0.823	92.3	LOS F	5.6	33.3	1.00	0.86	1.32	22.9
9u	U	7	0.0	7	0.0	0.823	92.5	LOS F	5.6	33.3	1.00	0.86	1.32	24.2
Appr	oach	994	4.5	994	4.5	0.831	57.2	LOS E	32.4	204.2	0.95	0.90	1.04	32.8
Wes	t: Alexa	andra Stre	et (W)											
10	L2	27	0.0	27	0.0	0.743	68.5	LOS E	14.4	86.5	0.94	0.82	0.99	27.2
11	T1	348	0.0	348	0.0	* 0.743	62.6	LOS E	14.6	88.4	0.94	0.82	0.99	19.6
12	R2	309	4.0	309	4.0	0.743	69.1	LOS E	17.3	108.1	0.97	0.85	1.01	26.4
Appr	oach	684	1.8	684	1.8	0.743	65.8	LOS E	17.3	108.1	0.96	0.83	1.00	23.4
All Vehic	cles	4711	2.5	4711	2.5	0.831	48.0	LOS D	39.6	244.9	0.85	0.82	0.89	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed	
	ped/h	ped/h	sec		ped	m			sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	63.6	LOS F	0.2	0.2	0.92	0.92	127.5	83.0	0.65	
North: Bruce H	Hwy (N)											

P3 Full	50	50	69.3	LOS F	0.2	0.2	0.96	0.96	107.0	49.0	0.46
All Pedestrians	100	100	66.4	LOS F	0.2	0.2	0.94	0.94	117.2	66.0	0.56

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:36 PM

Project: \aubnecfs05\tnts\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9) High St-Alexandra St.sip9

Site: 3 [2022 BG Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street

Scenario: 2021 Saturday Background Traffic

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	34	50	84	113
Green Time (sec)	28	10	28	23	31
Phase Time (sec)	34	16	34	29	37
Phase Split	23%	11%	23%	19%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street ٦Ĭ٢

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:32 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)
High St-Alexandra St.sip9

Site: 3 [2022 BG Thursday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

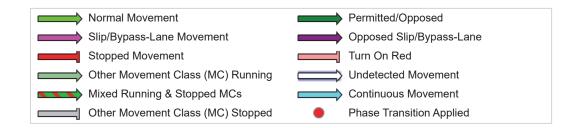
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	37	51	85	111
Green Time (sec)	31	8	28	20	33
Phase Time (sec)	37	14	34	26	39
Phase Split	25%	9%	23%	17%	26%


See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:33 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)
High St-Alexandra St.sip9

Site: 3 [2024 BG Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

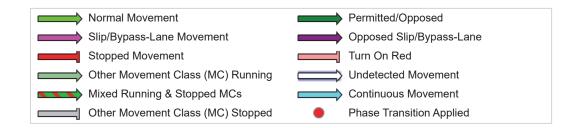
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	30	51	85	112
Green Time (sec)	24	15	28	21	32
Phase Time (sec)	30	21	34	27	38
Phase Split	20%	14%	23%	18%	25%


See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street ٦Ĭ٢

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:33 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)
High St-Alexandra St.sip9

Site: 3 [2024 BG Thursday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Bruce Hwy (S)

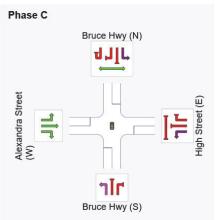
Degree of Saturation)

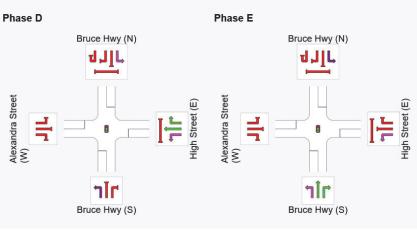
Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary


Output Phase Sequence


Bruce Hwy (S)

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	37	50	84	110
Green Time (sec)	31	7	28	20	34
Phase Time (sec)	37	13	34	26	40
Phase Split	25%	9%	23%	17%	27%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase B Bruce Hwy (N) High Street (E) Hig

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:34 PM
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)
High St-Alexandra St.sip9

Site: 3 [2024 W Dev Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

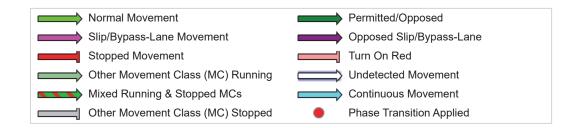
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E


Phase Timing Summary

Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	30	51	85	112
Green Time (sec)	24	15	28	21	32
Phase Time (sec)	30	21	34	27	38
Phase Split	20%	14%	23%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street ٦Ĭ٢ Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:35 PM

Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)

High St-Alexandra St.sip9

Site: 3 [2024 W Dev Thusday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

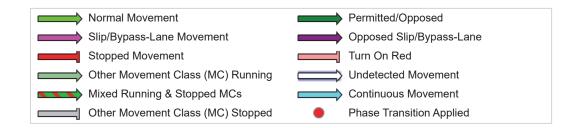
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E


Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	37	50	84	110
Green Time (sec)	31	7	28	20	34
Phase Time (sec)	37	13	34	26	40
Phase Split	25%	9%	23%	17%	27%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street ٦Ĭ٢ Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:35 PM

Project: \\aubnecfs05\tnt\\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)

High St-Alexandra St.sip9

Site: 3 [2024 W Aprv Saturday Peak (Site Folder: General)]

Intersection: Bruce Highway/Alexandra Street/High Street Scenario: 2012 Saturday AM Background Traffic Only

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 150 seconds (Site Optimum Cycle Time - Minimum

Degree of Saturation)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	30	51	85	112
Green Time (sec)	24	15	28	21	32
Phase Time (sec)	30	21	34	27	38
Phase Split	20%	14%	23%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase B Phase C Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) High Street חור ٦ľ٢ Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street High Street ٦Ĭ٢

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

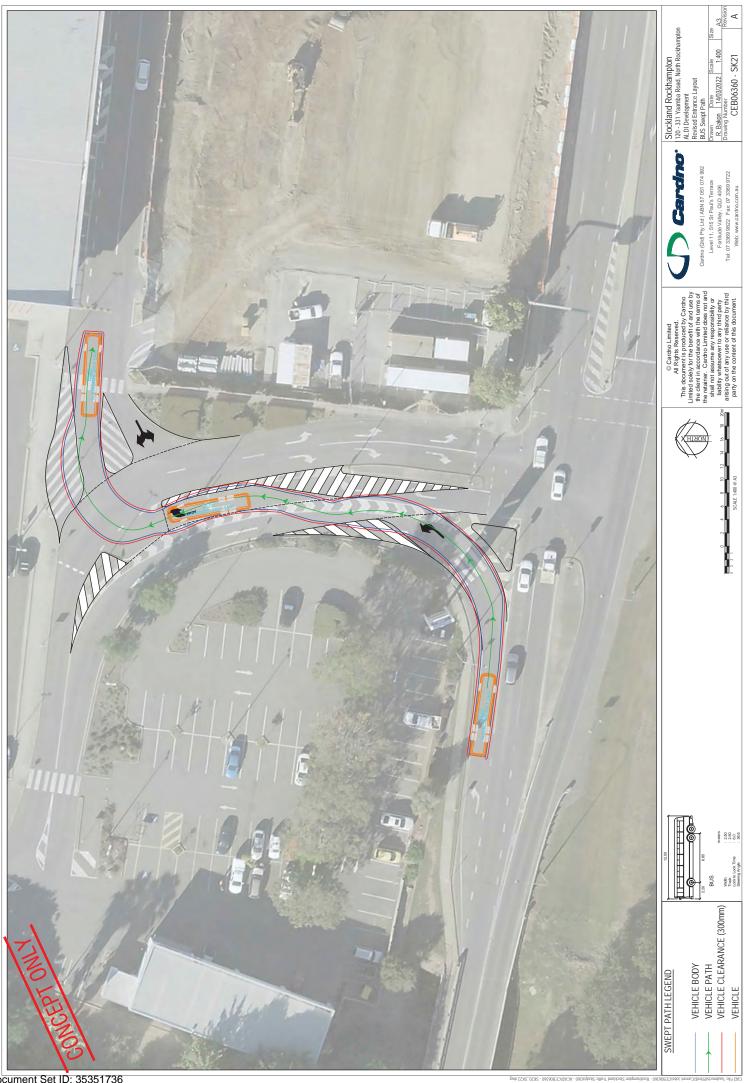
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

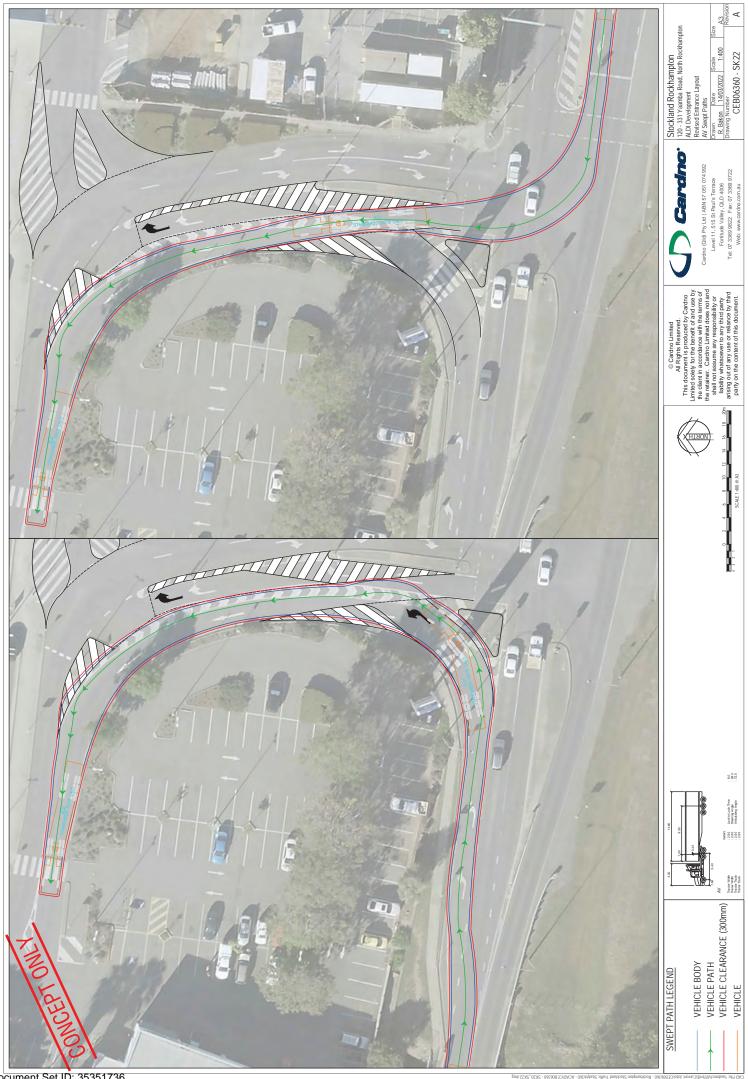
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Wednesday, 9 March 2022 3:22:36 PM

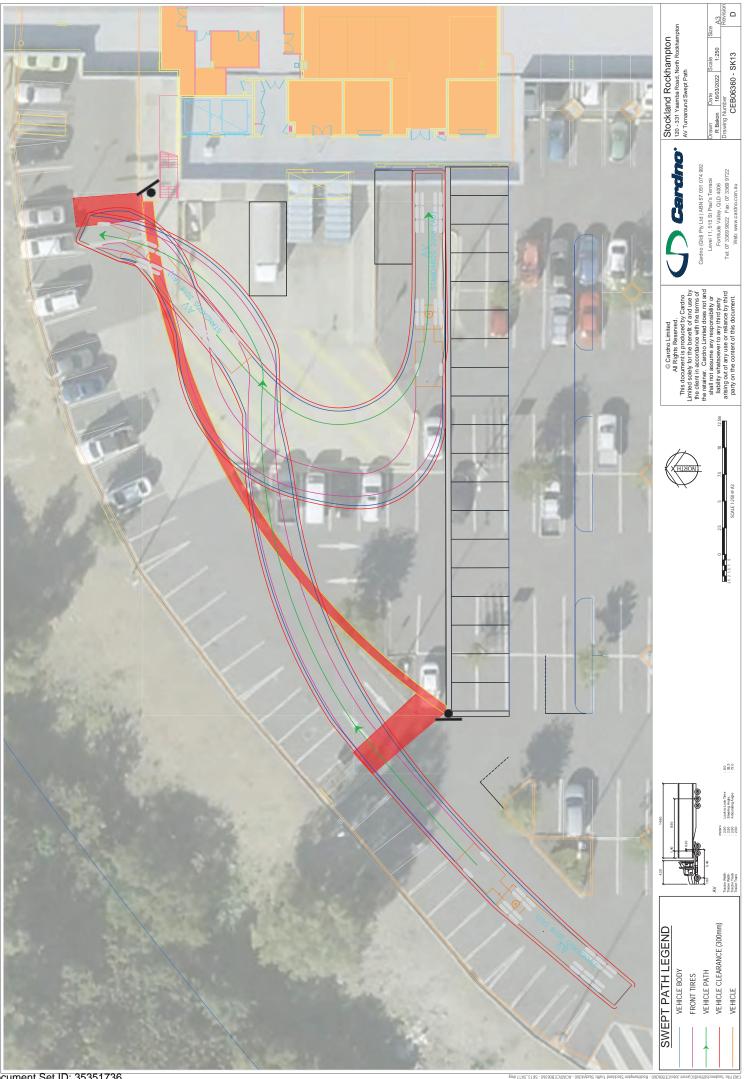
Project: \aubnecfs05\tnt\$\Current Jobs\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\9)

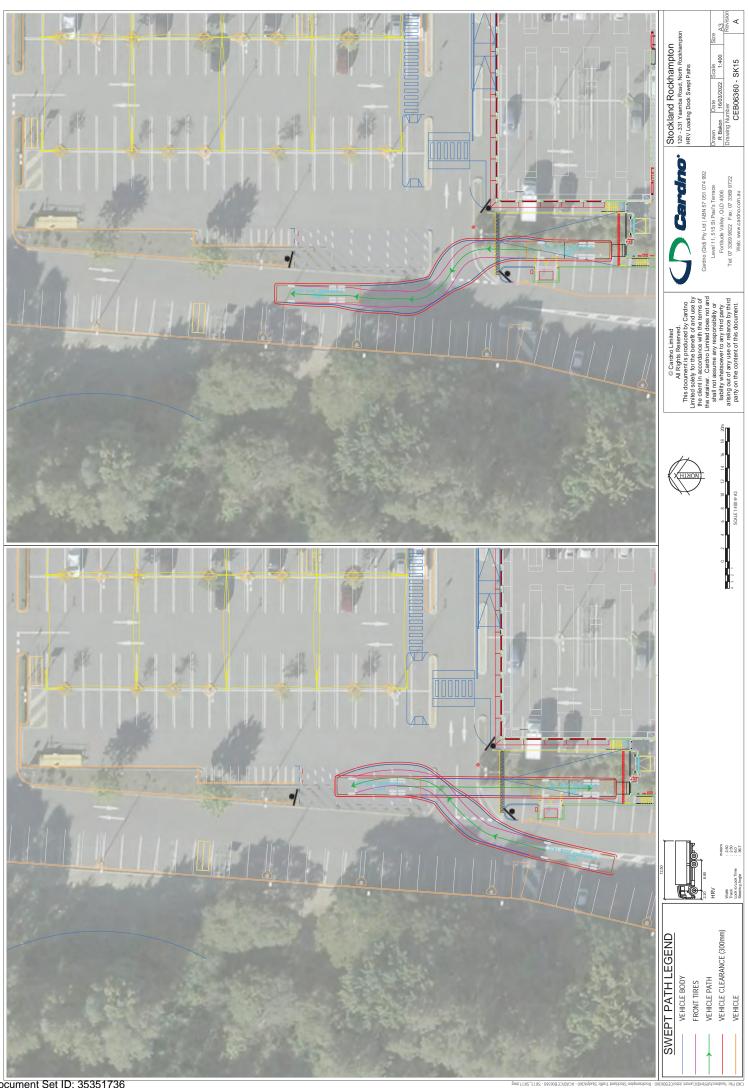
High St-Alexandra St.sip9

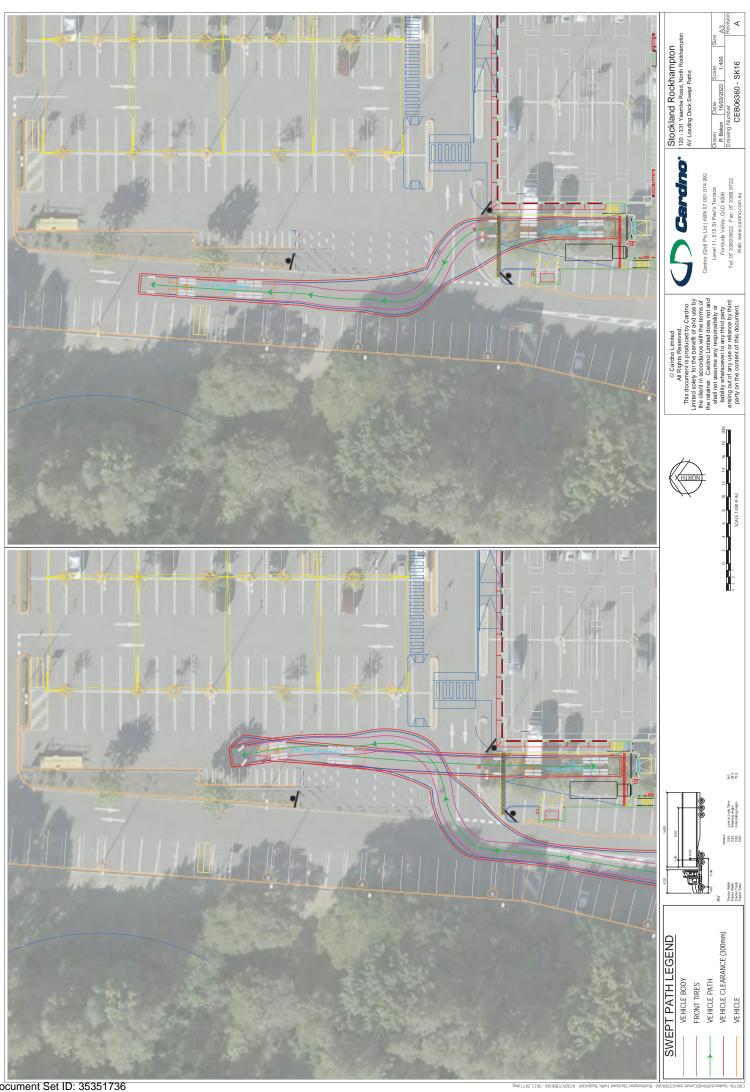
Stockland Rockhampton ALDI Expansion

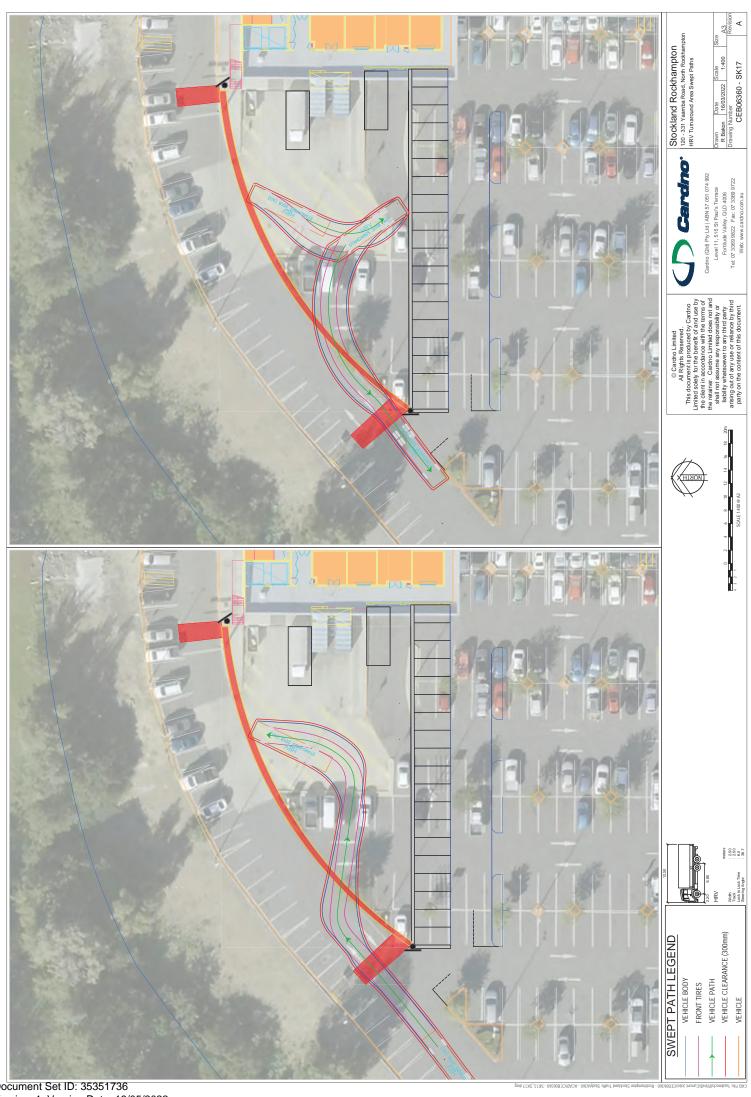

APPENDIX


 \Box


SWEPT PATHS







Stockland Rockhampton ALDI Expansion

APPENDIX

SIGNAGE AND LINE MARKING

Document Set ID: 35351736 Version: 1, Version Date: 19/05/2022

PHe: //www.ncin/2021/04DA-- 04634/pbut/2 cities in inside an open property of the control of the

+61 413 626 694 leisa.sinclair@sinclairplanning.com.au PO Box 130, Lutwyche Q 4030 Sinclair Planning Pty Ltd ABN 17 639 191 503

Our Ref: SP21045.L07.001(RRC_IRR)

Your Ref: D/66-2022 Contact: Leisa Sinclair

1 August 2022

Chief Executive Officer Rockhampton Regional Council PO Box 1860 ROCKHAMPTON QLD 4700 ROCKHAMPTON REGIONAL COUNCIL
APPROVED PLANS

These plans are approved subject to the current

conditions of approval associated with **Development Permit No.: D/66-2022**

Dated: 2 November 2022

Att: Kathy McDonald, Planning Officer, Development Assessment

Via: developmentadvice@rrc.qld.gov.au

Dear Kathy,

APPLICANT RESPONDS TO ASSESSMENT MANAGER INFORMATION REQUEST— DAR \$13

DEVELOPMENT PERMIT FOR MATERIAL CHANGE OF USE — SHOPPING CENTRE EXTENSION AND SHOP

STOCKLAND ROCKHAMPTON SHOPPING CENTRE — LOT 201 ON SP236447 AND TERM LEASE OVER LOT 1 ON

SP203617 — 331 YAAMBA ROAD, PARK AVENUE QLD 4701

ASSESSMENT MANAGER APPLICATION REFERENCE: D/66-2022

Sinclair Planning Pty Ltd acts for The Trust Company Limited ACN 004 027 749 (Applicant) in relation to the abovementioned development application.

Reference is made to the Rockhampton Regional Council (Council) Information Request, dated 14 June 2022 issued pursuant to section 12 of the Development Assessment Rules (DAR).

The information provided in the attached Stantec Council Information Request Response dated 29 July 2022 (Attachment A – Council Traffic Response) constitutes the Applicant's response pursuant to section 13.2(b) of the DAR.

Accordingly, the Applicant requests that Council assess and decide the development application pursuant to DAR section 22.1.

Please contact the undersigned if there are any queries in relation to the application.

Yours faithfully

Affinilar.

Leisa Sinclair Director

enc: Attachment A – Council Traffic Response

cc S.Paterson, Stockland, Applicant's Representative via shelbi.paterson@stockland.com.au

Attachment A

COUNCIL TRAFFIC RESPONSE

now

Stantec

Cardno (Qld) Pty Ltd

515 St Paul's Terrace Fortitude Valley QLD 4006

Phone +61 7 3369 9822 +61 7 3369 9722

Locked Bag 4006

www.cardno.com

ABN 57 051 074 992

Level 11

Fax

Our Ref: CEB06360:ASJ Contact: Andy Johnston

29 July 2022

Stockland

Level 4, 99 Melbourne Street South Brisbane QLD 4101

Attention: Shelbi Paterson

Dear Shelbi,

D/66-2022 - MCU FOR SHOPPING CENTRE EXTENSION **COUNCIL INFORMATION REQUEST RESPONSE**

Cardno (now Stantec) has been engaged by Stockland to provide traffic engineering www.stantec.com advice in relation to the proposed Aldi extension development location at 331 Yaamba Road, Park Avenue, as a part of Stockland's Rockhampton Shopping Centre. In March 2022 Cardno (now Stantec) prepared a Material Change of Use (MCU) against the requirements of Council's Planning Scheme.

Following the submission Council prepared an Information Request, dated 14th June, 2022. Cardno has prepared this letter as a response to the traffic related items in this. For ease of reference, this letter reproduces Council's comments in italics and then responds to each item in normal text beneath that item.

Council's Information Request:

Issue 1.1 Survey Data:

It is noted that a traffic survey has been carried out in 2017 and those data has been used for the TIA. Please provide raw traffic survey data including intersection count data to Council for review. Note: please provide this raw data as individual intersections or summarised similar to the Appendix B traffic generation layouts.

Issue 1.1 Response:

Traffic count data has been provided as per **Appendix A** of this IRR.

Issue 1.2 Childcare Volumes:

Please include recently approved childcare centre TIA into this traffic assessment. Childcare centre PM peaks typically 4.30-5:30 which coincides with shopping centre Thursday peak of 4:30-5:30pm. Childcare peak hour should be included into Thursday peak analysis at High Street signals.

Issue 1.2 Response:

Childcare volumes have been included within our below sensitivity SIDRA analysis, undertaken in Issue 1.4. It is important to note that the childcare development is replacing the old Colonial Mart development that was originally included as part of the retain GFA. As such, given the reduction in retail GFA, the difference in trip generation and hours of operation between the two land uses, the expected trip volumes actually decrease for the Saturday AM peak. The overall difference in trip volumes is outlined below in Table 1-1.

Table 1-1 Difference in trip generation

Land Use		Thursday PM	Peak	Saturday AM Peak				
Land USE		Out	Total		Out	Total		
Child Care	+4 trips	+4 trips	+8 trips	-22 trips	-22 trips	-44 trips		

Issue 1.3 Development Traffic Generation:

Council does not entirely agree with the development traffic generation. The proposed supermarket is on Stockland land however it is a free-standing building in the southwest corner and the proposed development is an attractor in its own right. Council accepts the methodology to adopt the calibrated generation curves however using trips/100m2 as a rate for a free-standing development with GLFA of 1725m2. Please amend the development traffic generation rate to satisfy this requirement.

Issue 1.3 Response:

It is noted that Council and Cardno discussed this point on the 22nd of June, whereby Cardno proposed to undertake a sensitivity test. While Cardno do not agree with the suggested rate by Council, (we know from experience that shoppers at Regional Shopping centres such as Stockland Rockhampton will walk from one end of the centre to the other to visit the stores they want) Cardno does want to provide Council with comfort. This would include generating development trip rates for half of the proposed total GFA (i.e. 28,356 sq.m) instead of a free-standing development, which have been outlined below in Figures 1-2 & 1-3.

We note that the trip rates identified in this methodology are almost as high as the rates for a stand alone supermarket. With this in mind we would expect that this highly conservative assessment fully alleviates Council's concerns.

Figure 1-2 Thursday Revised Trip Generation

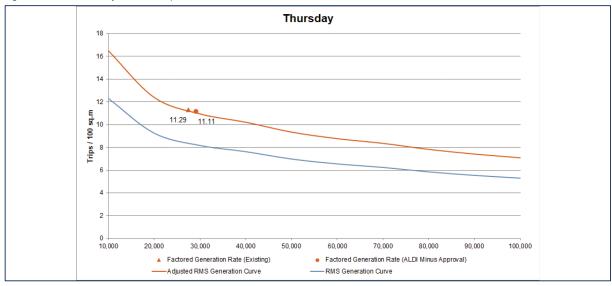
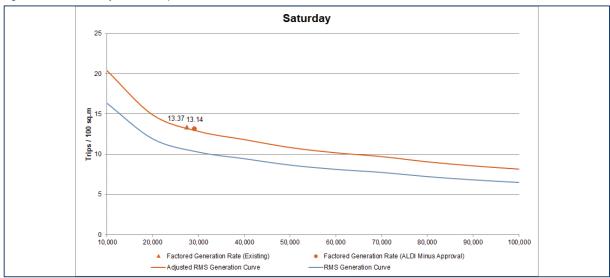
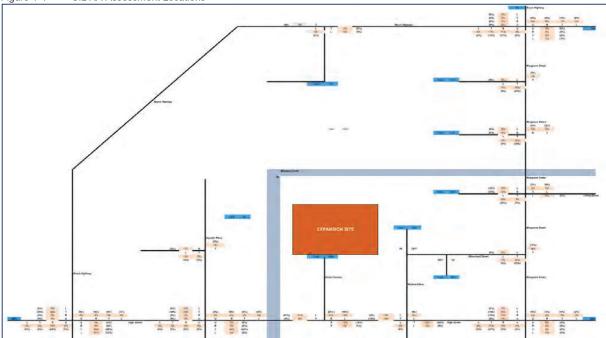



Figure 1-3 Saturday Revised Trip Generation

The revised SIDRAs based on the updated trip rate are included below in the Issue 1.4 Response.

Issue 1.4 Traffic Distribution:

Council again does not entirely agree with the development traffic access distribution. The proposed supermarket is on Stockland land however it is a free-standing building in the southwest corner and the proposed development is an attractor in its own right. Council believes minimum of 60% traffic access to the proposed supermarket from High Street traffic signals, 30% from Musgrave Street traffic signals and remaining 10% from elsewhere.



Issue 1.4 Response:

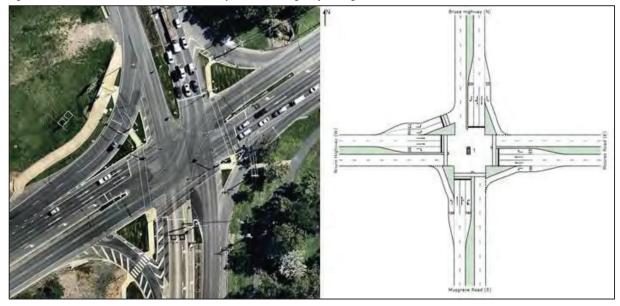
While Cardno do not agree with the suggestion by Council, Cardno does want to provide Council with comfort that the development is unlikely to result in a negative impact on the road network. Therefore, Cardno has undertaken a sensitivity assessment with Council's requested distribution, which is outlined below in Figure 1-4.

Key intersections subjected to updated SIDRA analysis are shown below in Figure 1-5, noting that intersection 7 has been separately analysed in Issue 1.7 below.

The network flow diagram outlining the Childcare Development volumes, the revised trip generation volumes and the revised distribution has been outlined in Appendix B, nothing that all three (3) of these elements are part of a sensitivity test, and do not represent Cardno's professional expectation for the traffic outcomes resulting from the development.

Detailed SIDRA results are included in Appendix C.

For ease of access the specific SIDRA files have been included in the below link: https://fileshare.cardno.com/wl/?id=tpalyqxwl6b5OyF9wZGpDIIVNbv5VJfR



Intersection 1: Bruce Highway / Musgrave Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-6.

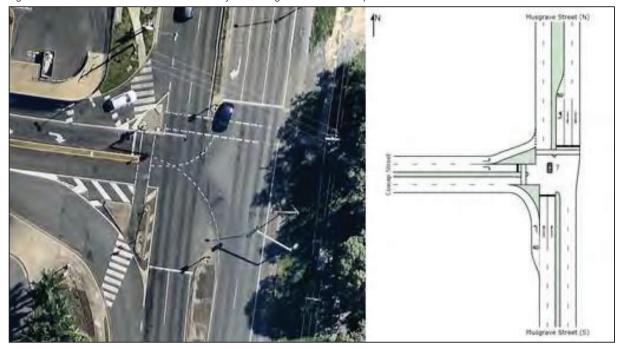
Figure 1-6 Current and SIDRA Assessed Layout - Bruce Highway / Musgrave Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-2. It should be noted that the sensitivity scenario outlined in Table 1-2 includes the childcare, revised distribution and trip generation.

Table 1-2 SIDRA Outputs - Bruce Highway / Musgrave Street Intersection

	Th	ursday PM	Peak	Saturday AM Peak			
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue	
2022 Background	0.79	39.6 sec	145m	0.75	38.4 sec	139m	
2024 Background	0.82	40.5 sec	155m	0.77	38.7 sec	144m	
2024 Background + Committed Approval	0.83	41.0 sec	155m	0.79	39.3 sec	151m	
2024 BG + Development (No Committed Approval)	0.82	40.6 sec	155m	0.78	38.8 sec	144m	
2024 Background + Development (Sensitivity)	0.82	40.7 sec	155m	0.78	39.0 sec	149m	
2034 Background	0.90	44.7 sec	186m	0.85	41.5 sec	179m	
2034 Background + Committed Approval	0.90	45.8 sec	186m	0.86	41.7 sec	182m	
2034 Background + Development (Sensitivity)	0.90	45.1 sec	186m	0.85	41.2 sec	179m	

The results of the analysis indicate that the four-way signalised arrangement operates within the typical performance thresholds (DOS ≤ 0.90 for signalised), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.



Intersection 2: Musgrave Street / Cowap Street Intersection

The current configuration of this intersection is a three-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-7.

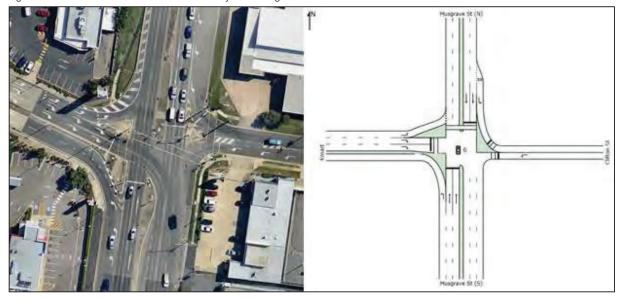
Current and SIDRA Assessed Layout - Musgrave Street / Cowap Street Intersection Figure 1-7

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-3.

Table 1-3 SIDRA Outputs - Musgrave Street / Cowap Street Intersection

- and to the company manginary output								
	Т	hursday PM	Peak	S	Saturday AM Peak			
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.44	4.5 sec	28m	0.58	10.6 sec	85m		
2024 Background	0.44	4.2 sec	28m	0.57	10.3 sec	83m		
2024 Background + Committed Approval	0.47	4.5 sec	29m	0.61	10.6 sec	91m		
2024 BG + Development (No Committed Approval)	0.45	4.5 sec	28m	0.58	10.4 sec	85m		
2024 Background + Development (Sensitivity)	0.45	4.1 sec	28m	0.60	10.5 sec	89m		
2034 Background	0.48	3.7 sec	28m	0.60	9.7 sec	89m		
2034 Background + Committed Approval	0.50	4.1 sec	29m	0.65	10.5 sec	104m		
2034 Background + Development (Sensitivity)	0.49	3.7 sec	28m	0.63	9.9 sec	95m		

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS ≤ 0.90 for signals), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.



Intersection 3: Musgrave Street / Clifton Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-8.

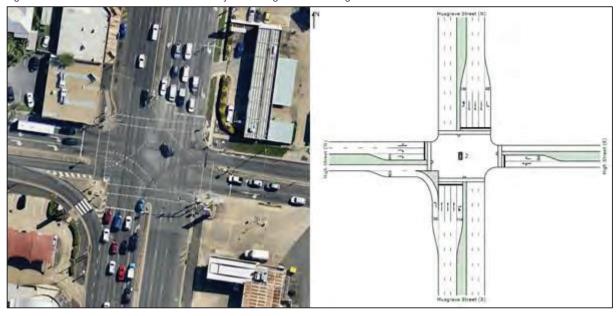
Current and SIDRA Assessed Layout - Musgrave Street / Clifton Street Intersection Figure 1-8

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-4.

Table 1-4 SIDRA Outputs - Musgrave Street / Clifton Street Intersection

	Т	hursday PM	Peak	Saturday AM Peak				
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.30	5.5 sec	21m	0.27	5.5 sec	22m		
2024 Background	0.31	5.5 sec	21m	0.28	5.4 sec	22m		
2024 Background + Committed Approval	0.31	5.8 sec	25m	0.28	5.8 sec	25m		
2024 BG + Development (No Committed Approval)	0.31	5.5 sec	22m	0.28	5.5 sec	23m		
2024 Background + Development (Sensitivity)	0.31	5.7 sec	23m	0.28	5.7 sec	24m		
2034 Background	0.34	5.2 sec	21m	0.31	5.2 sec	22m		
2034 Background + Committed Approval	0.34	5.6 sec	25m	0.31	5.6 sec	25m		
2034 Background + Development (Sensitivity)	0.34	5.5 sec	23m	0.31	5.4 sec	24m		

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS ≤ 0.90 for signals), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.



Intersection 5: Musgrave Street / High Street Intersection

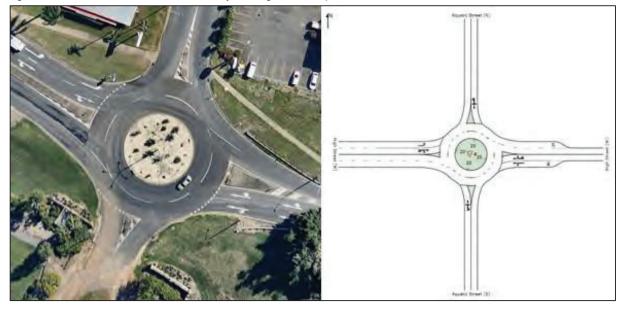
The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-9.

Current and SIDRA Assessed Layout - Musgrave Street / High Street Intersection Figure 1-9

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-5.

Table 1-5 SIDRA Outputs - Musgrave Street / High Street Intersection

	1	hursday PM	Peak	Saturday AM Peak				
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.79	46.1 sec	107m	0.66	41.7 sec	84m		
2024 Background	0.80	46.4 sec	110m	0.68	41.9 sec	86m		
2024 Background + Committed Approval	0.82	46.1 sec	118m	0.71	41.7 sec	92m		
2024 BG + Development (No Committed Approval)	0.80	46.0 sec	114m	0.69	42.0 sec	88m		
2024 Background + Development (Sensitivity)	0.81	46.4 sec	116m	0.70	41.6 sec	90m		
2034 Background	0.88	48.3 sec	136m	0.74	42.7 sec	98m		
2034 Background + Committed Approval	0.90	49.2 sec	143m	0.77	42.6 sec	103m		
2034 Background + Development (Sensitivity)	0.90	48.5 sec	143m	0.77	42.4 sec	103m		


The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS ≤ 0.90 for signals), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.

1.1.2 Intersection 8: High Street / Aquatic Place Intersection

The current configuration of this intersection is a roundabout arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-10.

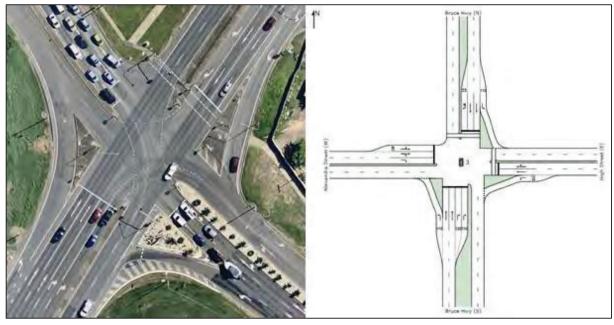
Figure 1-10 Current and SIDRA Assessed Layout – High Street / Aquatic Place Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-6.

Table 1-6 SIDRA Outputs – High Street / Aquatic Place Intersection

- abio : o oibi a t o atpato : iigii o a oot, / tquado : iaot								
	T	hursday Pl	M Peak	Saturday AM Peak				
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.34	5.7 sec	17m	0.50	6.3 sec	28m		
2024 Background	0.35	5.7 sec	18m	0.51	6.3 sec	28m		
2024 Background + Committed Approval	0.37	5.9 sec	19m	0.54	6.4 sec	34m		
2024 BG + Development (No Committed Approval)	0.35	5.7 sec	18m	0.51	6.3 sec	30m		
2024 Background + Development (Sensitivity)	0.37	5.9 sec	19m	0.52	6.4 sec	32m		
2034 Background	0.38	6.0 sec	19m	0.52	6.3 sec	32m		
2034 Background + Committed Approval	0.40	6.5 sec	21m	0.55	7.4 sec	38m		
2034 Background + Development (Sensitivity)	0.40	6.5 sec	20m	0.54	7.4 sec	36m		

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS \leq 0.85 for roundabouts), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.



1.1.3 Intersection 9: Bruce Highway / High Street / Alexandra Street Intersection

The current configuration of this intersection is a four-way signalised arrangement. The aerial and SIDRA assessed layout are illustrated on Figure 1-11.

Figure 1-11 Current and SIDRA Assessed Layout – Bruce Highway / High Street / Alexandra Street Intersection

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-7.

Table 1-7 SIDRA Outputs – Bruce Highway / High Street / Alexandra Street Intersection

	Th	ursday PM I	Peak	Saturday AM Peak				
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue		
2022 Background	0.80	42.6 sec	218m	0.78	44.3 sec	167m		
2024 Background	0.86	45.4 sec	263m	0.80	45.2 sec	178m		
2024 Background + Committed Approval	0.86	45.5 sec	263m	0.83	46.5 sec	186m		
2024 BG + Development (No Committed Approval)	0.86	46.2 sec	250m	0.81	45.5 sec	179m		
2024 Background + Development (Sensitivity)	0.86	46.0 sec	250m	0.82	46.3 sec	183m		
2034 Background	0.97	59.2 sec	371m	0.87	48.8 sec	213m		
2034 Background + Committed Approval	0.99	62.9 sec	397m	0.88	50.0 sec	217m		
2034 Background + Development (Sensitivity)	0.99	61.2 sec	372m	0.88	49.7 sec	213m		

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS \leq 0.90 for signals), for all assessed scenarios with the exception of the design horizon. It is noted that the background design horizon exceeds performance thresholds and with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted. The queuing increases the delay increases by 2 seconds (3%) and the queue increases by 1m (0.2%). This impact however reduces from the current approval which results in a net benefit to the network.

Issue 1.5 Future Assessment:

Council does not entirely agree with the TIA Assessment Scenario. DTMR's Rockhampton Ring Road (RRR) modelling indicate that the current level of traffic will basically remain within the road network. Notwithstanding the above, Council believes the High Street traffic is local traffic and does not affect by the RRR opening post 2026. This development should assess at a minimum the High Street intersections with a 10-year design horizon from opening of development. Please amend the TIA to satisfy this requirement.

Issue 1.5 Response:

As shown above in the Issue 1.4 response, 10-year design horizon traffic sensitivity analysis has been undertaken. Given this is a sensitivity test, this does not reflect the expected traffic outcomes resulting from the Rockhampton Ring Road development, the construction of what is an effective bypass of Rockhampton can only reduce the growth of traffic along Musgrave Street and the Bruce highway. However, a 1% growth rate per annum has been applied to all background volumes.

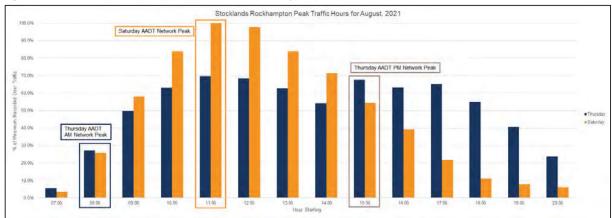
Issue 1.6 PM Peak Analysis:

SIDRA analysis has been carried out for AM peak only. Please carry out SIDRA analysis for PM peak and update the TIA accordingly. It is noted that the development PM peak traffic (especially for Thursdays) and childcare PM peak traffic are coinciding too

Issue 1.6 Response:

Cardno has previously undertaken SIDRA analysis for the Thursday PM Peak Hour and the Saturday AM Peak Hour. This contradicts Council's assertion that only the AM peak hour has been analysed. For the sake of completion Cardno have assumed that Council is also requesting AM Peak analysis, given that the PM peak hour along with the Childcare centre have been appropriately responded to in Issue 1.2 above.

The Thursday PM Peak and the Saturday AM Peak were chosen as they correspond to the recommended peak hour times for shopping centres, as in accordance with the RTA's Guide to Traffic Generating Developments. To further show this, the network peak hour times have been generated from the following TMR AADT sites and outlined below in Table 1-8. The specific AADT reports have been included in Appendix D.


Table 1-8 AADT identified network peak hours

Road Segment	AADT Site	Identified Thursday Peak Hours	Identified Saturday Peak Hour(s)
196	60102	8am - 9am & 3pm - 4pm	11am – 12pm
196	61076	8am - 9am & 4pm - 5pm	11am – 12pm
10F	61005	8am - 9am & 3pm - 4pm	11am – 12pm
10F	60017	8am - 9am & 3pm - 4pm	11am – 12pm

As shown above, the network peak hours have been generally identified as 8-9am and 3-4pm for Thursday, and 11am-12pm for Saturday. Given these identified peak hours, it is expected that the AM peak hours for the local network and the proposed development will not coincide, hence the assessment of the Saturday AM and the Thursday PM peak hours.

As a further demonstration of this outcome, Stockland have provided confidential door count data for the purpose of identifying the centre peaks. For commercial reasons the raw values have not been provided, but have been modified to be a percentage of the maximum peak foot traffic. These values and how they interact with the network peak times have been outlined below in Figure 1-12.

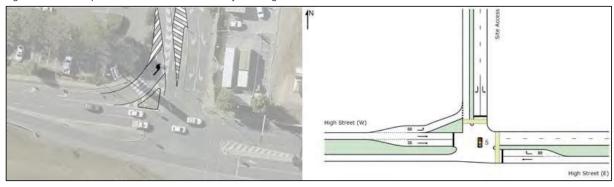
Figure 1-12 Stockland Rockhampton Peak Foot Traffic Hourly comparison

As shown above, the Saturday AM and Thursday PM peaks are significantly larger than their associated counterpart. Only approximately 27% of the development traffic volumes occur during the Thursday AM network peak, however 100% of observed foot traffic occurs at the same time as the Saturday AM peak.

As such, given both the lack of crossover between the Thursday AM centre and network peaks, and the significant crossover between the Saturday development and network AM Peaks, undertaking further analysis for the Thursday AM Peak is not considered suitable nor necessary.

Issue 1.7 Cycle Times:

- DTMR has confirmed the following cycle time for the existing traffic signal at High Street. Please update the SIDRA files accordingly.
 - M4516 High St/Kmart 120 sec cycle time runs isolated no coordinated plan Max Green A40. B20 and C20 secs


Issue 1.7 Response:

Cycle times for Intersection 7 have been suitably implemented, and corresponding SIDRA analysis, including the changes requested in Issues 1.3 & 1.4, has been undertaken below.

Intersection 7: High Street / Site Access Intersection

The current configuration of this intersection is a three-way signalised arrangement. As part of the proposed development, a revised intersection layout is proposed to help facilitate additional AV movements. The proposed and SIDRA assessed layout are illustrated on Figure 1-13.

Proposed and SIDRA Assessed Layout - High Street / Site Access Intersection Figure 1-13

The results of the SIDRA assessment, for all assessed scenarios, are summarised in Table 1-10.

Table 1-9 SIDRA Outputs - High Street / Site Access Intersection

	Thu	ırsday PM P	eak	S	aturday AN	Peak
Scenario	DOS	Average Delay	95 th %tile Queue	DOS	Average Delay	95 th %tile Queue
2022 Background	0.40	12.9 sec	41m	0.42	15.5 sec	44m
2024 Background	0.41	13.4 sec	42m	0.37	14.8 sec	42m
2024 Background + Committed Approval	0.42	13.9 sec	43m	0.46	16.1 sec	52m
2024 BG + Development (No Committed Approval)	0.41	13.4 sec	42m	0.38	15.1 sec	44m
2024 Background + Development (Sensitivity)	0.41	14.0 sec	44m	0.39	15.4 sec	47m
2034 Background	0.45	12.8 sec	46m	0.40	14.7 sec	46m
2034 Background + Committed Approval	0.45	13.8 sec	47m	0.41	15.1 sec	48m
2034 Background + Development (Sensitivity)	0.45	13.8 sec	47m	0.46	15.7 sec	51m

The results of the analysis indicate that the current form of the intersection operates within the typical performance thresholds (DOS ≤ 0.90 for signals), for all assessed scenarios. It is noted that with the inclusion of the proposed expansion traffic, the average delay and 95th percentile queues are not significantly impacted, when compared to the background scenarios.

CEB06360:ASJ 29 July 2022

Issue 1.8 Swept Paths:

Please provide swept paths for the 19m articulated vehicle (AV) forward gear exist through High Street traffic signals.

Issue 1.8 Response:

Swept paths have been provided in Appendix E.

Should you have any further queries or comments please do not hesitate to contact Andy Johnston on 07 3877 6931.

Yours sincerely,

Andy Johnston RPEQ: 24764

Technical Director - Transport Advisory

for Cardno

Direct Line: +61 7 3877 6931

Email: andrew.johnston@cardno.com.au

Enc: **Appendix A:** Traffic Surveys

Appendix B: Network Flow Diagram Appendix C: Detailed SIDRA Results Appendix D: AADT Outcomes Appendix E: Swept Paths

G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Reporting\ALDI EXPANSION\2022 07 03 - IR Responses\2022 07 29 - Council RFI - C.docx

Site No.: 1 Weather: Fine
Location: Musgrave Street/Moores Creek Road, Rockhampton
Day/Date: Saturday, 6 May 2017
Peak: Hour ending - 12:15 PM

Bruce Highway (west) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
--

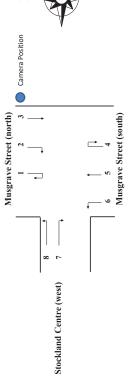
t 8	ls3oT	99	73	22	92	29	55	48	56	52	47	41	47	† 89	511
Movement 8	Heavy Vehicles	1	-	0	0	0	0	0	0	0	0	0	1	ε	0
2	zəlɔinəV İngi⊥	64	72	22	9/	29	55	48	26	52	47	41	46	189	511
1.7	lstoT	157	93	140	113	130	93	114	133	115	93	123	105	60 7 1	422
Movement 7	Reavy Vehicles	0	-	-	0	-	-	0	0	0	-	2	0	L	ı
M	səlɔidəV İdgi∆	157	95	139	113	129	95	114	133	115	92	121	105	1402	† 9†
9	Total	12	14	17	16	15	16	16	12	16	13	œ	13	891	09
Movement 6	Heavy Vehicles	0	-	0	0	0	0	0	0	0	-	0	1	ε	0
Σ	zəlɔinəV İngi⊥	12	13	17	16	15	16	16	12	16	12	80	12	165	09
15	IstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zələirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. 4	IstoT	12	20	10	14	1	12	16	19	19	16	20	15	181	99
Movement 4	Heavy Vehicles	7	-	0	0	0	0	0	0	0	-	0	0	Þ	0
M	zələirləV İrigiz	10	19	10	14	11	12	16	19	19	15	20	15	180	99
13	Total	124	114	110	147	116	118	106	120	113	94	93	109	1364	197
Movement 3	Heavy Vehicles	1	2	-	-	-	-	4	0	0	0	2	2	91	g
Σ	səlɔidəV ¹dgi∆	123	112	109	146	115	117	102	120	113	94	91	107	1349	42 2
12	lstoT	159	151	162	169	138	156	131	168	134	141	120	128	7971	689
Movement 2	Heavy Vehicles	8	7	9	80	2	2	4	7	2	4	4	6	99	81
Σ	zələirləV İrigiz	151	44	156	161	133	151	127	161	132	137	116	122	1691	149
11	Total	1	0	0	-	0	-	0	0	0	0	0	0	ε	ı
Movement 1	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ä	səlɔidəV İdgi∆	1	0	0	-	0	-	0	0	0	0	0	0	8	ı
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	3 hr Total	Реак

"	letoT	124	117	126	109	125	140	102	130	105	124	115	115	1435	LL #
Movement 16	Heavy Vehicles	2	9	3	2	-	4	2	က	2	9	2	2	l tr	l l
Mo	sələidəV †dgi∆	119	111	123	107	124	136	100	127	103	118	113	110	1391	997
22	lstoT	29	22	70	69	84	92	70	91	06	87	87	69	7 68	725
Movement 15	Reavy Vehicles	-	0	-	0	0	-	-	-	-	0	0	0	9	Þ
Mo	sələidəV †dgi∆	99	22	69	59	84	75	69	06	88	87	87	29	168	323
4	lstoT	1	9	က	ო	2	7	4	4	22	4	2	-	817	20
Movement 14	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	səlɔidəV 1dgi∆	1	9	က	8	2	7	4	4	2	4	2	-	817	50
13	lstoT	0	0	-	0	-	0	0	0	0	0	0	0	z	0
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Š	səlɔihəV ¹hgi∆	0	0	-	0	-	0	0	0	0	0	0	0	z	0
12	lstoT	8	13	5	15	30	12	19	13	22	9	6	19	111	99
Movement 12	Heavy Vehicles	0	0	2	0	-	-	2	0	-	0	-	0	8	Þ
Σ	səlɔidəV İdgi∆	8	13	6	15	58	£	17	13	74	9	80	19	691	7 9
Ξ	lstoT	122	127	132	151	136	137	154	145	185	151	129	147	9141	129
Movement 11	Reavy Vehicles	2	-	2	က	0	-	2	0	က	2	-	2	22	9
2	səlɔidəV †dgi∆	120	126	130	148	136	136	152	145	182	146	128	145	⊅69 ↓	919
10	lstoT	55	72	62	8	23	88	82	96	107	104	8	88	866	377
Movement 10	Reavy Vehicles	0	-	0	0	0	0	-	0	2	0	0	0	Þ	ε
ž	səlɔidəV İdgi∆	54	71	62	84	73	88	84	96	105	104	84	88	⊅66	97 6
1t 9	lstoT	2	0	0	0	0	-	2	-	0	0	0	က	6	Þ
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
~	səlɔidəV İdgi∆	2	0	0	0	0	-	2	-	0	0	0	ю	6	Þ
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	p Peak

Site No.: 1 Weather: Fine
Location: Musgrave Street/Moores Creek Road, Rockhampton
Day/Date: Thursday, 4 May 2017
PM Peak: Hour ending - 5:45 PM

		*	11 10 9	Musgrave Street (south)
-	16 4 Bruce Highway (west) 15 14 14	Camera Position	12	Mu

t 8	lstoT	25	46	51	37	40	34	25	55	41	47	28	21	787	136
Movement 8	Reavy Vehicles	0	-	0	0	0	0	-	0	0	0	0	0	2	ı
_	zələirləV İrlgid	29	45	21	37	40	34	24	22	41	47	28	21	084	135
1.7	lstoT	103	102	119	119	88	88	113	130	101	119	78	28	6121	60⊅
Movement 7	Reavy Vehicles	1	2	-	0	2	-	-	-	0	-	2	0	91	Þ
Σ	səlɔidəV ¹dgi∆	102	26	118	119	98	88	112	129	101	118	9/	58	1504	907
16	Total	11	13	13	19	15	6	10	13	13	œ	9	7	7.51	23
Movement 6	Reavy Vehicles	0	0	0	0	0	0	0	-	0	0	0	0	ı	0
Σ	zəlɔinəV İngi⊥	11	13	13	19	15	6	10	12	13	80	9	7	136	23
t 5	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəlɔinəV İngi⊥	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	lstoT	23	35	25	27	20	25	24	13	13	16	œ	9	238	96
Movement 4	Heavy Vehicles	2	_	0	_	0	0	0	0	0	0	0	0	Þ	ı
Š	zələirləV İrigiz	21	뚕	25	36	20	22	24	13	13	16	œ	6	534	96
3	Total	83	104	90	93	86	73	63	20	89	20	44	99	١06	725
Movement 3	Reavy Vehicles	2	4	2	4	8	2	-	0	2	-	-	-	97	01
Σ	zələirləV İrigiz	81	100	82	88	96	71	62	20	99	49	43	64	918	718
12	lstoT	151	135	127	145	124	146	116	96	82	75	72	72	1340	153
Movement 2	Reavy Vehicles	16	9	9	4	15	10	6	8	3	2	2	7	88	38
Σ	zəlɔinəV İngi⊥	135	129	121	141	109	136	107	87	79	73	20	92	1525	£67
11	Total	0	0	0	0	0	0	0	0	0	0	0	1	ı	0
Movement 1	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ĭ	səlɔidəV İdgi∆	0	0	0	0	0	0	0	0	0	0	0	1	ı	0
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	3 hr Total	bW b ^{eg} K

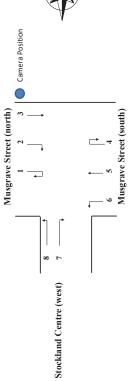

16	lstoT	66	125	122	120	146	157	132	132	79	83	22	46	9671	999	
Movement 16	Reavy Vehicles	9	4	4	2	4	7	2	2	4	2	9	ဗ	89	12	
Ň	səlɔidəV 1dgi∆	93	121	118	115	142	150	127	127	75	78	49	43	1238	PE9	
15	lstoT	132	157	135	173	186	177	173	136	80	90	64	22	1260	604	
Movement 15	Heavy Vehicles	4	2	2	-	2	4	3	2	0	_	0	0	12	01	
W	zeloine√ Jdgi∠	128	155	133	172	184	173	170	134	80	88	64	22	1639	669	
14	lstoT	2	က	6	-	4	က	0	2	-	0	2	က	30	8	
Movement 14	Heavy Vehicles	-	0	0	0	0	0	0	0	0	0	0	0	ı	0	
M	səlɔidəV ⅓dgi∠	1	3	6	-	4	е	0	2	-	0	2	8	62	8	
13	IstoT	0	0	-	-	0	0	0	0	0	0	0	0	z	L	1
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	sələirləV thgi⊥	0	0	-	-	0	0	0	0	0	0	0	0	z	ı	
12	lstoT	8	13	10	œ	00	5	13	12	9	9	10	4	601	01⁄2	1
Movement 12	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	zəlɔinəV thgi⊥	8	13	10	œ	00	£	13	12	9	9	10	4	60 L	01⁄2	
_	lstoT	130	120	119	144	125	141	154	135	93	90	75	09	1386	P99	1
Movement 11	Heavy Vehicles	2	က	က	က	0	0	2	2	-	2	-	0	52	S	
Mo	səlɔidəV 1dgi∠	125	117	116	141	125	141	152	130	95	88	74	09	1361	699	
10	lstoT	108	115	116	147	143	152	141	127	107	66	101	82	1438	£89	1
Movement 10	Heavy Vehicles	0	0	0	-	0	-	0	0	-	0	0	0	ε	z	
Mo	səlɔidəV 1dgi∠	108	115	116	146	143	151	141	127	106	66	101	82	1432	189	
6	lstoT	-	0	0	-	-	0	0	0	0	0	2	-	9	z	1
Movement 9	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	səlɔidəV 1dgi∆	-	0	0	-	-	0	0	0	0	0	2	-	9	z	967423
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	1stoT nd &	ЬМ Реак	rent Set ID. 37

Site No.: 2 Weather: Fine

Location: Musgrave Street/Stockland Centre, Rockhampton

Day/Date: Saturday, 6 May 2017

Peak: Hour ending - 12:15 PM


8	lstoT	30	28	40	4	42	46	49	45	25	47	51	61	222	261
Movement 8	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	səlɔinəV ⅓hgi⊥	30	28	40	44	42	46	49	45	52	47	51	61	989	192
.7	lstoT	8	17	19	23	59	20	24	24	33	23	26	19	592	101
Movement 7	гөрүү үерүсү	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	zələirəV İrlgid	8	17	19	23	58	20	24	24	33	23	26	19	592	101
9:	lstoT	24	15	78	23	8	સ	53	52	78	24	73	33	40 8	111
Movement 6	гөілінөү үувөН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	zələirəV İrlgid	24	15	26	23	30	31	29	25	26	24	21	33	40 £	111
. 5	lstoT	146	163	164	190	170	193	191	201	203	211	164	172	2168	887
Movement 5	гөрүү үерісівг	3	3	4	0	ဗ	2	2	2	2	9	2	4	98	11
W	zələidəV İdgid	143	160	160	190	167	191	186	199	201	205	162	168	2132	111
4	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 4	гөілінөү үvвөН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	səlɔidəV İdģi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:3	lstoT	149	158	132	182	135	130	130	153	141	111	106	127	1654	1 99
Movement 3	гөрүү үерісівз	1	8	_	_	_	2	4	0	0	0	2	ဗ	81	9
W	səlɔidəV ¹dgi∆	148	155	131	181	134	128	126	153	141	111	104	124	1636	248
: 2	lstoT	30	45	35	45	44	42	34	40	30	28	30	43	9 11	91/1
Movement 2	гөрүү үерісівг	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	səlɔidəV ¹dgi∆	30	45	32	45	4	42	发	40	30	78	30	43	977	971
:1	lstoT	0	0	2	-	2	2	-	2	-	-	0	-	દા	9
Movement 1	гөілінәу үувәН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	səlɔidəV ¹dgi∆	0	0	2	-	2	2	-	2	-	-	0	-	દા	9
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	3 hr Total	Реак

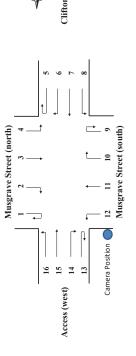
Site No.: 2 Weather: Fine

Location: Musgrave Street/Stockland Centre, Rockhampton

Day/Date: Thursday, 4 May 2017

PM Peak: Hour ending - 5:30 PM

8	lstoT	41	36	45	33	63	42	73	46	34	36	30	24	203	183
Movement 8	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	səlɔidəV ¹dgi∆	14	36	45	33	63	42	73	46	34	36	30	24	203	183
7	lstoT	18	22	19	18	22	21	26	15	14	18	13	17	223	08
Movement 7	sələidəV yvsəH	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	səlɔidəV ¹dgi∆	18	22	19	18	22	21	26	15	14	18	13	17	523	08
.6	lstoT	17	23	25	18	20	22	17	15	9	2	7	4	ÞζΙ	98
Movement 6	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	səlɔidəV ¹dgi∆	17	23	25	18	20	22	17	15	9	2	2	4	Þζί	98
5	lstoT	193	195	217	186	234	231	224	182	143	127	122	93	7412	898
Movement 5	гөрүү үчвөН	7	_	9	-	-	0	2	8	2	0	-	0	72	8
Ž	səlɔidəV ¹dgi∆	186	194	211	185	233	231	219	179	141	127	121	93	5120	098
: 4	lstoT	2	0	0	0	0	-	0	0	0	0	0	0	ε	ı
Movement 4	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	səlɔidəV ¹dgi∆	2	0	0	0	0	1	0	0	0	0	0	0	ε	ı
:3	lstoT	126	115	122	104	111	98	80	66	81	75	80	09	8711	432
Movement 3	Reavy Vehicles	2	9	4	2	4	1	2	0	2	1	1	-	67	ÞΙ
Ž	səlɔidəV İdgi∆	124	109	118	66	107	94	78	66	62	74	62	29	6111	814
: 2	lstoT	19	29	27	27	24	14	17	22	21	20	13	13	546	76
ovement 2	гөілінәу үvвәН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	zələirləV İrlgid	19	59	27	27	24	14	17	22	21	20	13	13	546	Z 6
:1	lstoT	1	2	-	0	0	0	0	2	0	2	0	0	8	ı
Movement 1	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	səlɔidəV ¹dgi∆	1	2	1	0	0	0	0	2	0	2	0	0	8	ı
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	S hr Total	bW b ^{eg} K


Site No.: 3 Weather: Fine
Location: Musgrave Street/Clifton Street, Rockhampton
Day/Date: Saturday, 6 May 2017
Peak: Hour ending - 12:15 PM

Musgrave Street (north) Camera Position

t8	lstoT	2	1	7	13	1	9	9	2	2	2	4	5	08	61
Movement 8	Heavy Vehicles	0	-	0	0	0	0	0	0	0	0	0	0	ı	0
2	Light Vehicles	2	10	7	13	1	9	9	2	2	Ω	4	2	64	61
.7	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 7	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	Light Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 6	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəloirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Неачу Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəloirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Total	14	16	20	26	6	20	17	25	24	21	16	15	223	98
Movement 4	Heavy Vehicles	0	0	0	0	0	0	-	0	0	0	0	0	ı	ı
Ň	Light Vehicles	14	16	20	56	6	20	16	22	24	21	16	15	222	98
3	lstoT	152	149	134	183	149	138	133	150	157	66	123	130	7691	873
Movement 3	Heavy Vehicles	1	က	-	_	_	က	2	0	0	0	2	3	۷١	g
W	zəloirləV İrigiz	151	146	133	182	148	135	131	150	157	66	121	127	0891	£73
.2	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 2	Неачу Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəloirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 1	Неачу Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ř	zəloirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	3 hr Total	Peak

16	lstoT	28	24	46	27	37	46	62	42	53	38	20	49	209	203
Movement 16	Heavy Vehicles	-	0	-	0	-	0	-	0	-	0	-	-	L	z
Σ	zəlɔidəV İdgi⊥	27	24	45	27	36	46	61	42	52	38	49	48	967	201
15	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 15	sələidəV yvsəH	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	zeloine√ Jdgi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	lstoT	30	25	40	21	34	30	36	29	45	38	51	41	420	071
Movement 14	Heavy Vehicles	0	0	-	0	0	0	0	0	0	0	2	0	ε	0
Mo	səlɔidəV ¹dgi∠	30	25	39	21	34	30	36	29	45	38	49	41	114	140
13	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	zeloine√ Ingit	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	lstoT	22	61	64	67	22	67	69	22	63	52	64	22	187	524
Movement 12	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	-	-	z	0
Mo	zəlɔinəV thgi⊥	22	61	29	29	22	29	69	22	83	25	83	29	62 7	524
-	lstoT	155	145	167	152	177	164	162	175	201	167	144	165	⊅ ∠61	207
Movement 11	Heavy Vehicles	3	2	က	0	4	-	က	2	2	2	-	4	30	8
Mo	zeloine√ Ingit	152	143	164	152	173	163	159	173	199	162	143	161	194 61	⊅ 69
10	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 10	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	səlɔidəV 1dgi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	səlɔinəV Ingi∟	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	lstoT 1d &	Реак

Site No.: 3 Weather: Fine
Location: Musgrave Street/Clifton Street, Rockhampton
Day/Date: Thursday, 4 May 2017
PM Peak: Hour ending - 5:30 PM

8 1	lsioT	2	ო	4	9	4	2	7	0	-	4	7	4	97	61
Movement 8	Reavy Vehicles	1	0	0	0	0	0	-	0	0	0	0	0	2	0
2	səlɔidəV ¹dgi∆	4	8	4	9	4	2	9	0	-	4	2	4	6 43	61
t 7	IstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 7	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	səlɔinəV İngi⊥	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t 6	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 6	гөілінәу үлвөН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	səlɔinəV İngi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t 5	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	zələidəV İdgid	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t 4	lstoT	17	17	21	13	25	15	15	21	10	12	1	6	186	ÞL
Movement	гөрүү үчвөН	0	0	0	0	-	0	0	0	0	-	0	0	z	ı
2	zələirləV İrlgid	17	17	21	13	24	15	15	21	10	1	1	6	184	£7
t 3	lstoT	142	108	118	115	110	92	91	88	06	82	77	70	1183	987
Movement 3	Reavy Vehicles	-	9	4	ß	က	-	2	0	2	0	-	-	56	٤١
_	zələirləV İrlgid	141	102	114	110	107	91	88	88	88	82	92	69	7311	422
ıt 2	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 2	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	zələirləV İrlgid	0	0	0	0	0	0	0	0	0	0	0	0	0	0
# 1	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 1	гөілінәу үчвәН	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	səlɔinəV İngi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	IstoT 1rl &	bW b ^{eg} K

ent 16	leĵoT	44	42	26	34	45	20	54	22	45	44
Movement 16	Reavy Vehicles	2	2	2	0	_	0	2	_	_	0
	zeloine√ Jdgi∠	42	4	22	34	44	20	49	22	4	4
it 15	lstoT	0	0	0	0	0	0	0	0	0	0
Movement 15	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0
≥	səlɔidəV ¹dgi∆	0	0	0	0	0	0	0	0	0	0
41	lstoT	36	32	42	78	32	32	4	37	42	20
Movement 14	Reavy Vehicles	0	-	2	0	2	0	-	-	0	-
Š	zəlɔidəV ¹dgi∆	36	34	40	28	30	32	39	36	42	49
13	lstoT	0	0	0	0	0	0	0	0	0	0
Movement 13	гөілінөү үувөН	0	0	0	0	0	0	0	0	0	0
Ň	səlɔidəV İdģi∠	0	0	0	0	0	0	0	0	0	0
12	lstoT	61	51	51	29	65	99	20	22	61	62
Movement 12	Heavy Vehicles	0	0	0	0	0	0	-	0	0	0
M	səlɔidəV ⅓dgi∠	61	51	51	59	65	99	69	22	61	62
7	lstoT	196	161	180	178	219	207	179	131	100	82
Movement 11	Heavy Vehicles	2	_	က	0	0	0	2	_	_	0
Mo	səlɔidəV ⅓dgi∠	191	160	177	178	219	207	177	130	66	82
0	lstoT	0	0	0	0	0	0	0	0	0	0
Movement 10	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0
Mo	səlɔidəV ¹dgi∠	0	0	0	0	0	0	0	0	0	0
6	lstoT	0	0	-	0	0	0	0	0	0	0
Movement 9	sələidəV yvsəH	0	0	0	0	0	0	0	0	0	0
Mc	səlɔidəV ¹dgi∆	0	0	-	0	0	0	0	0	0	0
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM

20	39	828	182
-	0	91	ε
49	39	£ 1 9	182
0	0	0	0
0	0	0	0
0	0	0	0
25	36	432	134
0	-	6	Þ
25	35	974	130
0	0	0	0
0	0	0	0
0	0	0	0
41	44	989	241
0	0	ı	0
41	44	989	241
70	29	0441	78 4
0	0	ខរ	ε
70	29	7 971	187
0	0	0	0
0	0	0	0
0	0	0	0
0	0	ı	ı
0	0	0	0
0	0	ı	ı
6:45 PM	7:00 PM	lstoT 1d &	bW b ^{eg} K

Site No.: 5 Weather: Fine
Location: Musgrave Street/High Street, Rockhampton
Day/Date: Saturday, 6 May 2017
Peak: Hour ending - 12:15 PM

Musgrave Street (north)

Camera Position

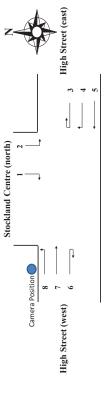
80	lefoT	80	10	13	10	6	7	4	4	9	10	20	15	041	97
Movement 8	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zələirləV İrigiz	8	10	13	10	6	1	14	14	9	10	20	15	140	97
7	lstoT	45	53	28	49	53	53	43	47	47	37	46	48	629	061
Movement 7	Reavy Vehicles	1	0	0	0	2	-	0	0	3	0	0	0	L	Þ
Ň	zələirləV İrlgid	44	53	28	49	51	52	43	47	44	37	46	48	273	981
9 1	lstoT	41	99	38	20	48	53	43	47	28	20	45	42	149	201
Movement 6	Reavy Vehicles	0	0	0	0	0	0	0	0	0	-	0	0	ı	0
Σ	səlɔinəV İngi⊥	41	26	38	20	48	23	43	47	28	49	45	42	049	201
t 5	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	zələirləV İrlgid	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t 4	lstoT	24	22	25	27	36	29	25	24	39	29	39	25	344	211
Movement 4	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	-	ı	0
2	zələirləV İrlgid	24	22	52	27	38	59	52	24	93	59	39	24	343	211
t 3	lstoT	136	129	144	171	148	121	136	134	145	102	134	135	1635	989
Movement 3	Reavy Vehicles	2	2	-	-	-	-	7	0	0	0	2	7	Þl	ε
_	zələirləV İrlgid	134	127	143	170	147	120	134	134	145	102	132	133	1621	683
t 2	lstoT	18	16	12	∞	12	6	15	4	10	7	Έ	ß	7 £1	87
Movement 2	Heavy Vehicles	0	2	-	0	0	0	2	0	0	0	2	0	۷	z
_	zələirləV İrigiz	18	14	=	00	12	6	13	4	10	7	6	2	130	9†
11.1	lstoT	14	15	4	7	15	œ	17	7	4	9	13	12	120	09
Movement 1	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	səlɔidəV ¹dgi∆	14	15	14	Ε	15	00	17	Ε	4	9	13	12	120	09
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	Ь ⁶⁹ К

16	lstoT	10	9	16	6	19	9	8	16	11	21	7	22	162	19	
Movement 16	Heavy Vehicles	0	0	-	0	0	0	-	0	0	0	0	0	z	ı	
Σ	zəlɔidəV 1dgi∆	10	9	12	6	10	10	17	16	17	21	7	22	160	09	
15	lstoT	34	51	46	46	20	48	57	22	54	43	46	44	973	216	
Movement 15	Heavy Vehicles	2	0	-	0	-	-	0	0	2	-	0	0	8	ε	
M	səlɔidəV ¹dgi∠	32	51	45	46	49	47	22	22	52	42	46	44	899	213	
14	IstoT	99	75	26	99	69	89	64	90	62	28	45	69	844	78⊄	
Movement 14	Heavy Vehicles	0	2	-	0	-	-	2	0	2	0	-	0	01	9	1
Mo	səlɔidəV 1dgi∠	99	73	22	99	89	29	62	06	09	28	44	69	894	6 7 2	1
13	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Movement 13	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Mo	səlɔidəV 1dgi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
12	lstoT	46	32	38	51	54	28	09	54	4	99	36	40	699	516	1
Movement 12	Peavy Vehicles	2	-	-	-	-	2	-	-	-	-	-	-	ÞΙ	g	1
Mo	səlɔidəV 1dgi∠	4	31	37	20	23	29	29	23	43	22	32	33	999	112	1
-	lstoT	146	131	154	171	162	158	150	169	166	150	137	145	1839	E†9	1
Movement 11	Heavy Vehicles	2	က	2	0	က	-	က	2	2	4	2	e	72	8	1
Mo	səlɔidəV ¹dgi∠	144	128	152	171	159	157	147	167	164	146	135	142	2181	989	1
01	lstoT	30	13	22	27	30	53	37	20	32	33	3	17	324	811	1
Movement 10	Peavy Vehicles	0	0	0	0	0	0	0	0	0	-	0	0	ı	0	l
Mo	səlɔidəV Idgi∆	30	13	25	27	30	59	37	20	32	32	31	17	323	811	1
6	lstoT	16	22	19	21	16	20	18	19	29	20	7	18	525	98	1
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Wo	səlɔidəV ⅓dgi∆	16	22	19	21	16	20	18	19	29	20	7	18	525	98	967423
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	Ь ⁶⁹ К	rent Set ID. 37

Site No.: 5 Weather: Fine
Location: Musgrave Street/High Street, Rockhampton
Day/Date: Thursday, 4 May 2017
PM Peak: Hour ending - 5:15 PM

	- 5 - 6 High Street (ea	Camera Position
	t] ,	
orth)	4	outh)
Musgrave Street (north)	ω \longrightarrow	
grave S	~	↑ 11 grave S
Mus		12 Mus
	15 +1	E
	High Street (west)	•

Movement 8	lstoT	2	16	6	9	15	-	6	16	က	-	9	2	Z 6	9†
	Heavy Vehicles	-	0	0	0	0	0	0	0	0	0	0	0	ı	0
_	zəloirləV İrigiz	4	16	6	9	15	-	6	16	е	-	9	2	16	97
1.7	IstoT	20	28	26	46	22	51	40	53	38	42	43	21	999	712
Movement 7	Reavy Vehicles	2	0	-	0	2	-	2	0	2	0	0	0	01	3
W	səlɔidəV İdgi∆	48	28	22	46	22	20	38	53	36	42	43	21	979	714
Movement 6	Total	40	48	52	54	52	49	54	37	42	32	28	22	013	505
	Reavy Vehicles	1	0	-	0	0	0	-	0	0	0	0	0	ε	ı
	zələirləV İrigiz	68	48	51	54	52	49	53	37	42	32	28	22	70 9	502
15	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	zələirləV İrigiz	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 4	Total	28	32	28	29	25	19	23	22	16	25	13	19	672	ÞII
	Reavy Vehicles	0	0	0	0	0	0	0	-	0	0	0	0	ı	0
W	zələirləV İrlgid	28	32	28	29	22	19	23	21	16	22	13	19	872	ħll
Movement 3	Total	149	105	118	110	110	102	96	102	98	83	78	93	1231	6443
	Reavy Vehicles	2	4	4	2	8	-	-	0	0	-	-	2	51	13
M	səlɔidəV ¹dgi∆	147	101	114	108	107	101	94	102	98	82	77	91	1210	430
Movement 2	lstoT	3	7	12	12	10	7	15	14	Ξ	12	9	4	113	lτ
	Heavy Vehicles	0	က	2	2	2	_	2	0	_	-	0	0	ÞΙ	6
	zələirləV İrigiz	8	4	10	10	80	9	13	14	10	11	9	4	66	32
Movement 1	Total	6	12	9	∞	4	œ	∞	10	12	13	∞	10	801	30
	Heavy Vehicles	0	0	0	0	0	0	-	0	0	0	0	0	ı	0
Ä	səlɔidəV İdgi∆	6	12	9	œ	4	œ	7	10	12	13	œ	10	۲01	30
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	3 hr Total	bW b ^{eg} K


		9	6	4	0				2	2					
ıt 16	Total	9	6	4	10	7	7	2	12	12	7	7	c)	101	01⁄2
Movement 16	гөрүү үерісі	0	0	-	0	0	0	0	0	0	0	0	0	ı	L
Σ	səlɔidəV İdgi∆	9	6	13	10	7	7	2	12	12	7	7	2	001	68
Movement 15	lstoT	28	22	77	09	89	53	22	26	26	42	47	38	199	560
	Heavy Vehicles	1	-	3	0	2	-	2	0	-	0	0	0	11	9
Ň	səlɔidəV Idgi∆	22	54	74	09	99	52	22	99	22	42	47	38	999	724
4	lstoT	78	89	77	70	89	20	09	84	99	42	41	36	094	304
Movement 14	sələidəV yvsəH	4	1	-	2	-	2	2	-	1	0	0	0	91	g
ĕ	sələidəV 1dgi∆	74	88	9/	99	29	48	28	83	64	42	41	36	2 45	667
13	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 13	sələidəV yvsəH	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	səlɔidəV Idgi∆	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	lstoT	41	45	67	09	52	4	38	31	28	30	32	23	167	522
Movement 12	Heavy Vehicles	4	4	2	-	-	2	4	8	0	0	2	0	97	l l
	sələidəV 1dgi∆	37	41	62	29	51	42	ষ্ক	78	28	30	30	23	997	213
7	lstoT	196	138	163	153	223	197	191	138	91	102	71	92	4739 6841	ZZ9
Movement 11	sələidəV yvsəH	4	-	-	0	0	0	-	-	-	0	0	0	6	z
Š	sələidəV 1dgi∆	192	137	162	153	223	197	190	137	06	102	71	9/	1730	949
10	lstoT	42	36	32	42	49	25	46	30	33	24	11	11	450	129
Movement 10	Reavy Vehicles	1	0	0	0	2	-	0	0	0	0	0	0	Þ	z
M	səlɔidəV 1dgi∆	41	36	32	42	47	51	46	30	33	24	17	17	914	181
6.1	lstoT	22	23	43	31	25	31	24	20	15	15	6	13	172	122
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	səlɔidəV 1dgi∆	22	23	43	31	25	31	24	20	15	15	6	13	172	122
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	S hr Total	155 bW b ⁶⁹ K

Site No.: 7 Weather: Fine

Location: High Street/Stockland Centre, Rockhampton

Day/Date: Saturday, 6 May 2017

Peak: Hour ending - 12:15 PM

80	lstoT	45	54	43	22	69	72	20	49	20	46	41	40	†19	551
Movement 8	Reavy Vehicles	0	0	0	0	0	0	0	0	0	1	0	0	ı	0
Š	səlɔidəV İdgi⊥	45	54	43	22	69	72	20	49	20	45	41	40	613	221
7	lstoT	81	98	92	84	92	113	101	106	109	88	79	80	1123	429
Movement 7	Heavy Vehicles	0	-	-	0	0	_	0	0	_	0	0	0	Þ	z
ĕ	səlɔidəV İdgi⊥	81	26	91	84	92	112	101	106	108	88	79	80	6111	724
9	IstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 6	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ĕ	səlɔidəV ¹dgi⊥	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	lstoT	89	77	93	81	90	72	110	75	81	79	70	79	946	338
Movement 5	Heavy Vehicles	0	-	0	0	0	-	-	0	-	0	0	0	Þ	ε
Š	səlɔinəV thgi⊥	89	9/	93	81	06	71	109	75	80	79	70	79	146	332
4	lstoT	29	29	32	30	33	36	25	30	31	24	30	1	340	122
Movement 4	Heavy Vehicles	3	-	ဗ	0	4	-	3	0	4	0	4	-	54	8
Š	səlɔinəV thgi⊥	26	28	29	30	29	35	22	30	27	24	26	10	316	ÞII
8	lstoT	1	-	0	-	0	0	-	0	0	0	0	-	g	ı
Movement 3	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ĕ	səlɔidəV İdgi⊥	-	-	0	-	0	0	-	0	0	0	0	-	S	ı
2	lstoT	22	23	19	20	29	20	24	40	24	35	24	34	314	801
Movement 2	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Š	səlɔinəV thgi⊥	22	23	19	20	59	20	24	40	24	35	24	ষ্ঠ	314	801
Σ.	lstoT	26	34	37	42	49	22	20	64	69	20	42	48	899	240
Movement 1	Reavy Vehicles	-	0	0	0	0	0	-	0	0	0	0	0	z	ı
ĕ	səlɔinəV thgi⊥	25	34	37	42	49	22	49	64	69	20	42	48	999	533
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	Реак

Site No.: 7 Weather: Fine Location: High Street/Stockland Centre, Rocklampton DayDate: Thursday, 4 May 2017. PM Peak: How ending - 3:15 PM

8	Total	36	44	42	31	32	43	42	32	30	28	22	23	907	671
Movement 8	невиу Vehicles	0	-	0	0	-	0	0	0	0	0	0	0	z	z
W	SelvideV 146iJ	36	43	42	31	31	43	42	32	30	28	22	23	403	741
- 2	letoT	121	117	142	112	120	94	101	135	103	69	70	65	1249	160
Movement 7	невиу Vehicles	2	0	-	0	0	0	0	-	0	0	0	0	Þ	ı
М	Fight Vehicles	119	117	141	112	120	94	101	13-4	103	69	70	65	1245	067
9:	Total	0	0	0	0	0	0	0	0	0	0	-	0	ı	0
Movement 6	невиу Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М	SelvideV 146L	0	0	0	0	0	0	0	0	0	0	-	0	ı	0
2	Total	88	93	113	106	112	96	99	75	99	72	99	42	066	424
Movement 5	невиу Vehicles	2	2	-	0	0	0	-	-	0	-	-	0	6	ε
M	SelvideV 146L	87	91	112	106	112	90	65	7.4	99	7.1	65	42	186	124
4	letoT	16	18	28	14	28	24	29	16	1	17	14	6	554	88
Movement 4	невиу Vehicles	2	ю	80	-	9	3	6	2	2	-	-	0	43	50
2															l
	Light Vehicles	11	13	20	13	22	21	20	14	6	16	13	6	181	89
3	Total	0 11	0 13	1 20	0 13	0 22	0 21	1 20	3 14	6 0	0 16	0 13	6 0	181	k 89
ovement 3		L	_	0 1 20	_			0 1 20	_		_	_			
Movement 3	Total	0	0	-	0	0	0	-	m	0	0	0	0	9	ı
	Heavy Vehicles	0 0	0	-	0 0	0 0	0 0	-	en 0	0 0	0	0	0 0	S 0	0
	Light Vehicles Heavy Vehicles	22 0 0 0	0 0	1 0	0 0 0	0 0	0 0	1 0	3 0 3	0 0	0 0	0 0 0	0 0 0	9 0 9	0
Movement 2 Movement 3	Total Light Vehicles Heavy Vehicles	22 0 0 0	20 0 0 0	1 0	0 0 0	17 0 0 0	13 0 0 0	11 1 0 1	17 3 0 3	18 0 0 0	17 0 0 0	20 0 0 0	11 0 0	9 0 9 612	1 0 1
Movement 2	Heavy Vehicles Total Light Vehicles Heavy Vehicles	0 22 0 0	0 0 0 0	1 28 1 0 1	1 25 0 0 0	0 17 0 0 0	0 13 0 0 0	0 11 1 0 1	0 17 3 0 3	0 18 0 0 0	0 17 0 0	0 20 0 0	0 11 0 0	9 0 9 612 2	006
Movement 2	Light Vehicles Total Light Vehicles Light Vehicles Heavy Vehicles	44 22 0 22 0 0 0	20 0 20 0 0 0	27 1 28 1 0 1	24 1 25 0 0 0	17 0 17 0 0 0	13 0 13 0 0 0	11 0 11 1 0 1	17 0 17 3 0 3	18 0 18 0 0	17 0 17 0 0	20 0 20 0 0 0	11 0 11 0 0	S 0 0 9 61Z Z	0 0 1 06 2
	Total Light Vehicles Total Light Vehicles Heavy Vehicles Heavy Vehicles	0 44 22 0 22 0 0	36 20 0 20 0 0 0	45 27 1 28 1 0 1	51 24 1 25 0 0 0 0	28 17 0 17 0 0 0	49 13 0 13 0 0 0	29 11 0 11 1 0 1	35 17 0 17 3 0 3	39 18 0 18 0 0 0	17 0 17 0 0	21 20 0 20 0 0 0	24 11 0 11 0 0	9 0 S S 612 Z L122	0 0 0 0 0 88

Site No.: 8 Weather: Fine
Location: High Street/Aquatic place, Rockhampton
Day/Date: Saturday, 6 May 2017
Peak: Hour ending - 12:15 PM

	Camera Position Camera Position A High Street (6	∞ -
æ	4	<u> </u>
Aquatic Place (north)	∞ —→	↑ ↑ 10 Access (south)
uatic Pl	~-	† 11 Access
Αq	- -	← 52
	16	<u> </u>

t8	Total	1	-	-	-	-	2	-	-	7	0	0	0	11	9
Movement 8	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ν	zələirləV İrigiz	1	-	-	-	-	2	-	-	2	0	0	0	11	9
7	lstoT	78	87	92	98	66	11	121	110	118	83	88	84	6911	091⁄
Movement 7	Reavy Vehicles	1	_	0	0	0	3	0	0	-	0	0	0	9	Þ
M	zələirləV İribid	77	98	92	98	66	108	121	110	117	83	88	84	1163	9917
9	lstoT	26	22	27	31	36	31	31	33	32	24	29	34	326	721
Movement 6	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mc	zələirləV İrlgiz	56	22	27	31	36	31	31	33	32	24	59	34	326	721
5	lstoT	2	0	0	0	0	-	0	-	-	-	-	က	01	ε
Movement 5	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Me	zələirləV İrlgi	2	0	0	0	0	-	0	-	-	-	-	8	01	ε
4	lstoT	32	40	34	26	4	37	28	29	37	39	42	39	181	161
Movement 4	Reavy Vehicles	0	0	0	0	0	0	0	0	-	0	0	0	ı	ı
Mc	zələirləV İrigiz	32	40	æ	56	4	37	22	29	98	39	42	39	483	061
3	lstoT	0	0	-	0	-	0	0	2	0	2	0	0	9	z
Movement 3	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mc	zələirləV İrigiz	0	0	-	0	-	0	0	2	0	2	0	0	9	z
2	lstoT	48	22	25	45	28	47	9/	74	72	80	62	73	ታ ቱረ	697
Movement 2	Reavy Vehicles	1	-	0	0	0	0	0	က	0	0	0	0	g	ε
M	səlɔinəV thgi∆	47	99	52	45	28	47	9/	71	72	80	62	73	687	997
-1	lstoT	0	-	0	0	0	0	0	-	0	0	-	0	ε	ı
Movement 1	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	zələirləV İrlgiz	0	-	0	0	0	0	0	-	0	0	-	0	ε	ı
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	Ь ⁶⁹ К

16	lstoT	122	88	106	117	121	114	109	108	136	104	91	77	1294	∠9 ₱
Movement 16	Reavy Vehicles	1	0	-	-	-	-	0	0	0	0	0	0	g	ı
Ž	səlɔidəV İdgi∆	121	89	105	116	120	113	109	108	136	104	91	77	1289	997
15	lstoT	66	116	98	113	141	128	85	110	110	90	85	103	9721	433
Movement 15	Heavy Vehicles	-	-	0	0	-	0	0	0	-	0	0	0	Þ	ı
Š	zəlɔidəV †dgi∆	86	115	92	113	140	128	82	110	109	06	82	103	1221	435
4	lstoT	0	-	-	-	0	-	0	0	-	-	4	-	i i	z
Movement 14	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Š	zəlɔidəV İdgi∠	0	-	-	-	0	-	0	0	-	-	4	-	i i	z
13	lstoT	0	0	2	0	-	ო	-	0	0	0	0	2	6	Þ
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ž	zeloine√ Jdgi∠	0	0	2	0	-	က	-	0	0	0	0	2	6	Þ
12	lstoT	-	0	-	-	0	-	-	-	-	-	9	0	ÞΙ	Þ
Movement 12	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	səlɔinəV Ingi∠	-	0	-	-	0	-	-	-	-	-	9	0	ÞΙ	Þ
-	lstoT	0	0	0	0	0	-	0	-	7	-	0	-	9	Þ
Movement 11	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zeloine√ Jdgi∠	0	0	0	0	0	-	0	-	2	-	0	-	9	Þ
10	lstoT	-	2	-	0	-	0	0	-	0	0	0	0	9	ı
Movement 10	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	səlɔinəV Ingi∠	-	2	-	0	-	0	0	-	0	0	0	0	9	ı
t 9	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ž	səlɔinəV Ingi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	1stoT nd &	ревк

Site No.: 8 Weather: Fine
Location: High Street/Aquatic Place, Rockhampton
Day/Date: Thursday, 4 May 2017
PM Peak: Hour ending 5:00 PM

High Street (cast)	
High Street (west) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

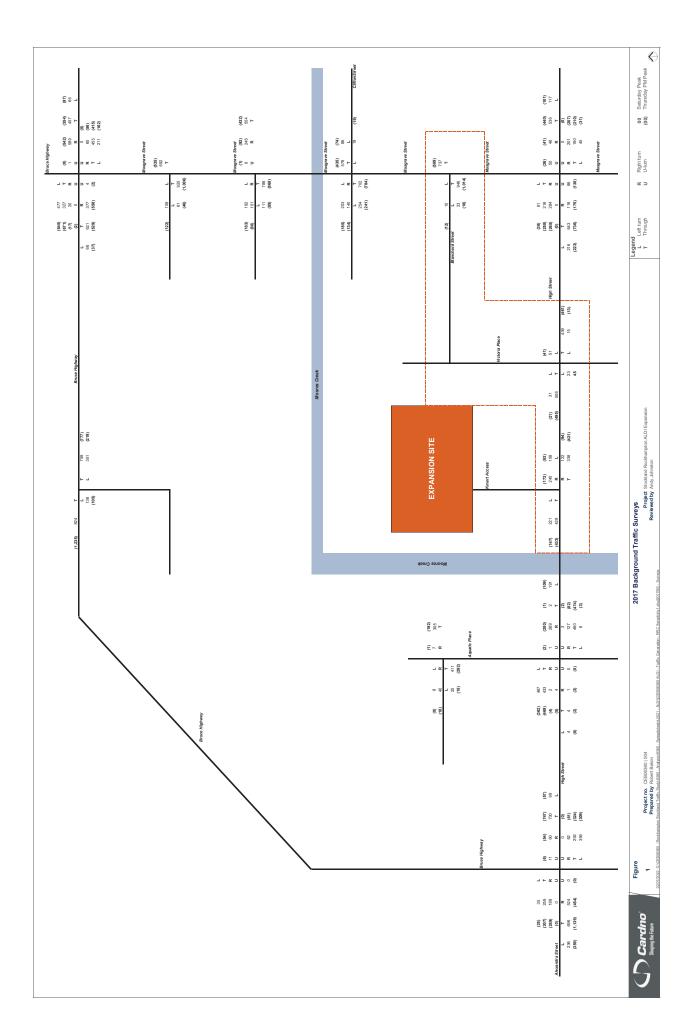
t 8	lstoT	0	-	-	-	0	-	0	0	-	-	-	0	L	ε
Movement 8	Reavy Vehicles	0	0	0	0	0	-	0	0	0	0	0	0	ı	0
_	zələirləV İrigiz	0	-	-	-	0	0	0	0	-	-	-	0	9	ε
7	lstoT	116	123	124	127	123	100	75	103	84	99	99	22	1160	067
Movement 7	Heavy Vehicles	2	2	-	0	0	0	0	-	2	0	_	0	6	g
Ň	zələirləV İrlgiz	114	121	123	127	123	100	75	102	82	65	64	55	1911	987
9	lstoT	17	20	25	22	26	6	24	16	16	19	25	12	182	1 84
Movement 6	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	zələirləV İrlgid	17	20	25	22	26	6	24	16	16	19	25	12	182	1 84
5	lstoT	0	-	-	0	-	0	0	0	0	0	0	1	Þ	z
Movement 5	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	zələirləV İrlgid	0	-	-	0	-	0	0	0	0	0	0	1	Þ	2
4	lstoT	27	39	28	27	31	23	32	23	34	35	32	31	395	121
Movement 4	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	zələirləV İrlgiz	27	39	78	27	31	23	32	23	怒	32	32	31	395	121
3	IstoT	2	0	-	0	0	0	-	0	0	0	0	0	Þ	ε
Movement 3	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ň	zələirləV İrlgiz	2	0	-	0	0	0	-	0	0	0	0	0	Þ	ε
2	lstoT	48	22	83	54	43	40	6	25	49	28	4	28	∠69	222
Movement 2	Reavy Vehicles	1	-	-	0	0	0	0	-	0	0	0	0	Þ	ε
Ň	zələirləV İrlgiz	47	26	62	54	43	40	61	51	49	28	44	28	£69	612
-	lstoT	0	-	-	-	0	0	0	0	0	0	-	0	Þ	ε
Movement 1	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W	səlɔinəV thgi∆	0	-	-	-	0	0	0	0	0	0	-	0	Þ	ε
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	3 hr Total	ьW Б ^{ез} К

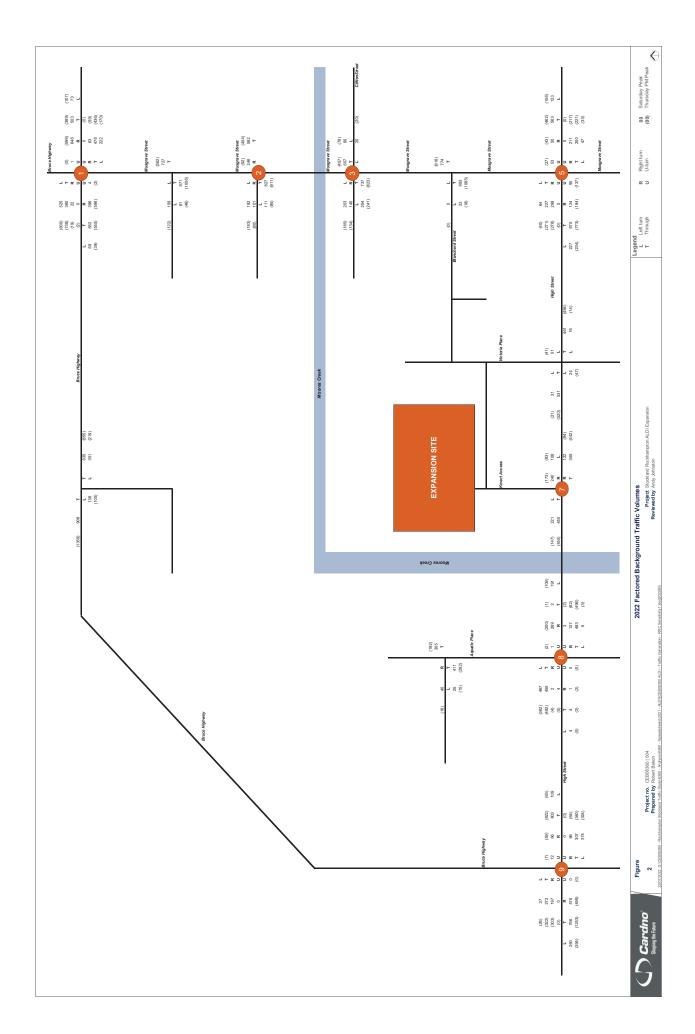
16	lstoT	85	72	96	81	82	100	88	73	79	22	29	39	£16	334	
Movement 16	Heavy Vehicles	0	0	0	0	0	-	0	-	0	0	-	0	ε	0	
Σ	Light Vehicles	82	72	96	81	82	66	88	72	62	22	28	39	016	334	
15	lstoT	142	136	129	114	121	105	159	107	80	71	28	22	6721	129	
Movement 15	Reavy Vehicles	2	-	-	-	0	0	0	-	0	0	0	0	9	g	
W	zeloine√ Jdgi∠	140	135	128	113	121	105	159	106	80	71	28	22	£721	919	
14	lstoT	-	0	2	-	-	0	0	-	-	-	0	-	6	Þ	
Movement 14	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	səlɔidəV ¹dgi∠	-	0	2	-	-	0	0	-	-	-	0	-	6	Þ	
13	lstoT	-	2	0	က	2	0	24	25	က	0	2	-	£9	9	
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	-	ı	0	
Mo	səlɔidəV 1dgi∠	-	2	0	က	2	0	24	25	က	0	2	0	7 9	9	
12	lstoT	0	-	0	0	0	0	0	0	0	0	0	-	z	ı	
Movement 12	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	zəlɔinəV thgi⊥	0	-	0	0	0	0	0	0	0	0	0	-	z	ı	
_	lstoT	0	0	-	-	0	0	0	-	0	0	0	0	ε	z	
Movement 11	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	səlɔidəV 1dgi∆	0	0	-	-	0	0	0	-	0	0	0	0	ε	z	
01	lstoT	-	-	-	-	0	0	0	0	0	0	0	0	Þ	Þ	
Movement 10	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	səlɔidəV Idgi∆	-	-	-	-	0	0	0	0	0	0	0	0	Þ	Þ	
6	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Movement 9	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	sələidəV Jdgid	0	0	0	0	0	0	0	0	0	0	0	0	0	0	967423
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	IstoT 1rl &	ЬМ Реак	nent Set ID. 37967423

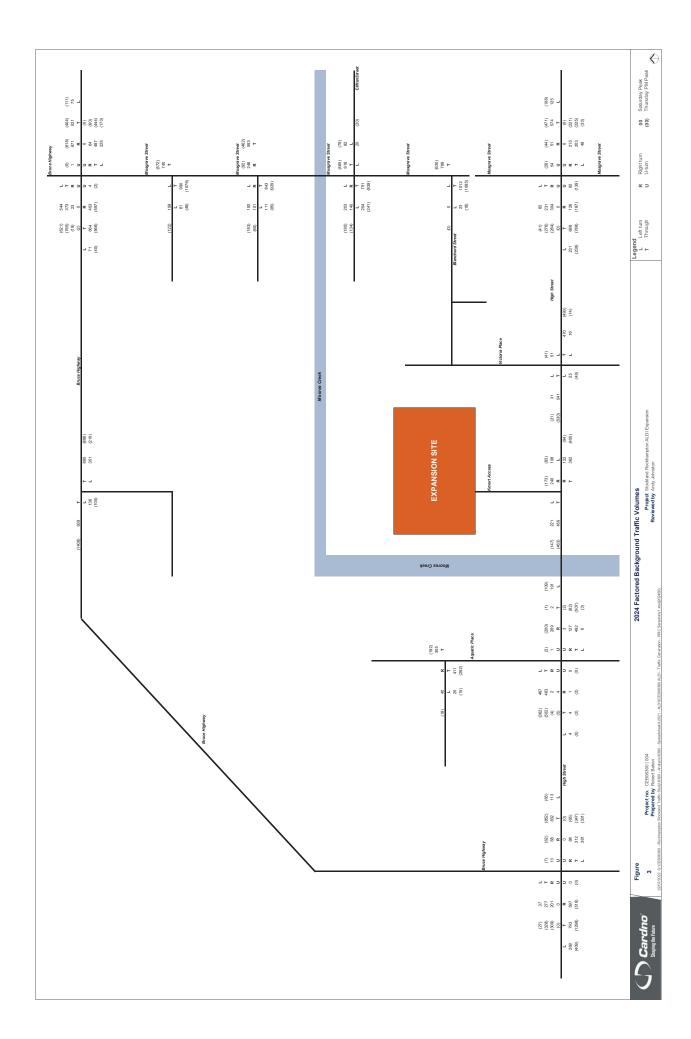
Site No.: 9 Weather: Fine
Location: High Street/Moores Creek Road/Alexandt
Day/Date: Saturday, 6 May 2017
Peak: Hour ending - 12:00 PM

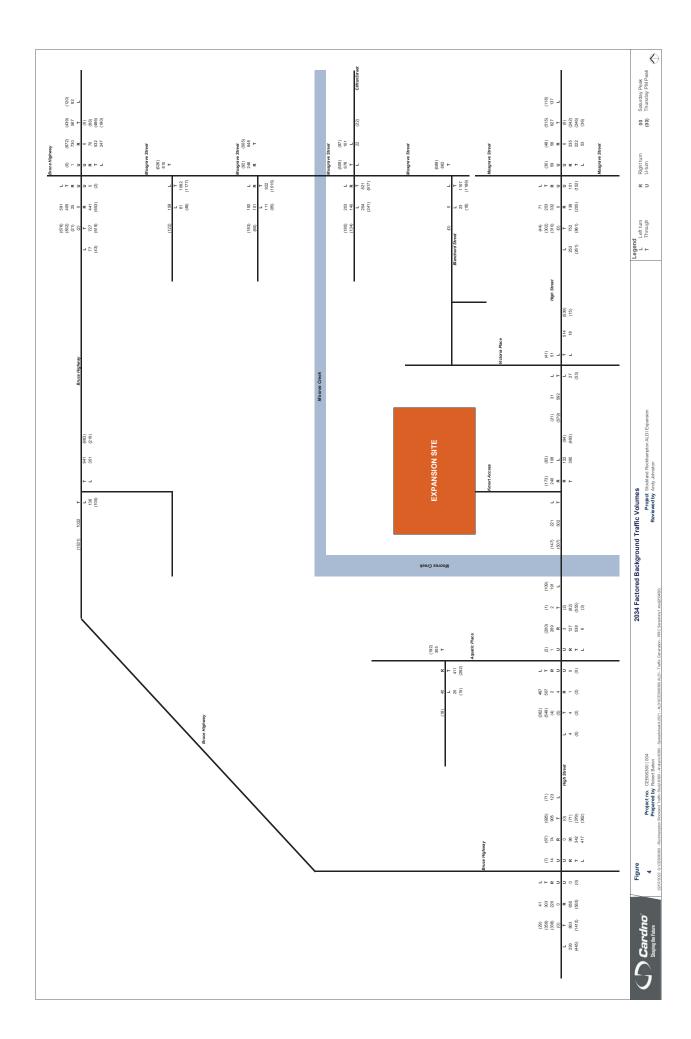
	High Street (eas	ı	
	\$ 2	×	_
∯ 4 −		<u> </u>	uth ,
Bruce Highway (north)	→	└ ;	12 11 10 9 Bruce Highway (south)
e High	¬,	•	11 e High
Bruc 1	-	← :	12 Bruc
	Alexandra Street (west) 15	13	Camera Position
T	ndra Street, Rockhampton		

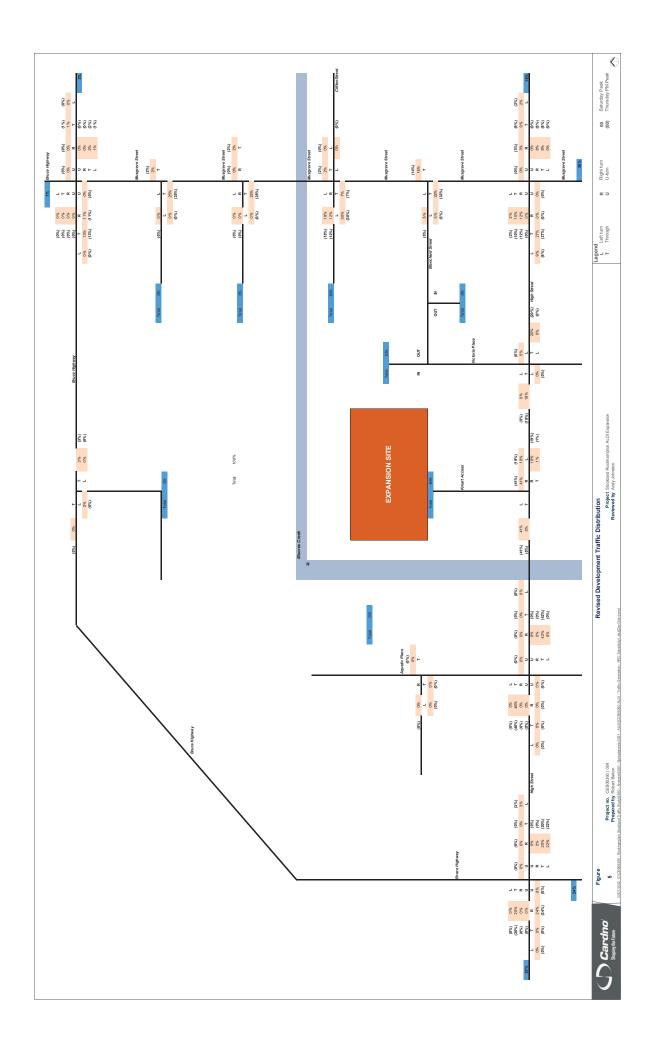
t 8	lstoT	99	70	73	80	73	92	83	83	86	93	75	98	186	331
Movement 8	Heavy Vehicles	1	-	0	0	0	0	0	-	0	0	0	0	ε	ı
Δ	zələirləV İrigiz	9	69	73	80	73	92	83	82	86	93	75	92	846	330
. 7	IstoT	42	63	09	48	69	61	93	99	72	20	22	22	794	682
Movement 7	Heavy Vehicles	1	_	0	0	0	2	1	1	_	0	0	0	<u> </u>	Þ
W	zələirləV İrlgid	41	62	09	48	69	29	92	92	71	70	22	22	1 ⊅1	582
9	lstoT	6	17	15	6	19	12	24	20	26	16	11	20	504	94
Movement 6	Reavy Vehicles	0	0	0	0	0	0	0	0	-	0	0	0	ı	0
M	zələirləV İrigiz	6	17	15	6	19	12	24	20	25	16	17	20	203	94
5	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	zələirləV İribid	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	lstoT	26	15	23	21	25	28	19	29	23	17	5	12	549	101
Movement 4	Reavy Vehicles	0	0	-	0	2	0	0	0	0	0	0	0	ε	z
Mc	zələirləV İribid	56	15	22	21	23	28	19	23	23	17	Ε	12	546	66
3	lstoT	196	167	215	194	166	182	172	213	163	150	196	163	7112	££7
Movement 3	Reavy Vehicles	2	4	9	6	က	6	7	2	2	9	00	00	ST	54
M	zələirləV İrlgiz	191	163	209	185	163	173	165	208	161	144	188	155	2105	604
2	lstoT	20	£	6	92	20	13	24	16	7	23	15	15	190	£7
Movement 2	Heavy Vehicles	0	-	0	0	0	0	0	0	0	0	0	0	ı	0
M	zələirləV İrlgid	20	10	6	18	20	13	24	16	7	22	15	15	681	£7
1	lstoT	4	0	4	7	-	2	4	2	е	4	4	0	30	6
Movement 1	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M	zələirləV İrlgiz	4	0	4	2	-	2	4	2	က	4	4	0	30	6
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	3 hr Total	Реак

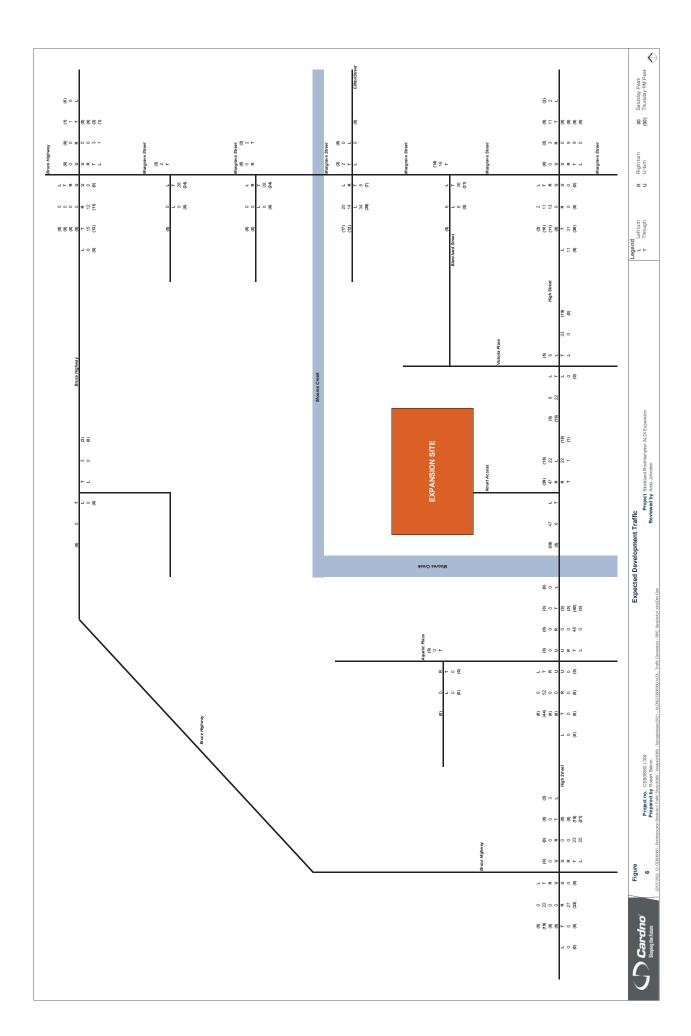

16	lstoT	2	က	80	2	2	6	89	2	13	6	9	က	94	72	
Movement 16	Reavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Ž	səlɔidəV 1dgi∆	2	3	80	2	2	6	80	2	13	6	9	8	94	72	
15	lstoT	54	74	99	78	89	70	09	62	67	99	45	48	994	590	l
Movement 15	Heavy Vehicles	2	0	0	0	0	-	0	0	0	0	0	0	ε	ı	1
W	zeloine√ Jdgi∠	52	74	92	78	89	69	09	62	29	99	45	48	£9.7	520	
14	lstoT	51	09	47	09	28	22	48	46	37	49	09	42	919	502	l
Movement 14	Heavy Vehicles	0	3	2	3	0	-	2	3	2	0	4	-	51	9	1
M	səlɔidəV ⅓dgi∠	51	57	45	57	28	99	46	43	35	49	26	41	⊅ 69	203	1
13	IstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
M	səlɔidəV ⅓dgi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
12	lstoT	89	22	41	22	7	69	62	49	26	52	22	39	878	192	
Movement 12	Heavy Vehicles	2	0	-	-	2	က	-	2	2	2	-	2	61	8	
M	səlɔidəV ⅓dgi∠	99	22	40	26	69	99	61	47	22	20	26	37	699	243	
-	IstoT	184	141	180	150	220	168	172	167	189	178	144	147	2040	727	
Movement 11	Heavy Vehicles	4	က	2	-	2	-	က	4	е	2	2	-	01⁄2	ει	1
M	zeloine√ Ingit	180	138	175	149	215	167	169	163	186	173	139	146	Z000	ÞΙΖ	1
10	lstoT	126	106	121	123	164	137	116	112	159	106	115	102	78Þ1	679	l
Movement 10	Reavy Vehicles	0	0	-	-	0	0	0	0	-	0	0	0	ε	0	1
Mo	səlɔidəV ¹dgi∠	126	106	120	122	164	137	116	112	158	106	115	102	1484	629	1
6	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Movement 9	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mo	səlɔinəV Ingi∟	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37967423
TIME	(1/4 hr end)	10:15 AM	10:30 AM	10:45 AM	11:00 AM	11:15 AM	11:30 AM	11:45 AM	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	S hr Total	Peak	nent Set ID. 37

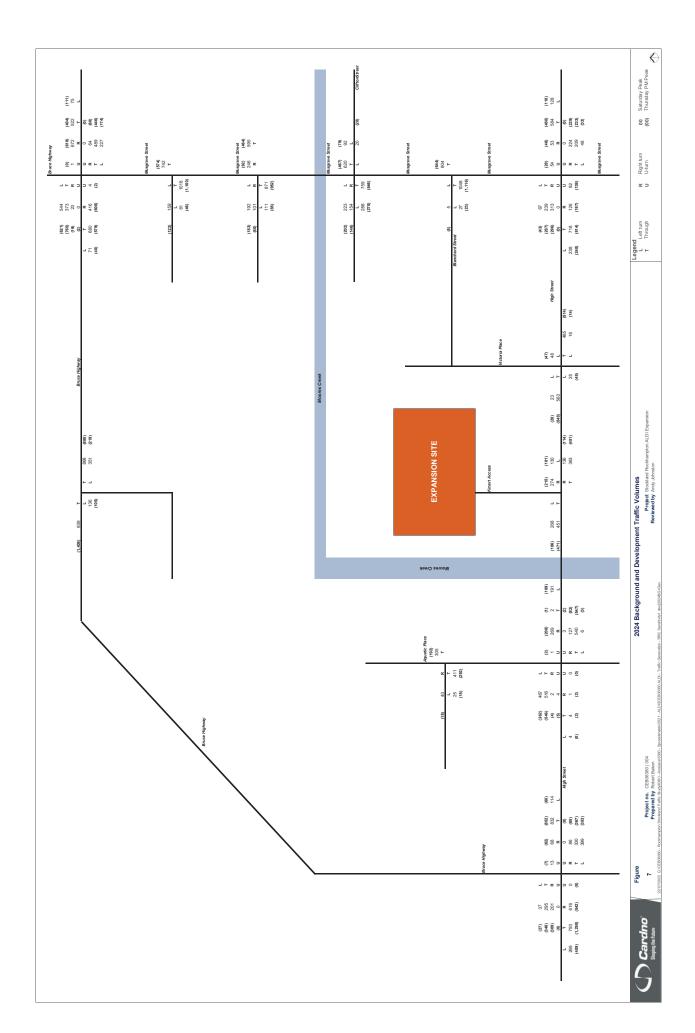

Site No.: 9 Weather: Fine
Location: High Street/Moores Creek Road/Alexandra Street, Rockhampton
Day/Date: Thursday, 4 May 2017
PM Peak: Hour ending - 5:15 PM

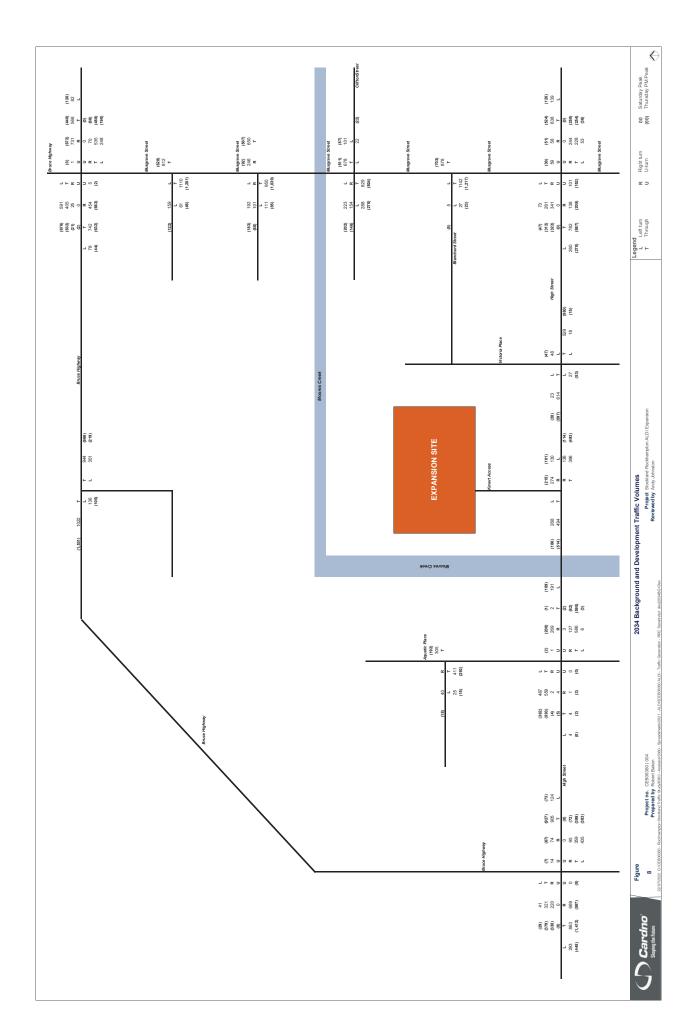

Z	High Street (east)	
_		8
Bruce Highway (north)	· +	9 south)
shway (·	10 thway (
uce Hig	' —,	12 1 10 5 Bruce Highway (south)
- B	· — .	•
	16 15	13 — 13 — Camera Position
	t (west)	Camera
	Alexandra Street (west)	
ION COUNT	Fine Aoad/Alexandra Street, Rockhampton	
ON	Fine	Z


18	ls3oT	92	90	87	83	29	72	88	93	79	69	44	32	188	327
Movement 8	Reavy Vehicles	2	_	-	0	0	0	0	-	0	0	_	-	1	z
Δ	zələirləV İrlgid	74	88	98	83	29	72	89	95	62	69	43	31	⊅ 18	325
.7	Total	09	9/	83	98	84	71	44	63	57	48	54	44	044	329
Movement 7	Reavy Vehicles	1	2	-	0	0	0	0	0	2	0	0	0	9	ε
Σ	zəlɔidəV ¹dgi⊥	26	74	82	98	84	71	44	63	22	48	24	44	79 4	326
9 1	lstoT	10	20	17	1	15	18	10	14	10	18	9	8	731	E9
Movement 6	Heavy Vehicles	0	0	0	0	0	0	0	-	0	0	0	0	ı	0
Σ	zəlɔidəV İdgi⊥	10	20	17	=	15	18	10	13	10	18	9	∞	126	£9
15	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 5	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zeloine√ Yehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t 4	lstoT	12	6	20	16	10	1	69	70	36	20	œ	17	882	99
Movement	Heavy Vehicles	0	0	0	-	0	0	0	0	0	-	0	0	z	ı
Σ	zeloine√ Yehicles	12	6	20	15	10	£	29	20	36	19	80	17	987	1/9
t 3	lstoT	219	192	193	198	185	171	104	98	130	120	98	82	7871	894
Movement 3	Heavy Vehicles	15	9	7	2	15	7	6	œ	4	4	2	6	16	EE
Σ	zəlɔidəV İdgi⊥	204	186	186	193	170	164	96	87	126	116	93	9/	9691	387
t 2	lstoT	20	19	Ξ	8	9	15	∞	13	15	13	6	2	126	89
Movement 2	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəlɔinəV İngi⊥	20	19	11	18	10	15	8	13	15	13	6	2	126	89
t1	Total	2	က	0	က	-	2	-	0	0	0	7	-	91	L
Movement 1	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ	zəlɔinəV İngi⊥	2	е	0	е	-	2	-	0	0	0	2	-	91	L
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	3 hr Total	ЬМ Б ^{ез} К


16	lstoT	7	7	10	4	80	3	3	-	ဗ	က	8	2	89	33
Movement 16	Heavy Vehicles	0	0	0	0	0	0	0	0	-	0	0	0	ı	0
Mo	zəlɔidəV †dgi∠	7	1	10	4	00	8	က	-	2	က	က	2	1 9	EE
15	lstoT	92	90	84	70	80	73	99	39	40	47	22	30	994	324
Movement 15	Heavy Vehicles	2	-	-	0	0	0	0	-	0	0	0	0	9	z
Mo	zəlɔidəV †dgi∠	06	89	83	70	80	73	99	38	40	47	55	30	192	322
14	lstoT	82	78	77	89	90	54	53	39	38	36	28	33	929	313
Movement 14	Heavy Vehicles	2	2	-	2	2	4	2	2	က	-	2	-	TS	01
Mo	səlɔidəV †dgi⊥	80	9/	9/	63	88	20	51	37	35	35	26	32	679	303
13	lstoT	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Movement 13	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mo	zəlɔidəV †dgi∠	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	lstoT	80	74	79	108	90	82	91	22	53	36	43	30	128	198
Movement 12	Heavy Vehicles	9	7	9	9	က	2	က	2	က	0	က	-	24	22
Mo	səlɔidəV †dgi⊥	74	29	73	102	87	8	88	23	20	98	4	23	644	356
1	lstoT	234	259	237	299	299	304	295	177	146	129	66	86	5292	⊅ 60↓
Movement 11	Heavy Vehicles	12	က	6	9	7	6	က	2	9	2	က	4	21	52
Мо	səlɔidəV †dgi∆	222	256	228	293	292	295	292	172	140	124	96	94	720¢	6901
10	lstoT	116	118	114	109	112	119	137	100	78	28	22	25	0211	£9 1
Movement 10	Heavy Vehicles	0	0	0	0	0	0	-	-	0	0	-	-	Þ	0
Mo	səlɔidəV †dgi⊥	116	118	114	109	112	119	136	66	78	28	99	51	9911	1 23
6	lstoT	0	0	0	0	0	0	0	0	0	0	-	0	ı	0
Movement 9	Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mc	səlɔidəV †dgi∆	0	0	0	0	0	0	0	0	0	0	-	0	ı	0
TIME	(1/4 hr end)	4:15 PM	4:30 PM	4:45 PM	5:00 PM	5:15 PM	5:30 PM	5:45 PM	6:00 PM	6:15 PM	6:30 PM	6:45 PM	7:00 PM	S hr Total	ЬW Б ⁶⁹ К







Site: 1 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		_evel of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	69	6.0	73	6.0	0.075	7.2	LOSA	0.1	0.7	0.03	0.59	0.03	56.1
2	T1	652	1.0	686	1.0	* 0.736	38.6	LOS C	21.3	129.3	0.88	0.77	0.89	31.6
3	R2	396	1.0	417	1.0	0.736	45.3	LOS D	21.2	128.2	0.88	0.83	0.89	33.5
3u	U	4	0.0	4	0.0	0.736	45.5	LOS D	20.3	123.0	0.88	0.84	0.89	28.0
Appr	oach	1121	1.3	1180	1.3	0.736	39.1	LOS C	21.3	129.3	0.83	0.78	0.83	33.4
East	Moore	es Road (E)											
4	L2	222	0.0	234	0.0	0.190	11.0	LOS A	3.9	23.3	0.36	0.68	0.36	53.9
5	T1	478	0.0	503	0.0	* 0.583	52.6	LOS D	15.4	92.4	0.95	0.80	0.95	35.0
6	R2	63	0.0	66	0.0	* 0.714	83.3	LOS F	4.8	29.0	1.00	0.81	1.17	22.9
Appr	oach	763	0.0	803	0.0	0.714	43.0	LOS D	15.4	92.4	0.78	0.77	0.80	37.0
North	n: Bruc	e Highwa	ıy (N)											
7	L2	73	0.0	77	0.0	0.065	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	503	1.0	529	1.0	* 0.751	34.7	LOS C	22.6	138.6	0.85	0.75	0.85	33.1
9	R2	648	3.0	682	3.0	0.751	41.8	LOS C	22.6	138.6	0.86	0.83	0.87	34.2
Appr	oach	1224	2.0	1288	2.0	0.751	36.8	LOS C	22.6	138.6	0.81	0.78	0.81	34.8
West	t: Bruc	e Highwa	y (W)											
10	L2	525	2.0	553	2.0	0.271	23.6	LOS B	9.6	58.9	0.56	0.74	0.56	43.2
11	T1	360	1.0	379	1.0	0.442	50.7	LOS D	11.2	67.8	0.91	0.76	0.91	35.7
12	R2	22	0.0	23	0.0	0.249	79.2	LOS F	1.6	9.6	0.99	0.71	0.99	24.2
Appr	oach	907	1.6	955	1.6	0.442	35.7	LOS C	11.2	67.8	0.71	0.75	0.71	38.8
All Vehic	cles	4015	1.3	4226	1.3	0.751	38.4	LOS C	22.6	138.6	0.79	0.77	0.79	35.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtate	sec		m/sec
South: Musgra	ave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	.)									
P2 Full	50	50	49.8	LOS E	0.2	0.2	0.84	0.84	85.2	46.0	0.54

West: Bruce H	Highway (W)									
P4 Full	50	50	53.3	LOS E	0.2	0.2	0.87	0.87	88.7	46.0	0.52
P4S Slip/ Bypass	50	53	35.8	LOS D	0.1	0.1	0.72	0.72	62.7	35.0	0.56
All Pedestrians	200	203	50.6	LOS E	0.2	0.2	0.85	0.85	85.1	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:47 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		evel of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay S	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	71	6.0	75	6.0	0.078	7.5	LOS A	0.2	1.0	0.04	0.59	0.04	55.8
2	T1	664	1.0	699	1.0	* 0.770	40.6	LOS C	22.6	137.0	0.91	0.80	0.93	30.7
3	R2	403	1.0	424	1.0	0.770	47.3	LOS D	22.4	135.9	0.91	0.84	0.93	32.8
3u	U	4	0.0	4	0.0	0.770	47.5	LOS D	21.5	130.4	0.91	0.85	0.93	27.3
Appr	oach	1142	1.3	1202	1.3	0.770	41.0	LOS C	22.6	137.0	0.86	0.81	0.87	32.6
East	Moore	es Road (E)											
4	L2	226	0.0	238	0.0	0.195	11.3	LOS A	4.1	24.6	0.37	0.69	0.37	53.7
5	T1	487	0.0	513	0.0	* 0.594	52.7	LOS D	15.7	94.5	0.95	0.80	0.95	35.0
6	R2	64	0.0	67	0.0	* 0.726	83.5	LOS F	4.9	29.6	1.00	0.82	1.18	22.9
Appr	oach	777	0.0	818	0.0	0.726	43.2	LOS D	15.7	94.5	0.79	0.77	0.80	36.9
North	n: Bruc	e Highwa	ıy (N)											
7	L2	75	0.0	79	0.0	0.067	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	521	1.0	548	1.0	* 0.760	34.0	LOS C	23.4	143.7	0.84	0.75	0.85	33.5
9	R2	671	3.0	706	3.0	0.760	41.1	LOS C	23.4	143.7	0.86	0.83	0.87	34.5
Appr	oach	1267	2.0	1334	2.0	0.760	36.2	LOS C	23.4	143.7	0.80	0.78	0.81	35.1
West	t: Bruc	e Highwa	y (W)											
10	L2	544	2.0	573	2.0	0.277	23.2	LOS B	9.9	60.4	0.55	0.74	0.55	43.5
11	T1	373	1.0	393	1.0	0.458	50.9	LOS D	11.6	70.5	0.92	0.76	0.92	35.6
12	R2	23	0.0	24	0.0	0.261	79.3	LOS F	1.7	10.1	0.99	0.71	0.99	24.2
Appr	oach	940	1.6	989	1.6	0.458	35.5	LOS C	11.6	70.5	0.71	0.75	0.71	38.9
All Vehic	cles	4126	1.3	4343	1.3	0.770	38.7	LOS C	23.4	143.7	0.79	0.78	0.80	35.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgi	rave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	.)									
P2 Full	50	50	49.0	LOS E	0.2	0.2	0.84	0.84	84.4	46.0	0.55

West: Bruce H	Highway ((W)									
P4 Full	50	50	54.1	LOS E	0.2	0.2	0.88	0.88	89.5	46.0	0.51
P4S Slip/ Bypass	50	53	36.5	LOS D	0.2	0.2	0.72	0.72	63.4	35.0	0.55
All Pedestrians	200	203	50.8	LOS E	0.2	0.2	0.85	0.85	85.3	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:48 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 APRV Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave Ro		7.51.11.1	- 1	.,,								
1	L2	71	6.0	75	6.0	0.079	7.8	LOS A	0.2	1.4	0.05	0.60	0.05	55.5
2	T1	691	1.0	727	1.0	* 0.783	40.1	LOS C	23.8	144.0	0.91	0.81	0.93	31.0
3	R2	425	1.0	447	1.0	0.783	46.8	LOS D	23.6	142.8	0.91	0.85	0.94	33.0
3u	U	4	0.0	4	0.0	0.783	47.0	LOS D	22.6	137.1	0.91	0.85	0.94	27.5
Appr	oach	1191	1.3	1254	1.3	0.783	40.6	LOS C	23.8	144.0	0.86	0.81	0.88	32.8
East	Moore	es Road ((E)											
4	L2	227	0.0	239	0.0	0.196	11.6	LOS A	4.3	25.5	0.38	0.69	0.38	53.4
5	T1	492	0.0	518	0.0	* 0.600	52.8	LOS D	15.9	95.6	0.95	0.80	0.95	34.9
6	R2	68	0.0	72	0.0	* 0.771	84.6	LOS F	5.3	31.7	1.00	0.84	1.24	22.7
Appr	oach	787	0.0	828	0.0	0.771	43.7	LOS D	15.9	95.6	0.79	0.77	0.81	36.7
North	n: Bruc	e Highwa	y (N)											
7	L2	75	0.0	79	0.0	0.068	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	526	1.0	554	1.0	* 0.787	35.9	LOS C	24.6	151.2	0.87	0.78	0.89	32.6
9	R2	677	3.0	713	3.0	0.787	43.1	LOS D	24.6	151.2	0.89	0.85	0.91	33.7
Appr	oach	1278	2.0	1345	2.0	0.787	38.0	LOS C	24.6	151.2	0.83	0.80	0.85	34.2
West	t: Bruce	e Highwa	y (W)											
10	L2	544	2.0	573	2.0	0.281	23.7	LOS B	10.0	61.5	0.56	0.74	0.56	43.2
11	T1	373	1.0	393	1.0	0.458	50.9	LOS D	11.6	70.5	0.92	0.76	0.92	35.6
12	R2	23	0.0	24	0.0	0.261	79.3	LOS F	1.7	10.1	0.99	0.71	0.99	24.2
Appr	oach	940	1.6	989	1.6	0.458	35.9	LOS C	11.6	70.5	0.71	0.75	0.71	38.7
All Vehic	cles	4196	1.3	4417	1.3	0.787	39.3	LOS C	24.6	151.2	0.81	0.79	0.82	35.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Musgr	ave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	E)									
P2 Full	50	50	49.8	LOS E	0.2	0.2	0.84	0.84	85.2	46.0	0.54

West: Bruce H	Highway ((W)									
P4 Full	50	50	53.3	LOS E	0.2	0.2	0.87	0.87	88.7	46.0	0.52
P4S Slip/ Bypass	50	53	35.8	LOS D	0.1	0.1	0.72	0.72	62.7	35.0	0.56
All Pedestrians	200	203	50.6	LOS E	0.2	0.2	0.85	0.85	85.1	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:48 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
04	N 4	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout		grave Ro	. ,											
1	L2	71	6.0	75	6.0	0.078	7.5	LOS A	0.2	1.0	0.04	0.59	0.04	55.8
2	T1	671	1.0	706	1.0	* 0.779	41.0	LOS C	23.1	139.9	0.92	0.81	0.94	30.6
3	R2	409	1.0	431	1.0	0.779	47.7	LOS D	22.9	138.8	0.92	0.85	0.94	32.7
3u	U	4	0.0	4	0.0	0.779	47.9	LOS D	22.0	133.2	0.92	0.85	0.94	27.2
Appr	oach	1155	1.3	1216	1.3	0.779	41.3	LOS C	23.1	139.9	0.86	0.81	0.88	32.5
East	Moore	es Road (E)											
4	L2	226	0.0	238	0.0	0.195	11.3	LOS A	4.1	24.6	0.37	0.69	0.37	53.7
5	T1	488	0.0	514	0.0	* 0.595	52.8	LOS D	15.8	94.7	0.95	0.80	0.95	35.0
6	R2	65	0.0	68	0.0	* 0.737	83.7	LOS F	5.0	30.1	1.00	0.82	1.19	22.8
Appr	oach	779	0.0	820	0.0	0.737	43.3	LOS D	15.8	94.7	0.79	0.77	0.80	36.8
North	n: Bruc	e Highwa	y (N)											
7	L2	75	0.0	79	0.0	0.068	7.0	LOS A	0.1	0.6	0.02	0.59	0.02	57.8
8	T1	522	1.0	549	1.0	* 0.762	34.1	LOS C	23.5	144.4	0.84	0.76	0.85	33.5
9	R2	673	3.0	708	3.0	0.762	41.2	LOS C	23.5	144.4	0.87	0.83	0.87	34.5
Appr	oach	1270	2.0	1337	2.0	0.762	36.2	LOS C	23.5	144.4	0.81	0.79	0.81	35.0
West	:: Bruce	e Highwa	y (W)											
10	L2	544	2.0	573	2.0	0.277	23.2	LOS B	9.9	60.4	0.55	0.74	0.55	43.5
11	T1	373	1.0	393	1.0	0.458	50.9	LOS D	11.6	70.5	0.92	0.76	0.92	35.6
12	R2	23	0.0	24	0.0	0.261	79.3	LOS F	1.7	10.1	0.99	0.71	0.99	24.2
Appr	oach	940	1.6	989	1.6	0.458	35.5	LOS C	11.6	70.5	0.71	0.75	0.71	38.9
All Vehic	cles	4144	1.3	4362	1.3	0.779	38.8	LOS C	23.5	144.4	0.80	0.78	0.81	35.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
South: Musgr	ave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	E)									
P2 Full	50	50	49.0	LOS E	0.2	0.2	0.84	0.84	84.4	46.0	0.55

West: Bruce H	Highway ((W)									
P4 Full	50	50	54.1	LOS E	0.2	0.2	0.88	0.88	89.5	46.0	0.51
P4S Slip/ Bypass	50	53	36.5	LOS D	0.2	0.2	0.72	0.72	63.4	35.0	0.55
All Pedestrians	200	203	50.8	LOS E	0.2	0.2	0.85	0.85	85.3	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:49 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV + SEN Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance									
	Turn	INP		DEM		Deg.	Aver. Level		BACK OF		Effective	Aver.	Aver.
ID		VOLU [Total		FLO		Satn	Delay Serv		JEUE	Que	Stop	No.	Speed
		t Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec	[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)										
1	L2	71	6.0	75	6.0	0.078	7.8 LOS	A 0.2	1.4	0.05	0.60	0.05	55.5
2	T1	680	1.0	716	1.0	* 0.769	39.6 LOS	C 23.0	139.4	0.90	0.80	0.92	31.2
3	R2	416	1.0	438	1.0	0.769	46.3 LOS	D 22.8	138.3	0.90	0.84	0.92	33.2
3u	U	4	0.0	4	0.0	0.769	46.5 LOS	D 21.9	132.8	0.90	0.85	0.92	27.6
Appr	oach	1171	1.3	1233	1.3	0.769	40.1 LOS	C 23.0	139.4	0.85	0.80	0.87	33.0
East	: Moor	es Road (E)										
4	L2	227	0.0	239	0.0	0.196	11.6 LOS	A 4.3	25.5	0.38	0.69	0.38	53.4
5	T1	489	0.0	515	0.0	* 0.596	52.8 LOS	D 15.8	94.9	0.95	0.80	0.95	34.9
6	R2	64	0.0	67	0.0	* 0.726	83.5 LOS	F 4.9	29.6	1.00	0.82	1.18	22.9
Appr	oach	780	0.0	821	0.0	0.726	43.3 LOS	D 15.8	94.9	0.79	0.77	0.80	36.9
Nortl	h: Bruc	e Highwa	ıy (N)										
7	L2	75	0.0	79	0.0	0.068	7.0 LOS	A 0.1	0.6	0.02	0.59	0.02	57.8
8	T1	522	1.0	549	1.0	* 0.781	35.7 LOS	C 24.3	149.0	0.86	0.78	0.88	32.7
9	R2	672	3.0	707	3.0	0.781	42.8 LOS	D 24.3	149.0	0.89	0.84	0.90	33.8
Appr	oach	1269	2.0	1336	2.0	0.781	37.8 LOS	C 24.3	149.0	0.82	0.80	0.84	34.3
Wes	t: Bruc	e Highwa	y (W)										
10	L2	544	2.0	573	2.0	0.281	23.7 LOS	B 10.0	61.5	0.56	0.74	0.56	43.2
11	T1	373	1.0	393	1.0	0.458	50.9 LOS	D 11.6	70.5	0.92	0.76	0.92	35.6
12	R2	23	0.0	24	0.0	0.261	79.3 LOS	F 1.7	10.1	0.99	0.71	0.99	24.2
Appr	oach	940	1.6	989	1.6	0.458	35.9 LOS	C 11.6	70.5	0.71	0.75	0.71	38.7
All Vehi	cles	4160	1.3	4379	1.3	0.781	39.0 LOS	C 24.3	149.0	0.80	0.78	0.81	35.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movom	ont Porf	orman	20							
	<u> </u>	· · ·									
Mov .	Input	Dem.	Aver.		AVERAGE		Prop. Ef			Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	E)									
P2 Full	50	50	49.8	LOS E	0.2	0.2	0.84	0.84	85.2	46.0	0.54

West: Bruce H	Highway ((W)									
P4 Full	50	50	53.3	LOS E	0.2	0.2	0.87	0.87	88.7	46.0	0.52
P4S Slip/ Bypass	50	53	35.8	LOS D	0.1	0.1	0.72	0.72	62.7	35.0	0.56
All Pedestrians	200	203	50.6	LOS E	0.2	0.2	0.85	0.85	85.1	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:50 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
Sout	h: Mus	veh/h grave Ro	% ad (S)	veh/h	%	v/c	sec		veh	m				km/h
1	L2	77	6.0	81	6.0	0.090	9.5	LOS A	0.5	3.4	0.12	0.61	0.12	53.8
2	T1	727	1.0	765	1.0	* 0.843	43.9	LOS D	26.7	162.1	0.96	0.87	1.02	29.4
3	R2	441	1.0	464	1.0	0.843	50.7	LOS D	26.5	160.8	0.96	0.88	1.02	31.6
3u	U	5	0.0	5	0.0	0.843	50.9	LOS D	25.5	154.3	0.96	0.88	1.02	26.3
Appr	oach	1250	1.3	1316	1.3	0.843	44.2	LOS D	26.7	162.1	0.91	0.86	0.96	31.3
East:	Moore	es Road ((E)											
4	L2	247	0.0	260	0.0	0.219	12.6	LOS A	5.1	30.8	0.41	0.70	0.41	52.5
5	T1	532	0.0	560	0.0	* 0.648	53.5	LOS D	17.5	104.7	0.97	0.82	0.97	34.7
6	R2	79	0.0	83	0.0	* 0.784	83.9	LOS F	6.1	36.8	1.00	0.85	1.24	22.8
Appr	oach	858	0.0	903	0.0	0.784	44.5	LOS D	17.5	104.7	0.81	0.79	0.83	36.3
North	n: Bruc	e Highwa	y (N)											
7	L2	82	0.0	86	0.0	0.078	7.0	LOS A	0.1	0.7	0.02	0.59	0.02	57.7
8	T1	567	1.0	597	1.0	* 0.853	39.2	LOS C	29.1	178.5	0.90	0.84	0.97	31.1
9	R2	730	3.0	768	3.0	0.853	46.5	LOS D	29.1	178.5	0.94	0.89	1.00	32.5
Appr	oach	1379	2.0	1452	2.0	0.853	41.1	LOS C	29.1	178.5	0.87	0.85	0.93	32.9
West	t: Bruce	e Highwa	y (W)											
10	L2	591	2.0	622	2.0	0.305	24.0	LOS B	11.1	67.9	0.57	0.75	0.57	43.0
11	T1	405	1.0	426	1.0	0.497	51.4	LOS D	12.8	77.4	0.93	0.77	0.93	35.4
12	R2	25	0.0	26	0.0	0.248	77.8	LOS F	1.8	10.8	0.99	0.72	0.99	24.5
Appr	oach	1021	1.6	1075	1.6	0.497	36.2	LOS C	12.8	77.4	0.72	0.76	0.72	38.6
All Vehic	cles	4508	1.3	4745	1.3	0.853	41.5	LOS C	29.1	178.5	0.84	0.82	0.87	34.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	* *	Δ\/ERΔGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Road	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E)									
P2 Full	50	50	49.8	LOS E	0.2	0.2	0.84	0.84	85.2	46.0	0.54

West: Bruce H	Highway ((W)									
P4 Full	50	50	54.1	LOS E	0.2	0.2	0.88	0.88	89.5	46.0	0.51
P4S Slip/ Bypass	50	53	35.8	LOS D	0.1	0.1	0.72	0.72	62.7	35.0	0.56
All Pedestrians	200	203	50.8	LOS E	0.2	0.2	0.85	0.85	85.3	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:50 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 DEV+ SEN Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_			_					
Mov ID	Turn	INP VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	% _	veh/h	%	v/c	sec		veh	m ¹			- ,	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	78	6.0	82	6.0	0.091	9.9	LOS A	0.6	3.9	0.14	0.61	0.14	53.4
2	T1	742	1.0	781	1.0	* 0.839	42.6	LOS D	27.1	164.0	0.95	0.87	1.00	29.9
3	R2	454	1.0	478	1.0	0.839	49.4	LOS D	26.8	162.6	0.95	0.88	1.01	32.1
3u	U	4	0.0	4	0.0	0.839	49.6	LOS D	25.8	156.2	0.95	0.88	1.01	26.7
Appr	oach	1278	1.3	1345	1.3	0.839	43.1	LOS D	27.1	164.0	0.90	0.86	0.95	31.8
East	: Moore	es Road (E)											
4	L2	248	0.0	261	0.0	0.220	12.6	LOS A	5.2	30.9	0.41	0.70	0.41	52.5
5	T1	535	0.0	563	0.0	* 0.652	53.6	LOS D	17.6	105.4	0.97	0.82	0.97	34.7
6	R2	70	0.0	74	0.0	* 0.794	85.3	LOS F	5.5	32.9	1.00	0.85	1.27	22.5
Appr	oach	853	0.0	898	0.0	0.794	44.3	LOS D	17.6	105.4	0.81	0.79	0.83	36.5
North	h: Bruc	e Highwa	y (N)											
7	L2	82	0.0	86	0.0	0.078	7.0	LOS A	0.1	0.7	0.02	0.59	0.02	57.7
8	T1	568	1.0	598	1.0	* 0.854	39.3	LOS C	29.2	179.2	0.90	0.84	0.97	31.0
9	R2	731	3.0	769	3.0	0.854	46.6	LOS D	29.2	179.2	0.94	0.89	1.00	32.4
Appr	oach	1381	2.0	1454	2.0	0.854	41.2	LOS C	29.2	179.2	0.87	0.85	0.93	32.8
West	t: Bruce	e Highwa	y (W)											
10	L2	591	2.0	622	2.0	0.305	24.0	LOS B	11.1	67.9	0.57	0.75	0.57	43.0
11	T1	405	1.0	426	1.0	0.497	51.4	LOS D	12.8	77.4	0.93	0.77	0.93	35.4
12	R2	25	0.0	26	0.0	0.283	79.4	LOS F	1.8	11.0	1.00	0.71	1.00	24.2
Appr	oach	1021	1.6	1075	1.6	0.497	36.2	LOS C	12.8	77.4	0.72	0.76	0.72	38.5
All Vehic	cles	4533	1.3	4771	1.3	0.854	41.2	LOS C	29.2	179.2	0.83	0.82	0.87	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time		Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgr	ave Roa	d (S)									
P1 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	105.0	53.0	0.50
East: Moores	Road (E	Ξ)									
P2 Full	50	50	49.8	LOS E	0.2	0.2	0.84	0.84	85.2	46.0	0.54

West: Bruce H	Highway (W)									
P4 Full	50	50	53.3	LOS E	0.2	0.2	0.87	0.87	88.7	46.0	0.52
P4S Slip/ Bypass	50	53	35.8	LOS D	0.1	0.1	0.72	0.72	62.7	35.0	0.56
All Pedestrians	200	203	50.6	LOS E	0.2	0.2	0.85	0.85	85.1	44.9	0.53

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:51 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV1	FLO' [Total	ws HV]	Satn	Delay	Service	QUE [Veh.	±U Ŀ Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	39	0.0	41	0.0	0.038	6.9	LOS A	0.0	0.3	0.02	0.59	0.02	58.2
2	T1	555	1.0	584	1.0	* 0.786	37.0	LOS C	22.6	137.1	0.91	0.82	0.94	32.0
3	R2	586	0.0	617	0.0	0.786	43.6	LOS D	22.1	133.4	0.91	0.85	0.94	34.4
3u	U	2	0.0	2	0.0	0.786	43.8	LOS D	21.7	130.4	0.91	0.86	0.94	28.5
Appr	oach	1182	0.5	1244	0.5	0.786	39.3	LOS C	22.6	137.1	0.88	0.83	0.91	33.9
East:	: Moore	es Road (E)											
4	L2	170	0.0	179	0.0	0.141	10.4	LOS A	2.6	15.5	0.34	0.67	0.34	54.5
5	T1	436	1.0	459	1.0	0.467	44.2	LOS D	12.3	74.7	0.90	0.75	0.90	38.0
6	R2	59	0.0	62	0.0	* 0.725	79.1	LOS F	4.3	25.6	1.00	0.81	1.20	23.7
Appr	oach	665	0.7	700	0.7	0.725	38.7	LOS C	12.3	74.7	0.77	0.74	0.78	38.9
North	n: Bruc	e Highwa	ıy (N)											
7	L2	107	1.0	113	1.0	0.118	9.1	LOS A	0.6	3.9	0.11	0.61	0.11	55.2
8	T1	389	4.0	409	4.0	* 0.784	39.7	LOS C	19.8	125.2	0.91	0.81	0.94	31.0
9	R2	596	6.0	627	6.0	0.784	46.9	LOS D	19.8	125.2	0.93	0.85	0.96	31.9
Appr	oach	1092	4.8	1149	4.8	0.784	40.6	LOS C	19.8	125.2	0.84	0.81	0.87	33.1
West	t: Bruc	e Highwa	y (W)											
10	L2	600	4.0	632	4.0	0.320	23.8	LOS B	10.8	67.5	0.59	0.75	0.59	42.9
11	T1	738	1.0	777	1.0	* 0.790	51.5	LOS D	24.0	145.2	1.00	0.90	1.06	35.4
12	R2	19	0.0	20	0.0	0.233	74.9	LOS F	1.3	7.8	0.99	0.70	0.99	25.1
Appr	oach	1357	2.3	1428	2.3	0.790	39.6	LOS C	24.0	145.2	0.82	0.83	0.85	37.7
All Vehic	cles	4296	2.2	4522	2.2	0.790	39.6	LOS C	24.0	145.2	0.83	0.81	0.86	35.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.		AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Road	d (S)									
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54
East: Moores	Road (E)									
P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52

West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S Slip/ Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:52 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave Ro		701711	,,	• • • • • • • • • • • • • • • • • • •			7011					1311/11
1	L2	40	0.0	42	0.0	0.040	7.0	LOS A	0.0	0.3	0.02	0.59	0.02	58.2
2	T1	566	1.0	596	1.0	* 0.802	37.6	LOS C	23.4	142.1	0.92	0.83	0.96	31.8
3	R2	597	0.0	628	0.0	0.802	44.2	LOS D	22.9	138.2	0.92	0.86	0.96	34.1
3u	U	2	0.0	2	0.0	0.802	44.4	LOS D	22.5	135.1	0.92	0.86	0.96	28.3
Appr	oach	1205	0.5	1268	0.5	0.802	39.9	LOS C	23.4	142.1	0.89	0.84	0.93	33.7
East	Moore	es Road ((E)											
4	L2	173	0.0	182	0.0	0.145	10.7	LOS A	2.7	16.3	0.35	0.68	0.35	54.3
5	T1	444	1.0	467	1.0	0.475	44.3	LOS D	12.6	76.3	0.90	0.76	0.90	38.0
6	R2	60	0.0	63	0.0	* 0.737	79.3	LOS F	4.3	26.1	1.00	0.82	1.22	23.6
Appr	oach	677	0.7	713	0.7	0.737	38.8	LOS C	12.6	76.3	0.77	0.74	0.79	38.8
North	n: Bruc	e Highwa	y (N)											
7	L2	111	1.0	117	1.0	0.124	9.9	LOS A	0.9	5.2	0.14	0.62	0.14	54.3
8	T1	404	4.0	425	4.0	* 0.817	41.0	LOS C	21.3	134.8	0.92	0.83	0.98	30.4
9	R2	618	6.0	651	6.0	0.817	48.3	LOS D	21.3	134.8	0.95	0.87	1.00	31.4
Appr	oach	1133	4.8	1193	4.8	0.817	41.9	LOS C	21.3	134.8	0.86	0.83	0.91	32.6
West	t: Bruce	e Highwa	y (W)											
10	L2	621	4.0	654	4.0	0.331	23.9	LOS B	11.3	70.4	0.59	0.76	0.59	42.9
11	T1	765	1.0	805	1.0	* 0.819	53.6	LOS D	25.6	155.0	1.00	0.93	1.09	34.7
12	R2	19	0.0	20	0.0	0.233	74.9	LOS F	1.3	7.8	0.99	0.70	0.99	25.1
Appr	oach	1405	2.3	1479	2.3	0.819	40.7	LOS C	25.6	155.0	0.82	0.85	0.87	37.3
All Vehic	cles	4420	2.2	4653	2.2	0.819	40.5	LOS C	25.6	155.0	0.84	0.82	0.88	35.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.		AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Road	d (S)									
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54
East: Moores	Road (E)									
P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52

West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S Slip/ Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:52 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 APRV Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	JMES HV]	FLO' [Total	ws HV]	Satn	Delay	Service	QUE [Veh.	=UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven.	m m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	40	0.0	42	0.0	0.040	7.0	LOS A	0.0	0.3	0.02	0.59	0.02	58.2
2	T1	589	1.0	620	1.0	* 0.830	38.9	LOS C	25.1	152.1	0.94	0.86	0.99	31.2
3	R2	616	0.0	648	0.0	0.830	45.6	LOS D	24.6	148.0	0.94	0.88	0.99	33.6
3u	U	2	0.0	2	0.0	0.830	45.8	LOS D	24.1	144.7	0.94	0.88	1.00	27.9
Appr	oach	1247	0.5	1313	0.5	0.830	41.2	LOS C	25.1	152.1	0.91	0.86	0.96	33.1
East:	Moore	es Road ((E)											
4	L2	174	0.0	183	0.0	0.146	10.7	LOS A	2.7	16.5	0.35	0.68	0.35	54.3
5	T1	448	1.0	472	1.0	0.479	44.4	LOS D	12.7	77.0	0.90	0.76	0.90	38.0
6	R2	63	0.0	66	0.0	* 0.774	80.1	LOS F	4.6	27.6	1.00	0.84	1.27	23.5
Appr	oach	685	0.7	721	0.7	0.774	39.1	LOS C	12.7	77.0	0.77	0.74	0.80	38.7
North	n: Bruc	e Highwa	y (N)											
7	L2	111	1.0	117	1.0	0.127	10.4	LOS A	1.0	5.9	0.15	0.62	0.15	53.8
8	T1	408	4.0	429	4.0	* 0.824	41.3	LOS C	21.6	136.9	0.92	0.83	0.98	30.3
9	R2	622	6.0	655	6.0	0.824	48.6	LOS D	21.6	136.9	0.95	0.88	1.01	31.3
Appr	oach	1141	4.8	1201	4.8	0.824	42.3	LOS C	21.6	136.9	0.86	0.84	0.92	32.4
West	t: Bruce	e Highwa	y (W)											
10	L2	622	4.0	655	4.0	0.332	23.9	LOS B	11.3	70.5	0.59	0.76	0.59	42.8
11	T1	765	1.0	805	1.0	* 0.819	53.6	LOS D	25.6	155.0	1.00	0.93	1.09	34.7
12	R2	19	0.0	20	0.0	0.233	74.9	LOS F	1.3	7.8	0.99	0.70	0.99	25.1
Appr	oach	1406	2.3	1480	2.3	0.819	40.7	LOS C	25.6	155.0	0.82	0.85	0.87	37.3
All Vehic	cles	4479	2.2	4715	2.2	0.830	41.0	LOS C	25.6	155.0	0.85	0.83	0.90	35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance												
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed		
	ped/h	ped/h	sec		ped	m m		Rate	sec	m	m/sec		
South: Musgra	ave Roa	d (S)											
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54		
East: Moores	Road (E	E)											
P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52		

West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S Slip/ Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:53 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV1	FLO' [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	=UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven.	m m		Rate	Cycles	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	40	0.0	42	0.0	0.040	7.0	LOS A	0.0	0.3	0.02	0.59	0.02	58.2
2	T1	571	1.0	601	1.0	*0.808	37.8	LOS C	23.8	144.1	0.92	0.84	0.96	31.7
3	R2	601	0.0	633	0.0	0.808	44.5	LOS D	23.3	140.2	0.92	0.86	0.96	34.0
3u	U	2	0.0	2	0.0	0.808	44.7	LOS D	22.8	137.0	0.92	0.87	0.97	28.2
Appr	oach	1214	0.5	1278	0.5	0.808	40.1	LOS C	23.8	144.1	0.89	0.84	0.93	33.5
East	: Moore	es Road (E)											
4	L2	174	0.0	183	0.0	0.146	10.7	LOS A	2.7	16.4	0.35	0.68	0.35	54.3
5	T1	445	1.0	468	1.0	0.476	44.3	LOS D	12.6	76.4	0.90	0.76	0.90	38.0
6	R2	61	0.0	64	0.0	* 0.749	79.6	LOS F	4.4	26.6	1.00	0.82	1.23	23.6
Appr	oach	680	0.7	716	0.7	0.749	38.9	LOS C	12.6	76.4	0.77	0.74	0.79	38.8
North	n: Bruc	e Highwa	ıy (N)											
7	L2	111	1.0	117	1.0	0.125	9.9	LOS A	0.9	5.2	0.14	0.62	0.14	54.3
8	T1	405	4.0	426	4.0	* 0.819	41.0	LOS C	21.4	135.3	0.92	0.83	0.98	30.4
9	R2	619	6.0	652	6.0	0.819	48.3	LOS D	21.4	135.3	0.95	0.87	1.00	31.4
Appr	oach	1135	4.8	1195	4.8	0.819	42.0	LOS C	21.4	135.3	0.86	0.83	0.91	32.5
West	t: Bruc	e Highwa	y (W)											
10	L2	621	4.0	654	4.0	0.331	23.9	LOS B	11.3	70.4	0.59	0.76	0.59	42.9
11	T1	765	1.0	805	1.0	* 0.819	53.6	LOS D	25.6	155.0	1.00	0.93	1.09	34.7
12	R2	19	0.0	20	0.0	0.233	74.9	LOS F	1.3	7.8	0.99	0.70	0.99	25.1
Appr	oach	1405	2.3	1479	2.3	0.819	40.7	LOS C	25.6	155.0	0.82	0.85	0.87	37.3
All Vehic	cles	4434	2.2	4667	2.2	0.819	40.6	LOS C	25.6	155.0	0.84	0.83	0.89	35.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	ce							
Mov	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel		Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Road	d (S)									
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54
East: Moores	Road (E)									
P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52

West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S Slip/ Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

MOVEMENT SUMMARY

Site: 1 [2024 DEV+ SEN Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_					_	_		
Mov ID	Turn	INP VOLU [Total		DEM. FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m			-,	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	40	0.0	42	0.0	0.040	7.0	LOS A	0.0	0.3	0.02	0.59	0.02	58.2
2	T1	579	1.0	609	1.0	* 0.818	38.3	LOS C	24.4	147.7	0.93	0.85	0.98	31.5
3	R2	608	0.0	640	0.0	0.818	45.0	LOS D	23.8	143.7	0.93	0.87	0.98	33.9
3u	U	2	0.0	2	0.0	0.818	45.2	LOS D	23.4	140.4	0.93	0.87	0.98	28.1
Appr	oach	1229	0.5	1294	0.5	0.818	40.6	LOS C	24.4	147.7	0.90	0.85	0.95	33.4
East	: Moore	es Road (E)											
4	L2	174	0.0	183	0.0	0.145	10.7	LOS A	2.7	16.4	0.35	0.68	0.35	54.3
5	T1	446	1.0	469	1.0	0.477	44.3	LOS D	12.6	76.6	0.90	0.76	0.90	38.0
6	R2	60	0.0	63	0.0	* 0.737	79.3	LOS F	4.3	26.1	1.00	0.82	1.22	23.6
Appr	oach	680	0.7	716	0.7	0.737	38.8	LOS C	12.6	76.6	0.77	0.74	0.79	38.8
North	n: Bruc	e Highwa	y (N)											
7	L2	111	1.0	117	1.0	0.126	10.4	LOS A	1.0	5.8	0.15	0.62	0.15	53.8
8	T1	404	4.0	425	4.0	* 0.817	41.0	LOS C	21.3	134.8	0.92	0.83	0.98	30.4
9	R2	618	6.0	651	6.0	0.817	48.3	LOS D	21.3	134.8	0.95	0.87	1.00	31.4
Appr	oach	1133	4.8	1193	4.8	0.817	41.9	LOS C	21.3	134.8	0.86	0.83	0.91	32.6
Wes	t: Bruce	e Highwa	y (W)											
10	L2	621	4.0	654	4.0	0.331	23.9	LOS B	11.3	70.4	0.59	0.76	0.59	42.9
11	T1	765	1.0	805	1.0	* 0.819	53.6	LOS D	25.6	155.0	1.00	0.93	1.09	34.7
12	R2	19	0.0	20	0.0	0.233	74.9	LOS F	1.3	7.8	0.99	0.70	0.99	25.1
Appr	oach	1405	2.3	1479	2.3	0.819	40.7	LOS C	25.6	155.0	0.82	0.85	0.87	37.3
All Vehi	cles	4447	2.2	4681	2.2	0.819	40.7	LOS C	25.6	155.0	0.84	0.83	0.89	35.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	formand	ce							
Mov	Input	Dem.	Aver.	Level of a	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Roa	d (S)									
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54
East: Moores	Road (E	<u>:</u>)									

P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52
West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S ^{Slip/} Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

MOVEMENT SUMMARY

Site: 1 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_			_					
Mov ID	Turn	INP VOLU [Total		DEM FLO [Total		Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	% _	veh/h	%	v/c	sec		veh	m -			•	km/h
Sout	h: Mus	grave Ro	ad (S)											
1	L2	43	0.0	45	0.0	0.045	8.3	LOS A	0.2	1.1	0.08	0.60	0.08	56.7
2	T1	619	1.0	652	1.0	* 0.876	42.0	LOS C	28.2	170.9	0.97	0.91	1.07	29.9
3	R2	653	0.0	687	0.0	0.876	48.7	LOS D	27.6	166.3	0.97	0.91	1.07	32.5
3u	U	2	0.0	2	0.0	0.876	48.9	LOS D	27.1	162.6	0.97	0.91	1.07	26.9
Appr	oach	1317	0.5	1386	0.5	0.876	44.2	LOS D	28.2	170.9	0.94	0.90	1.03	31.9
East	Moore	es Road (E)											
4	L2	190	0.0	200	0.0	0.162	11.3	LOS A	3.2	19.5	0.38	0.68	0.38	53.7
5	T1	486	1.0	512	1.0	0.520	44.9	LOS D	14.0	84.6	0.91	0.77	0.91	37.8
6	R2	66	0.0	69	0.0	* 0.811	81.2	LOS F	4.9	29.2	1.00	0.86	1.33	23.3
Appr	oach	742	0.7	781	0.7	0.811	39.5	LOS C	14.0	84.6	0.78	0.76	0.81	38.5
North	n: Bruc	e Highwa	y (N)											
7	L2	120	1.0	126	1.0	0.146	13.4	LOS A	1.7	10.3	0.24	0.64	0.24	51.0
8	T1	439	4.0	462	4.0	* 0.896	46.5	LOS D	25.8	163.5	0.95	0.91	1.09	28.3
9	R2	672	6.0	707	6.0	0.896	54.0	LOS D	25.8	163.5	1.00	0.93	1.13	29.6
Appr	oach	1231	4.8	1296	4.8	0.896	47.4	LOS D	25.8	163.5	0.91	0.89	1.03	30.5
West	:: Bruce	e Highwa	y (W)											
10	L2	676	4.0	712	4.0	0.361	24.2	LOS B	12.5	78.2	0.61	0.76	0.61	42.6
11	T1	832	1.0	876	1.0	* 0.890	62.1	LOS E	30.7	186.0	1.00	1.01	1.21	32.1
12	R2	21	0.0	22	0.0	0.258	75.1	LOS F	1.4	8.6	1.00	0.71	1.00	25.1
Appr	oach	1529	2.3	1609	2.3	0.890	45.5	LOS D	30.7	186.0	0.83	0.89	0.94	35.4
All Vehic	cles	4819	2.2	5073	2.2	0.896	44.7	LOS D	30.7	186.0	0.87	0.87	0.97	33.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance												
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed		
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec		
South: Musgr	rave Roa	d (S)											
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54		
East: Moores	Road (E	<u>:</u>)											
P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52		

West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S Slip/ Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:55 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

MOVEMENT SUMMARY

Site: 1 [2034 DEV + SEN Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance										
	Turn			DEM		Deg.		Level of	95% BA		Prop. E		Aver.	Aver.
ID		VOLU [Total	JMES HV]	FLO' [Total	WS HV]	Satn	Delay	Service	QUI [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m m		Nate	Cycles	km/h
Sout	th: Mus	grave Ro	ad (S)											
1	L2	44	0.0	46	0.0	0.046	8.3	LOS A	0.2	1.1	0.08	0.60	0.08	56.7
2	T1	632	1.0	665	1.0	*0.892	43.5	LOS D	29.4	178.4	0.98	0.93	1.10	29.3
3	R2	663	0.0	698	0.0	0.892	50.2	LOS D	28.8	173.6	0.98	0.92	1.10	32.0
3u	U	2	0.0	2	0.0	0.892	50.5	LOS D	28.3	169.8	0.98	0.92	1.10	26.4
App	roach	1341	0.5	1412	0.5	0.892	45.7	LOS D	29.4	178.4	0.95	0.92	1.06	31.3
East	t: Moore	es Road ((E)											
4	L2	190	0.0	200	0.0	0.162	11.3	LOS A	3.2	19.5	0.38	0.68	0.38	53.7
5	T1	488	1.0	514	1.0	0.522	45.0	LOS D	14.0	85.0	0.91	0.77	0.91	37.7
6	R2	66	0.0	69	0.0	* 0.811	81.2	LOS F	4.9	29.2	1.00	0.86	1.33	23.3
App	roach	744	0.7	783	0.7	0.811	39.6	LOS C	14.0	85.0	0.78	0.76	0.81	38.5
Nort	h: Bruc	e Highwa	ay (N)											
7	L2	120	1.0	126	1.0	0.148	13.4	LOS A	1.7	10.3	0.25	0.64	0.25	51.0
8	T1	440	4.0	463	4.0	* 0.897	46.6	LOS D	25.9	163.9	0.95	0.91	1.09	28.3
9	R2	672	6.0	707	6.0	0.897	54.1	LOS D	25.9	163.9	1.00	0.93	1.13	29.6
App	roach	1232	4.8	1297	4.8	0.897	47.4	LOS D	25.9	163.9	0.91	0.89	1.03	30.5
Wes	t: Bruc	e Highwa	y (W)											
10	L2	676	4.0	712	4.0	0.361	24.2	LOS B	12.5	78.2	0.61	0.76	0.61	42.6
11	T1	832	1.0	876	1.0	* 0.890	62.1	LOS E	30.7	186.0	1.00	1.01	1.21	32.1
12	R2	21	0.0	22	0.0	0.258	75.1	LOS F	1.4	8.6	1.00	0.71	1.00	25.1
App	roach	1529	2.3	1609	2.3	0.890	45.5	LOS D	30.7	186.0	0.83	0.89	0.94	35.4
All Vehi	icles	4846	2.2	5101	2.2	0.897	45.1	LOS D	30.7	186.0	0.88	0.88	0.98	33.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance												
Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.		
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed		
					[Ped	Dist]		Rate					
	ped/h	ped/h	sec		ped	m			sec	m	m/sec		
South: Musgra	ave Roa	d (S)											
P1 Full	50	50	57.4	LOS E	0.2	0.2	0.94	0.94	98.1	53.0	0.54		
East: Moores			0		0.2		0.0.	0.0.		00.0			

P2 Full	50	50	52.8	LOS E	0.2	0.2	0.90	0.90	88.1	46.0	0.52
West: Bruce H	Highway ((W)									
P4 Full	50	50	50.1	LOS E	0.2	0.2	0.88	0.88	85.5	46.0	0.54
P4S ^{Slip/} Bypass	50	53	33.3	LOS D	0.1	0.1	0.72	0.72	60.3	35.0	0.58
All Pedestrians	200	203	48.2	LOS E	0.2	0.2	0.86	0.86	82.7	44.9	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: B, C, D, A Output Phase Sequence: B, C, D, A

Phase Timing Summary

Phase	В	С	D	Α
Phase Change Time (sec)	0	47	90	103
Green Time (sec)	41	37	7	31
Phase Time (sec)	47	43	13	37
Phase Split	34%	31%	9%	26%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase D Phase B Phase C Bruce Highway Bruce Highway Bruce Highway Moores Road (E) Bruce Highway (W) Moores Road Musgrave Road Musgrave Road Musgrave Road Phase A Bruce Highway

Bruce Highway
(N)

As a second (E)

Bruce Highway
(N)

Mose Highway
(N)

Musgrave Road
(S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:47 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D

Phase Timing Summary

Phase	Α	В	С	D
Phase Change Time (sec)	103	0	48	90
Green Time (sec)	31	42	36	7
Phase Time (sec)	37	48	42	13
Phase Split	26%	34%	30%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase B REF Phase A Phase C Bruce Highway Bruce Highway Bruce Highway Moores Road (E) Moores Road (E) Bruce Highway Musgrave Road Musgrave Road Musgrave Road Phase D Bruce Highway

Bruce Highway

(W)

Moores Road (E)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:48 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 APRV Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	Е	F
Phase Change Time (sec)	103	0	47	90
Green Time (sec)	31	41	37	7
Phase Time (sec)	37	47	43	13
Phase Split	26%	34%	31%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase F Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (S) REF Phase E Bruce Highway (N) Musgrave Road (S) REF Phase E Bruce Highway (N) Musgrave Road (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:48 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	103	0	48	90
Green Time (sec)	31	42	36	7
Phase Time (sec)	37	48	42	13
Phase Split	26%	34%	30%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F

REF: Reference Phase VAR: Variable Phase

Musgrave Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:49 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV + SEN Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	103	0	47	90
Green Time (sec)	31	41	37	7
Phase Time (sec)	37	47	43	13
Phase Split	26%	34%	31%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F

REF: Reference Phase VAR: Variable Phase

Musgrave Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:50 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

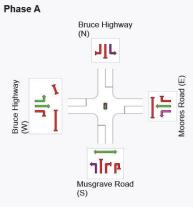
Saturday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: B, C, D, A Output Phase Sequence: B, C, D, A

Phase Timing Summary

Phase	В	С	D	Α
Phase Change Time (sec)	0	47	89	103
Green Time (sec)	41	36	8	31
Phase Time (sec)	47	42	14	37
Phase Split	34%	30%	10%	26%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase B REF Phase C Phase B Bruce Highway (N) Phase D Bruce Highway (N) Musgrave Road (S) Phase A Phase A Phase A Phase A Phase A Phase C Phase D Bruce Highway (N) Musgrave Road (S) Phase A

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:50 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 DEV+ SEN Saturday Peak (Site Folder: Sat AM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Saturday PM

Configuration: Existing Site Category: (None)

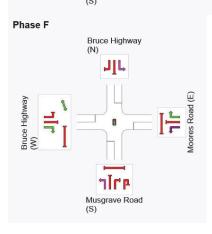
Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary


Phase	Α	D	Е	F
Phase Change Time (sec)	103	0	47	90
Green Time (sec)	31	41	37	7
Phase Time (sec)	37	47	43	13
Phase Split	26%	34%	31%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A Phase D REF Phase E Bruce Highway (N) Phase D Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase D Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E REF

Musgrave Road

Musgrave Road

Musgrave Road

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:51 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	91	0	38	79
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F

Bruce Highway
(N)

JIL

Musgrave Road
(S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:52 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	91	0	38	79
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F

Mores Road (2)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:52 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 APRV Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

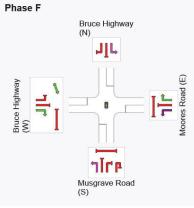
Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	Е	F
Phase Change Time (sec)	0	39	77	118
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase E Phase A Phase D Bruce Highway Bruce Highway Bruce Highway Moores Road (E) Moores Road (E) Bruce Highway Musgrave Road Musgrave Road Musgrave Road Phase F Bruce Highway

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:53 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	91	0	38	79
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Phase D REF Phase E Bruce Highway (N) Phase B Bruce Highway (N) Phase B Bruce Highway (N) Phase F Bruce Highway (N) Bruce Highway (N) Phase F Bruce Highway (N) Phase F

REF: Reference Phase VAR: Variable Phase

Musgrave Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2024 DEV+ SEN Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	Е	F
Phase Change Time (sec)	0	39	77	118
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase E Phase A REF Phase D Bruce Highway Bruce Highway Bruce Highway Moores Road (E) Bruce Highway (W) Bruce Highway (W) Musgrave Road Musgrave Road Musgrave Road Phase F Bruce Highway (N)

REF: Reference Phase VAR: Variable Phase

Musgrave Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase D Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	91	0	38	79
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase D REF Phase E Bruce Highway (N) Musgrave Road (S) Phase F Bruce Highway (N) Musgrave Road (S) Phase F

Bruce Highway
(N)

JIL

Musgrave Road
(S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:55 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

Site: 1 [2034 DEV + SEN Thursday Peak (Site Folder: Thurs PM)]

Intersection: Moores Road/Bruce Highway/Musgrave Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, D, E, F Output Phase Sequence: A, D, E, F

Phase Timing Summary

Phase	Α	D	E	F
Phase Change Time (sec)	0	39	77	118
Green Time (sec)	33	32	35	6
Phase Time (sec)	39	38	41	12
Phase Split	30%	29%	32%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase E Phase A REF Phase D Bruce Highway Bruce Highway Bruce Highway Moores Road (E) Bruce Highway (W) Bruce Highway (W) Musgrave Road Musgrave Road Musgrave Road Phase F Bruce Highway (N) Musgrave Road

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:59:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\1) Musgrave RdBruce Hwy.sip9

MOVEMENT SUMMARY

Site: 7 [2022 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM, FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	111	0.0	117	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	827	1.0	871	1.0	* 0.575	16.5	LOS B	14.0	84.8	0.57	0.50	0.57	39.8
Appro	oach	938	0.9	987	0.9	0.575	15.2	LOS B	14.0	84.8	0.50	0.50	0.50	39.9
North	ո։ Musզ	grave Stre	eet (N)											
8	T1	582	1.0	613	1.0	0.223	0.4	LOS A	0.4	2.7	0.03	0.02	0.03	59.2
9	R2	246	0.0	259	0.0	* 0.397	7.6	LOS A	1.4	8.3	0.17	0.63	0.17	43.7
9u	U	6	0.0	6	0.0	0.397	8.7	LOS A	1.4	8.3	0.17	0.63	0.17	48.1
Appro	oach	834	0.7	878	0.7	0.397	2.6	LOS A	1.4	8.3	0.07	0.21	0.07	54.7
West	: Cowa	ap Street												
10	L2	192	0.0	202	0.0	0.194	3.8	LOS A	2.4	14.2	0.27	0.40	0.27	43.9
12	R2	101	0.0	106	0.0	* 0.299	47.0	LOS D	5.4	32.3	0.90	0.75	0.90	13.8
Appro	oach	293	0.0	308	0.0	0.299	18.7	LOS B	5.4	32.3	0.49	0.52	0.49	28.0
All Vehic	cles	2065	0.7	2174	0.7	0.575	10.6	LOSA	14.0	84.8	0.33	0.39	0.33	42.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	Level of AVERAGE BACK OF Service QUEUE [Ped Dist]		Prop. Effective Que Stop Rate		Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
North: Musgrave Street (N)											
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap Street											
P4 Full	50	50	27.4	LOS C	0.1	0.1	0.68	0.68	53.5	34.0	0.63
All Pedestrians	100	100	40.8	LOS E	0.2	0.2	0.81	0.81	70.8	39.0	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:37 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2024 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovement	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Stre	eet (S)											
1	L2	111	0.0	117	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	843	1.0	887	1.0	* 0.572	15.7	LOS B	13.8	83.4	0.55	0.49	0.55	40.5
Appro	oach	954	0.9	1004	0.9	0.572	14.5	LOS B	13.8	83.4	0.49	0.49	0.49	40.5
North	ı: Muso	grave Stre	et (N)											
8	T1	593	1.0	624	1.0	0.227	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2
9	R2	246	0.0	259	0.0	* 0.407	7.6	LOS A	1.4	8.3	0.17	0.63	0.17	43.7
9u	U	6	0.0	6	0.0	0.407	8.8	LOS A	1.4	8.3	0.17	0.63	0.17	48.1
Appro	oach	845	0.7	889	0.7	0.407	2.6	LOSA	1.4	8.3	0.07	0.20	0.07	54.7
West	: Cowa	p Street												
10	L2	192	0.0	202	0.0	0.197	3.8	LOS A	2.4	14.3	0.28	0.41	0.28	43.9
12	R2	101	0.0	106	0.0	* 0.299	47.0	LOS D	5.4	32.3	0.90	0.75	0.90	13.8
Appro	oach	293	0.0	308	0.0	0.299	18.7	LOS B	5.4	32.3	0.49	0.52	0.49	28.0
All Vehic	eles	2092	0.7	2202	0.7	0.572	10.3	LOSA	13.8	83.4	0.32	0.38	0.32	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	26.7	LOS C	0.1	0.1	0.67	0.67	52.9	34.0	0.64
All Pedestrians	100	100	40.5	LOS E	0.2	0.2	0.81	0.81	70.5	39.0	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:37 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2024 W Aprv Saturday Peak (Site Folder: Saturday

AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	115	0.0	121	0.0	0.065	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	883	1.0	929	1.0	* 0.605	15.9	LOS B	15.1	91.5	0.57	0.50	0.57	40.3
Appro	oach	998	0.9	1051	0.9	0.605	14.7	LOS B	15.1	91.5	0.51	0.51	0.51	40.3
North	ı: Mus	grave Stre	eet (N)											
8	T1	595	1.0	626	1.0	0.228	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2
9	R2	254	0.0	267	0.0	* 0.428	8.3	LOS A	1.8	10.8	0.23	0.64	0.23	42.7
9u	U	6	0.0	6	0.0	0.428	9.5	LOS A	1.8	10.8	0.23	0.64	0.23	47.4
Appro	oach	855	0.7	900	0.7	0.428	2.8	LOSA	1.8	10.8	0.09	0.21	0.09	54.3
West	: Cowa	ap Street												
10	L2	200	0.0	211	0.0	0.210	4.3	LOS A	2.8	16.6	0.30	0.42	0.30	43.2
12	R2	105	0.0	111	0.0	* 0.311	47.1	LOS D	5.6	33.7	0.90	0.75	0.90	13.8
Appro	oach	305	0.0	321	0.0	0.311	19.0	LOS B	5.6	33.7	0.51	0.53	0.51	27.8
All Vehic	eles	2158	0.7	2271	0.7	0.605	10.6	LOSA	15.1	91.5	0.34	0.39	0.34	42.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov .	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	26.7	LOS C	0.1	0.1	0.67	0.67	52.9	34.0	0.64
All Pedestrians	100	100	40.5	LOS E	0.2	0.2	0.81	0.81	70.5	39.0	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:38 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2024 W Dev Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM, FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	112	0.0	118	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	853	1.0	898	1.0	* 0.580	15.8	LOS B	14.1	85.3	0.56	0.49	0.56	40.4
Appro	oach	965	0.9	1016	0.9	0.580	14.6	LOS B	14.1	85.3	0.49	0.50	0.49	40.5
North	ı: Muso	grave Stre	eet (N)											
8	T1	593	1.0	624	1.0	0.227	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2
9	R2	248	0.0	261	0.0	* 0.413	7.9	LOS A	1.6	9.4	0.20	0.64	0.20	43.2
9u	U	6	0.0	6	0.0	0.413	9.1	LOS A	1.6	9.4	0.20	0.64	0.20	47.8
Appro	oach	847	0.7	891	0.7	0.413	2.7	LOS A	1.6	9.4	0.08	0.21	0.08	54.5
West	: Cowa	ap Street												
10	L2	194	0.0	204	0.0	0.200	4.0	LOS A	2.5	15.2	0.29	0.41	0.29	43.6
12	R2	102	0.0	107	0.0	* 0.302	47.0	LOS D	5.4	32.7	0.90	0.75	0.90	13.8
Appro	oach	296	0.0	312	0.0	0.302	18.9	LOS B	5.4	32.7	0.50	0.53	0.50	27.9
All Vehic	eles	2108	0.7	2219	0.7	0.580	10.4	LOSA	14.1	85.3	0.33	0.38	0.33	43.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Moveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped				sec		m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	26.7	LOS C	0.1	0.1	0.67	0.67	52.9	34.0	0.64
All Pedestrians	100	100	40.5	LOS E	0.2	0.2	0.81	0.81	70.5	39.0	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:38 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2024 W SENS Saturday Peak (Site Folder: Saturday

AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	111	0.0	117	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	871	1.0	917	1.0	* 0.595	15.9	LOS B	14.7	89.0	0.57	0.50	0.57	40.3
Appro	oach	982	0.9	1034	0.9	0.595	14.7	LOS B	14.7	89.0	0.50	0.50	0.50	40.4
North	ı: Mus	grave Stre	eet (N)											
8	T1	595	1.0	626	1.0	0.228	0.4	LOS A	0.5	2.8	0.03	0.02	0.03	59.2
9	R2	246	0.0	259	0.0	*0.412	7.9	LOS A	1.6	9.4	0.20	0.64	0.20	43.2
9u	U	6	0.0	6	0.0	0.412	9.1	LOS A	1.6	9.4	0.20	0.64	0.20	47.8
Appro	oach	847	0.7	891	0.7	0.412	2.7	LOSA	1.6	9.4	0.08	0.21	0.08	54.6
West	: Cowa	ap Street												
10	L2	192	0.0	202	0.0	0.200	4.0	LOS A	2.5	15.1	0.29	0.41	0.29	43.6
12	R2	101	0.0	106	0.0	* 0.299	47.0	LOS D	5.4	32.3	0.90	0.75	0.90	13.8
Appro	oach	293	0.0	308	0.0	0.299	18.8	LOS B	5.4	32.3	0.50	0.53	0.50	27.9
All Vehic	eles	2122	0.7	2234	0.7	0.595	10.5	LOSA	14.7	89.0	0.33	0.39	0.33	43.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov .	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	26.7	LOS C	0.1	0.1	0.67	0.67	52.9	34.0	0.64
All Pedestrians	100	100	40.5	LOS E	0.2	0.2	0.81	0.81	70.5	39.0	0.55

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:39 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2034 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM, FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	111	0.0	117	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	922	1.0	971	1.0	* 0.604	14.3	LOS A	14.7	89.2	0.54	0.48	0.54	41.6
Appro	oach	1033	0.9	1087	0.9	0.604	13.4	LOS A	14.7	89.2	0.48	0.48	0.48	41.6
North	ı: Muso	grave Stre	eet (N)											
8	T1	648	1.0	682	1.0	0.249	0.4	LOS A	0.5	3.1	0.03	0.02	0.03	59.2
9	R2	246	0.0	259	0.0	* 0.434	8.0	LOS A	1.6	9.5	0.21	0.64	0.21	43.1
9u	U	6	0.0	6	0.0	0.434	9.1	LOS A	1.6	9.5	0.21	0.64	0.21	47.7
Appro	oach	900	0.7	947	0.7	0.434	2.6	LOS A	1.6	9.5	0.08	0.20	0.08	54.8
West	: Cowa	ap Street												
10	L2	192	0.0	202	0.0	0.206	4.1	LOS A	2.5	15.3	0.29	0.41	0.29	43.5
12	R2	101	0.0	106	0.0	* 0.299	47.0	LOS D	5.4	32.3	0.90	0.75	0.90	13.8
Appro	oach	293	0.0	308	0.0	0.299	18.9	LOS B	5.4	32.3	0.50	0.53	0.50	27.9
All Vehic	eles	2226	0.7	2343	0.7	0.604	9.7	LOSA	14.7	89.2	0.32	0.37	0.32	44.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. \$	Aver. Speed
	ped/h	ped/h	sec		ped				sec		m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	25.4	LOS C	0.1	0.1	0.65	0.65	51.6	34.0	0.66
All Pedestrians	100	100	39.8	LOS D	0.2	0.2	0.80	0.80	69.8	39.0	0.56

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:40 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2034 W SENS Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% B <i>A</i> QUE	CK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	111	0.0	117	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	950	1.0	1000	1.0	* 0.626	14.5	LOS A	15.6	94.8	0.55	0.49	0.55	41.5
Appr	oach	1061	0.9	1117	0.9	0.626	13.5	LOSA	15.6	94.8	0.49	0.49	0.49	41.5
North	n: Mus	grave Stre	eet (N)											
8	T1	650	1.0	684	1.0	0.249	0.4	LOS A	0.5	3.1	0.03	0.02	0.03	59.2
9	R2	246	0.0	259	0.0	* 0.440	8.4	LOS A	1.8	10.9	0.24	0.65	0.24	42.6
9u	U	6	0.0	6	0.0	0.440	9.5	LOS A	1.8	10.9	0.24	0.65	0.24	47.4
Appr	oach	902	0.7	949	0.7	0.440	2.7	LOSA	1.8	10.9	0.09	0.20	0.09	54.7
West	:: Cowa	ap Street												
10	L2	192	0.0	202	0.0	0.210	4.3	LOS A	2.7	16.1	0.30	0.42	0.30	43.2
12	R2	101	0.0	106	0.0	* 0.299	47.0	LOS D	5.4	32.3	0.90	0.75	0.90	13.8
Appr	oach	293	0.0	308	0.0	0.299	19.0	LOS B	5.4	32.3	0.51	0.53	0.51	27.8
All Vehic	cles	2256	0.7	2375	0.7	0.626	9.9	LOSA	15.6	94.8	0.33	0.38	0.33	43.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	ormano	се							
Mov ID Crossing	Input	Dem.	Aver.		AVERAGE		Prop. E		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	Dist]	Que	Stop Rate	Time	DIST.	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	88.1	44.0	0.50
West: Cowap	Street										
P4 Full	50	50	25.4	LOS C	0.1	0.1	0.65	0.65	51.6	34.0	0.66
All Pedestrians	100	100	39.8	LOS D	0.2	0.2	0.80	0.80	69.8	39.0	0.56

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:40 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2022 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	85	0.0	89	0.0	0.048	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	911	1.0	959	1.0	* 0.441	2.6	LOS A	3.2	19.7	0.12	0.10	0.12	55.6
Appro	oach	996	0.9	1048	0.9	0.441	2.8	LOS A	3.2	19.7	0.11	0.14	0.11	54.8
North	ı: Mus	grave Stre	eet (N)											
8	T1	454	3.0	478	3.0	0.171	0.4	LOS A	0.4	2.2	0.03	0.02	0.03	59.2
9	R2	92	0.0	97	0.0	* 0.195	5.9	LOS A	0.1	0.7	0.02	0.58	0.02	46.2
9u	U	1	0.0	1	0.0	0.195	7.1	LOS A	0.1	0.7	0.02	0.58	0.02	49.8
Appro	oach	547	2.5	576	2.5	0.195	1.4	LOS A	0.4	2.2	0.03	0.12	0.03	57.2
West	: Cowa	ap Street												
10	L2	183	0.0	193	0.0	0.190	2.1	LOS A	1.2	7.0	0.16	0.33	0.16	46.3
12	R2	80	0.0	84	0.0	* 0.256	51.9	LOS D	4.6	27.9	0.90	0.74	0.90	12.9
Appro	oach	263	0.0	277	0.0	0.256	17.3	LOS B	4.6	27.9	0.38	0.46	0.38	29.2
All Vehic	cles	1806	1.3	1901	1.3	0.441	4.5	LOSA	4.6	27.9	0.12	0.18	0.12	50.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped				sec		m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	16.8	LOS B	0.1	0.1	0.51	0.51	42.9	34.0	0.79
All Pedestrians	100	100	38.0	LOS D	0.2	0.2	0.73	0.73	68.0	39.0	0.57

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:41 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2024 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA QUE		Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	85	0.0	89	0.0	0.048	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	929	1.0	978	1.0	* 0.443	2.0	LOS A	2.7	16.3	0.09	0.08	0.09	56.5
Appro	oach	1014	0.9	1067	0.9	0.443	2.3	LOS A	2.7	16.3	0.09	0.12	0.09	55.6
North	ո։ Musզ	grave Str	eet (N)											
8	T1	462	3.0	486	3.0	0.174	0.4	LOS A	0.4	2.2	0.03	0.02	0.03	59.2
9	R2	92	0.0	97	0.0	* 0.202	5.9	LOS A	0.1	0.7	0.02	0.58	0.02	46.2
9u	U	1	0.0	1	0.0	0.202	7.1	LOS A	0.1	0.7	0.02	0.58	0.02	49.8
Appro	oach	555	2.5	584	2.5	0.202	1.3	LOS A	0.4	2.2	0.03	0.12	0.03	57.2
West	: Cowa	ap Street												
10	L2	183	0.0	193	0.0	0.193	2.1	LOS A	1.2	7.0	0.16	0.33	0.16	46.3
12	R2	80	0.0	84	0.0	* 0.256	51.9	LOS D	4.6	27.9	0.90	0.74	0.90	12.9
Appro	oach	263	0.0	277	0.0	0.256	17.3	LOS B	4.6	27.9	0.38	0.46	0.38	29.2
All Vehic	cles	1832	1.3	1928	1.3	0.443	4.2	LOSA	4.6	27.9	0.11	0.17	0.11	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	16.3	LOS B	0.1	0.1	0.50	0.50	42.4	34.0	0.80
All Pedestrians	100	100	37.8	LOS D	0.2	0.2	0.73	0.73	67.8	39.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:41 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2024 W Aprv Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	88	0.0	93	0.0	0.050	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	964	1.0	1015	1.0	* 0.466	2.6	LOS A	3.6	21.7	0.12	0.11	0.12	55.5
Appr	oach	1052	0.9	1107	0.9	0.466	2.9	LOS A	3.6	21.7	0.11	0.14	0.11	54.7
North	h: Mus	grave Str	eet (N)											
8	T1	464	3.0	488	3.0	0.175	0.4	LOS A	0.4	2.2	0.03	0.02	0.03	59.2
9	R2	99	0.0	104	0.0	* 0.216	5.9	LOS A	0.1	0.7	0.03	0.58	0.03	46.2
9u	U	1	0.0	1	0.0	0.216	7.1	LOS A	0.1	0.7	0.03	0.58	0.03	49.8
Appr	oach	564	2.5	594	2.5	0.216	1.4	LOS A	0.4	2.2	0.03	0.12	0.03	57.1
Wes	t: Cowa	ap Street												
10	L2	190	0.0	200	0.0	0.203	2.1	LOS A	1.2	7.4	0.16	0.33	0.16	46.3
12	R2	83	0.0	87	0.0	* 0.266	52.0	LOS D	4.8	29.0	0.91	0.74	0.91	12.9
Appr	oach	273	0.0	287	0.0	0.266	17.3	LOS B	4.8	29.0	0.39	0.46	0.39	29.2
All Vehi	cles	1889	1.2	1988	1.2	0.466	4.5	LOSA	4.8	29.0	0.13	0.18	0.13	50.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Peri	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m ¹			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	16.8	LOS B	0.1	0.1	0.51	0.51	42.9	34.0	0.79
All Pedestrians	100	100	38.0	LOS D	0.2	0.2	0.73	0.73	68.0	39.0	0.57

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:42 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2024 W Dev Thursday Peak (Site Folder: Thursday

PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO\ [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Mus	grave Str	eet (S)											
1 2 Appro	L2 T1	86 937 1023	0.0 1.0 0.9	91 986 1077	0.0 1.0 0.9	0.049 * 0.453 0.453	5.6 2.6 2.8	LOS A LOS A	0.0 3.4 3.4	0.0 20.6 20.6	0.00 0.12 0.11	0.53 0.11 0.14	0.00 0.12 0.11	41.6 55.6 54.8
North	ı: Mus	grave Stre	eet (N)											
8	T1 R2	463 94	3.0 0.0	487 99	3.0 0.0	0.174 * 0.202	0.4 5.9	LOS A LOS A	0.4 0.1	2.2 0.7	0.03 0.03	0.02 0.58	0.03 0.03	59.2 46.2
9u	U	1	0.0	11	0.0	0.202	7.1	LOSA	0.1	0.7	0.03	0.58	0.03	49.8
Appro	oach	558	2.5	587	2.5	0.202	1.4	LOS A	0.4	2.2	0.03	0.12	0.03	57.2
West	: Cowa	ap Street												
10 12	L2 R2	185 81	0.0	195 85	0.0	0.195 * 0.259	2.1 51.9	LOS A LOS D	1.2 4.7	7.1 28.2	0.16 0.90	0.33 0.74	0.16 0.90	46.3 12.9
Appro	oach	266	0.0	280	0.0	0.259	17.3	LOS B	4.7	28.2	0.39	0.46	0.39	29.2
All Vehic	eles	1847	1.3	1944	1.3	0.453	4.5	LOSA	4.7	28.2	0.12	0.18	0.12	50.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov .	Input	Dem.	Aver.		AVERAGE		Prop. Et		Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	16.8	LOS B	0.1	0.1	0.51	0.51	42.9	34.0	0.79
All Pedestrians	100	100	38.0	LOS D	0.2	0.2	0.73	0.73	68.0	39.0	0.57

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:42 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2024 W SENS Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfor	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service	95% BA Que		Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	85	0.0	89	0.0	0.048	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	952	1.0	1002	1.0	* 0.454	2.0	LOS A	2.8	17.0	0.10	0.09	0.10	56.5
Appro	oach	1037	0.9	1092	0.9	0.454	2.3	LOS A	2.8	17.0	0.09	0.12	0.09	55.6
North	ı: Mus	grave Stre	eet (N)											
8	T1	464	3.0	488	3.0	0.175	0.4	LOS A	0.4	2.2	0.03	0.02	0.03	59.2
9	R2	92	0.0	97	0.0	* 0.203	5.9	LOS A	0.1	0.7	0.03	0.58	0.03	46.2
9u	U	1	0.0	1	0.0	0.203	7.1	LOS A	0.1	0.7	0.03	0.58	0.03	49.8
Appro	oach	557	2.5	586	2.5	0.203	1.3	LOS A	0.4	2.2	0.03	0.12	0.03	57.2
West	: Cowa	ap Street												
10	L2	183	0.0	193	0.0	0.195	2.1	LOS A	1.2	7.0	0.16	0.33	0.16	46.3
12	R2	80	0.0	84	0.0	* 0.256	51.9	LOS D	4.6	27.9	0.90	0.74	0.90	12.9
Appro	oach	263	0.0	277	0.0	0.256	17.3	LOS B	4.6	27.9	0.38	0.46	0.38	29.2
All Vehic	eles	1857	1.3	1955	1.3	0.454	4.1	LOSA	4.6	27.9	0.11	0.17	0.11	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Peri	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	16.3	LOS B	0.1	0.1	0.50	0.50	42.4	34.0	0.80
All Pedestrians	100	100	37.8	LOS D	0.2	0.2	0.73	0.73	67.8	39.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:43 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

Site: 7 [2034 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM, FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. I Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Mus	grave Str	eet (S)											
1	L2	85	0.0	89	0.0	0.048	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	1016	1.0	1069	1.0	* 0.478	1.5	LOS A	2.4	14.3	0.08	0.07	0.08	57.3
Appro	oach	1101	0.9	1159	0.9	0.478	1.8	LOS A	2.4	14.3	0.07	0.10	0.07	56.4
North	ı: Muso	grave Stre	eet (N)											
8	T1	505	3.0	532	3.0	0.190	0.4	LOS A	0.4	2.5	0.03	0.02	0.03	59.2
9	R2	92	0.0	97	0.0	* 0.218	5.9	LOS A	0.1	0.7	0.03	0.58	0.03	46.2
9u	U	1	0.0	1	0.0	0.218	7.1	LOS A	0.1	0.7	0.03	0.58	0.03	49.8
Appro	oach	598	2.5	629	2.5	0.218	1.3	LOS A	0.4	2.5	0.03	0.11	0.03	57.4
West	: Cowa	ap Street												
10	L2	183	0.0	193	0.0	0.203	2.1	LOS A	1.2	7.2	0.16	0.33	0.16	46.3
12	R2	80	0.0	84	0.0	* 0.256	51.9	LOS D	4.6	27.9	0.90	0.74	0.90	12.9
Appro	oach	263	0.0	277	0.0	0.256	17.3	LOS B	4.6	27.9	0.39	0.46	0.39	29.2
All Vehic	eles	1962	1.3	2065	1.3	0.478	3.7	LOSA	4.6	27.9	0.10	0.15	0.10	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	/loveme	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	15.8	LOS B	0.1	0.1	0.49	0.49	41.9	34.0	0.81
All Pedestrians	100	100	37.5	LOS D	0.2	0.2	0.72	0.72	67.5	39.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:43 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave StCowap St.sip9

Site: 7 [2034 W SENS Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. Que	Effective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	85	0.0	89	0.0	0.048	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	41.6
2	T1	1039	1.0	1094	1.0	* 0.489	1.5	LOS A	2.5	14.9	0.08	0.07	0.08	57.3
Appr	oach	1124	0.9	1183	0.9	0.489	1.9	LOSA	2.5	14.9	0.07	0.10	0.07	56.4
North	n: Mus	grave Str	eet (N)											
8	T1	507	3.0	534	3.0	0.191	0.4	LOS A	0.4	2.5	0.03	0.02	0.03	59.2
9	R2	92	0.0	97	0.0	* 0.221	5.9	LOS A	0.1	0.7	0.03	0.58	0.03	46.2
9u	U	1	0.0	1	0.0	0.221	7.1	LOS A	0.1	0.7	0.03	0.58	0.03	49.8
Appr	oach	600	2.5	632	2.5	0.221	1.3	LOSA	0.4	2.5	0.03	0.11	0.03	57.4
West	t: Cowa	ap Street												
10	L2	183	0.0	193	0.0	0.205	2.2	LOS A	1.2	7.2	0.16	0.34	0.16	46.3
12	R2	80	0.0	84	0.0	* 0.256	51.9	LOS D	4.6	27.9	0.90	0.74	0.90	12.9
Appr	oach	263	0.0	277	0.0	0.256	17.3	LOS B	4.6	27.9	0.39	0.46	0.39	29.2
All Vehic	cles	1987	1.3	2092	1.3	0.489	3.7	LOSA	4.6	27.9	0.10	0.15	0.10	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE Que		Prop. Et Que	fective Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		m/sec
North: Musgra	ve Stree	et (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	93.1	44.0	0.47
West: Cowap	Street										
P4 Full	50	50	15.8	LOS B	0.1	0.1	0.49	0.49	41.9	34.0	0.81
All Pedestrians	100	100	37.5	LOS D	0.2	0.2	0.72	0.72	67.5	39.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:44 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

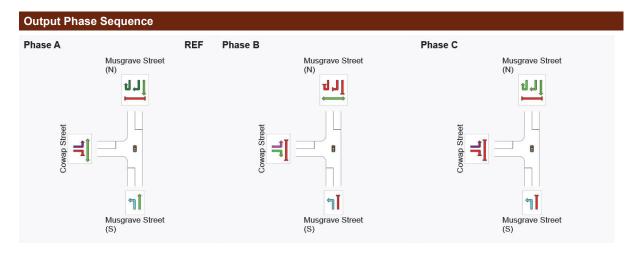
Site: 7 [2022 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

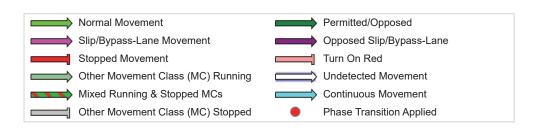
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	54	83
Green Time (sec)	48	23	31
Phase Time (sec)	54	29	37
Phase Split	45%	24%	31%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:37 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

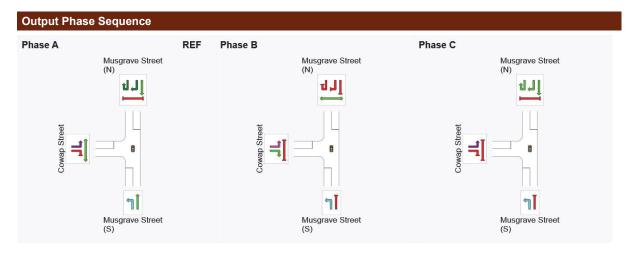
Site: 7 [2024 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

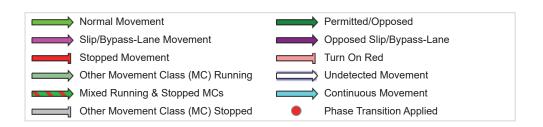
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	55	84
Green Time (sec)	49	23	30
Phase Time (sec)	55	29	36
Phase Split	46%	24%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:37 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

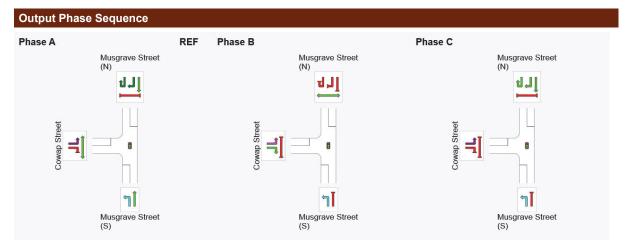
Site: 7 [2024 W Aprv Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

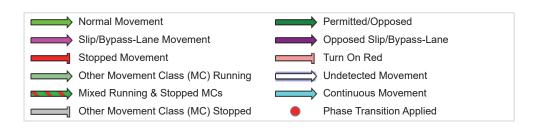
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	55	84
Green Time (sec)	49	23	30
Phase Time (sec)	55	29	36
Phase Split	46%	24%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:38 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

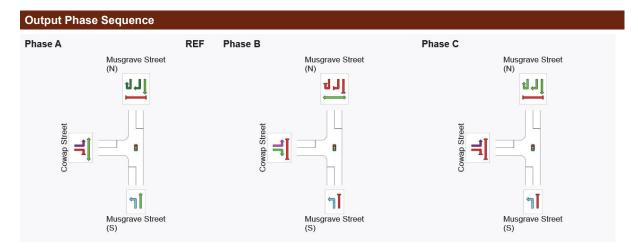
Site: 7 [2024 W Dev Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

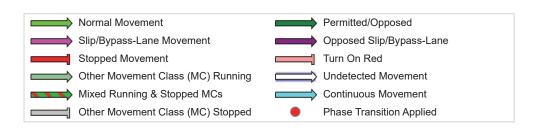
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	55	84
Green Time (sec)	49	23	30
Phase Time (sec)	55	29	36
Phase Split	46%	24%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:38 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

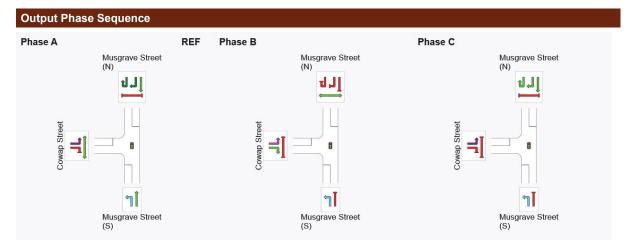
Site: 7 [2024 W SENS Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

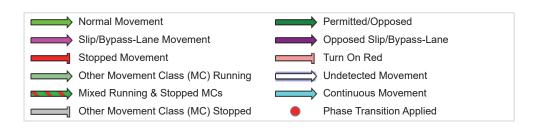
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	55	84
Green Time (sec)	49	23	30
Phase Time (sec)	55	29	36
Phase Split	46%	24%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:39 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

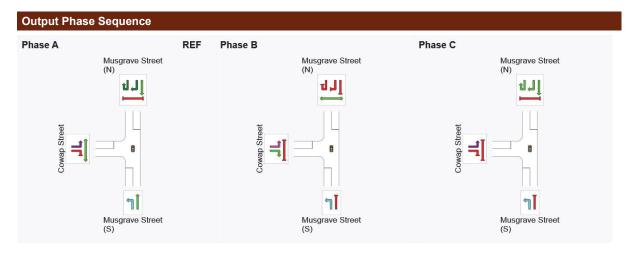
Site: 7 [2034 BG Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

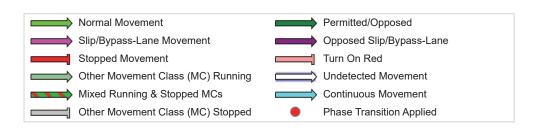
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	57	86
Green Time (sec)	51	23	28
Phase Time (sec)	57	29	34
Phase Split	48%	24%	28%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:40 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

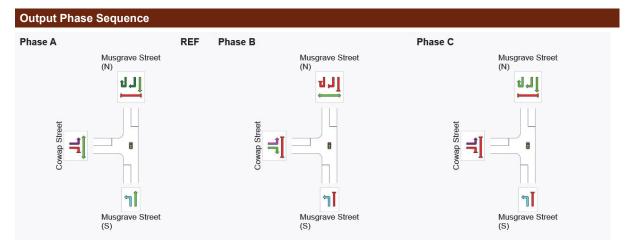
Site: 7 [2034 W SENS Saturday Peak (Site Folder: Saturday AM)]

Intersection: Musgrave Street/Cowap Street

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	57	86
Green Time (sec)	51	23	28
Phase Time (sec)	57	29	34
Phase Split	48%	24%	28%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:40 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

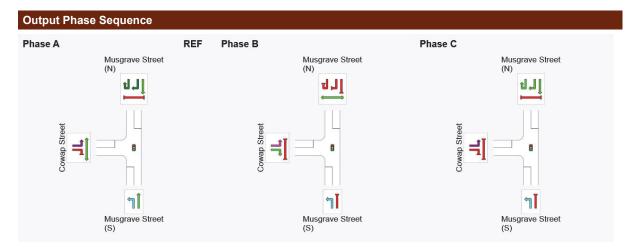
Site: 7 [2022 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

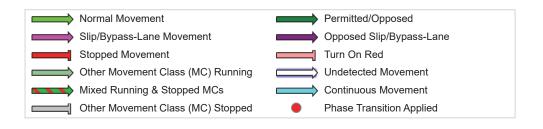
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:41 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

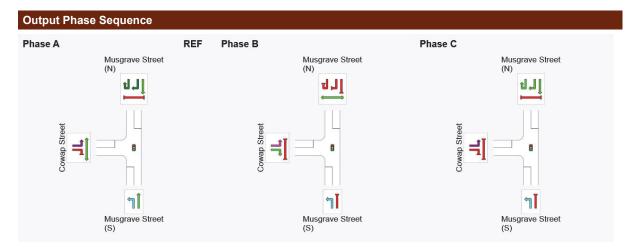
Site: 7 [2024 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

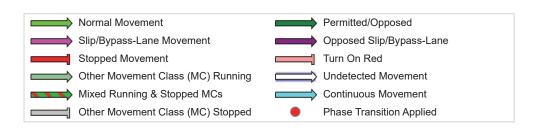
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	80	109
Green Time (sec)	74	23	15
Phase Time (sec)	80	29	21
Phase Split	62%	22%	16%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:41 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

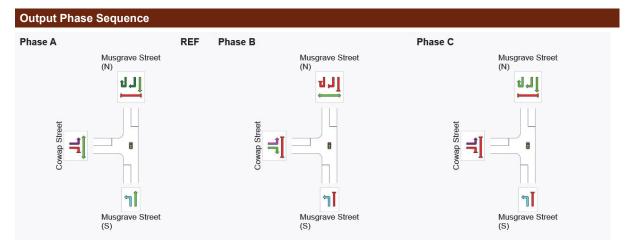
Site: 7 [2024 W Aprv Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

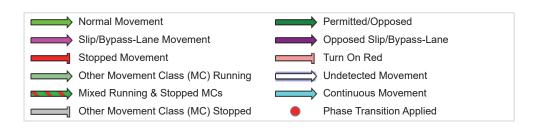
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:42 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

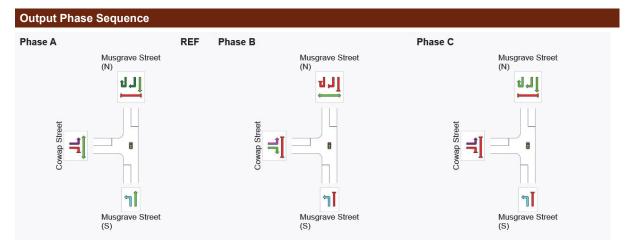
Site: 7 [2024 W Dev Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

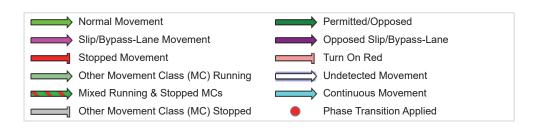
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	79	108
Green Time (sec)	73	23	16
Phase Time (sec)	79	29	22
Phase Split	61%	22%	17%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:42 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

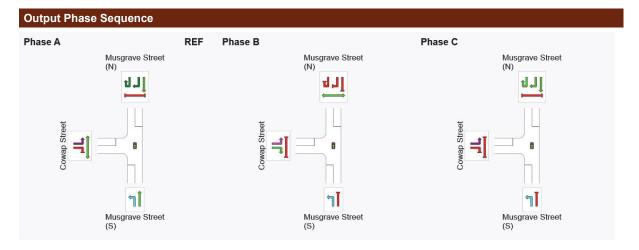
Site: 7 [2024 W SENS Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	80	109
Green Time (sec)	74	23	15
Phase Time (sec)	80	29	21
Phase Split	62%	22%	16%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:43 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

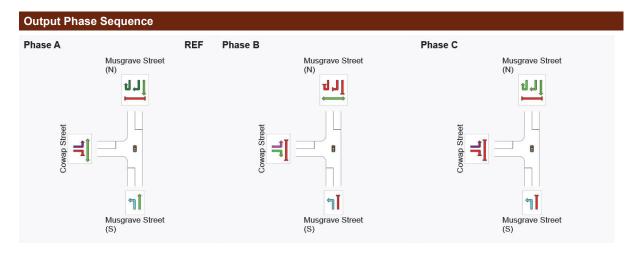
Site: 7 [2034 BG Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

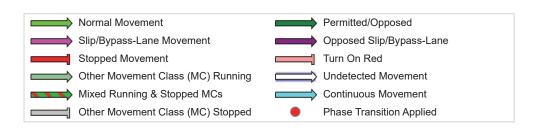
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	81	110
Green Time (sec)	75	23	14
Phase Time (sec)	81	29	20
Phase Split	62%	22%	15%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:43 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-Cowap St.sip9

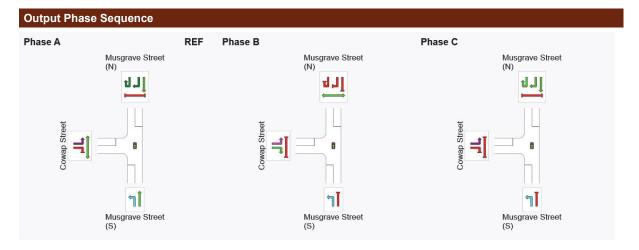
Site: 7 [2034 W SENS Thursday Peak (Site Folder: Thursday PM)]

Intersection: Musgrave Street/Cowap Street

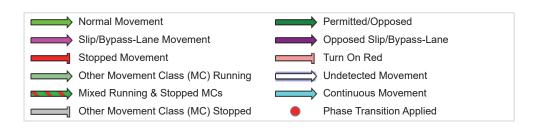
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	81	110
Green Time (sec)	75	23	14
Phase Time (sec)	81	29	20
Phase Split	62%	22%	15%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:41:44 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\2) Musgrave St-

Cowap St.sip9

Site: 6 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St												
1 2	L2 T1	254 737	0.0 1.0	254 737	0.0 1.0	0.137 0.275	5.6 0.5	LOS A LOS A	0.0 0.6	0.0 3.8	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr	oach	991	0.7	991	0.7	0.275	1.8	LOS A	0.6	3.8	0.02	0.15	0.02	53.3
East	Clifton	n St												
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr	oach	20	0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
North	n: Mus	grave St ((N)											
7	L2 T1	90 607	1.0 1.0	90 607	1.0 1.0	0.070 * 0.261	7.6 0.6	LOS A LOS A	0.5 0.5	2.8 3.1	0.09	0.55 0.02	0.09	46.7 58.1
Appr		697	1.0	697	1.0	0.261	1.5	LOSA	0.5	3.1	0.03	0.02	0.03	54.8
West	t: Kmaı	rt												
10	L2	203	1.0	203	1.0	0.184	1.8	LOS A	0.7	4.5	0.12	0.30	0.12	30.6
12	R2	140	0.0	140	0.0	* 0.175	46.7	LOS D	3.6	21.7	0.85	0.71	0.85	9.8
Appr	oach	343	0.6	343	0.6	0.184	20.1	LOS B	3.6	21.7	0.42	0.47	0.42	18.3
All Vehic	cles	2051	0.8	2051	0.8	0.275	5.5	LOSA	3.6	21.7	0.10	0.19	0.10	42.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Moveme	ent Perf	ormano	ce							
Mov ID Crossino		Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clifton	St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgi	rave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:37 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1 roach	254 751 1005	0.0 1.0 0.7	254 751 1005	0.0 1.0 0.7	0.137 0.280 0.280	5.6 0.5 1.8	LOS A LOS A	0.0 0.6 0.6	0.0 3.9 3.9	0.00 0.03 0.02	0.53 0.03 0.15	0.00 0.03 0.02	37.0 58.5 53.4
East	: Cliftor	n St												
4 Appr	L2 roach	20	0.0	20	0.0	* 0.233 0.233	73.0 73.0	LOS F	1.3	7.8 7.8	0.99	0.70	0.99	19.2 19.2
Nort	h: Mus	grave St ((N)											
7 8	L2 T1	92 618	1.0 1.0	92 618	1.0 1.0	0.072 * 0.266	7.6 0.7	LOS A LOS A	0.5 0.5	2.8 3.1	0.09 0.03	0.55 0.03	0.09 0.03	46.7 58.1
	oach t: Kmar	710	1.0	710	1.0	0.266	1.5	LOSA	0.5	3.1	0.04	0.09	0.04	54.8
10 12	L2 R2	203 140 343	1.0 0.0 0.6	203 140 343	1.0 0.0 0.6	0.186 * 0.175 0.186	1.8 46.7 20.1	LOS A LOS D LOS B	0.7 3.6 3.6	4.5 21.7 21.7	0.12 0.85 0.42	0.30 0.71 0.47	0.12 0.85 0.42	30.6 9.8 18.3
All Vehi		2078	0.8	2078	0.8	0.280	5.4	LOSA	3.6	21.7	0.10	0.19	0.10	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestr	Pedestrian Movement Performance													
Mov ID Cros	Input ssing Vol.			Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Aver. Dist. Speed				
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Clif	fton St													
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
North: M	usgrave St (N)												
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51			
P3S Slip/ Bypa		50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
West: Kn	nart													
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96			
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:37 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St		7011/11	,,	• • • • • • • • • • • • • • • • • • •			7011					1011/11
1 2	L2 T1	310 762	0.0	310 762	0.0	0.167	5.6 0.5	LOS A	0.0	0.0 4.0	0.00	0.53	0.00	37.0 58.5
Appr East:	oach : Cliftoi	1072 n St	0.7	1072	0.7	0.284	2.0	LOSA	0.7	4.0	0.02	0.17	0.02	52.6
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr		20 grave St (0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
7	L2	92	1.0	92	1.0	0.072	7.6	LOS A	0.5	2.8	0.09	0.55	0.09	46.7
8	T1	624	1.0	624	1.0	* 0.268	0.7	LOSA	0.5	3.2	0.03	0.03	0.03	58.1
Appr	oach	716	1.0	716	1.0	0.268	1.5	LOSA	0.5	3.2	0.04	0.09	0.04	54.9
West	t: Kmaı	rt												
10	L2	236	1.0	236	1.0	0.217	1.8	LOS A	0.9	5.5	0.12	0.30	0.12	30.6
12	R2	163	0.0	163	0.0	* 0.204	47.0	LOS D	4.2	25.5	0.86	0.72	0.86	9.7
Appr	oach	399	0.6	399	0.6	0.217	20.3	LOS B	4.2	25.5	0.42	0.47	0.42	18.2
All Vehic	cles	2207	8.0	2207	0.8	0.284	5.8	LOSA	4.2	25.5	0.11	0.21	0.11	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestr	ian Moven	nent Per	formand	се							
Mov ID Cros	Input ssing Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clif	fton St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: M	usgrave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypa		50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kn	nart										
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:38 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1	268 754	0.0 1.0	268 754	0.0 1.0	0.144 0.281	5.6 0.5	LOS A LOS A	0.0 0.6	0.0 3.9	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr	oach	1022	0.7	1022	0.7	0.281	1.9	LOS A	0.6	3.9	0.02	0.16	0.02	53.2
East:	Clifton	n St												
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr	oach	20	0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
North	n: Mus	grave St (N)											
7 8	L2 T1	92 620	1.0 1.0	92 620	1.0 1.0	0.072 * 0.267	7.6 0.7	LOS A LOS A	0.5 0.5	2.8 3.2	0.09 0.03	0.55 0.03	0.09 0.03	46.7 58.1
Appr		712	1.0	712	1.0	0.267	1.5	LOSA	0.5	3.2	0.04	0.09	0.04	54.8
West	: Kmaı	rt												
10	L2	211	1.0	211	1.0	0.193	1.8	LOSA	0.8	4.7	0.12	0.30	0.12	30.6
12	R2	146	0.0	146	0.0	* 0.183	46.7	LOS D	3.8	22.7	0.86	0.71	0.86	9.8
Appr	oach	357	0.6	357	0.6	0.193	20.2	LOS B	3.8	22.7	0.42	0.47	0.42	18.2
All Vehic	cles	2111	0.8	2111	0.8	0.281	5.5	LOSA	3.8	22.7	0.10	0.19	0.10	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestria	n Moveme	nt Perf	ormano	ce							
Mov ID Crossii	Input ng Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clifton	n St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Mus	grave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50 s	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kma	rt										
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:39 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St		701111	- / -	.,,								
1 2	L2 T1	288 759	0.0	288 759	0.0	0.155	5.6 0.5	LOS A	0.0	0.0	0.00	0.53	0.00	37.0 58.5
Appr East:	oach : Cliftor	1047 n St	0.7	1047	0.7	0.283	1.9	LOSA	0.6	3.9	0.02	0.16	0.02	52.9
4	L2	20	0.0	20	0.0	* 0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
Appr		20 grave St (0.0	20	0.0	0.233	73.0	LOS F	1.3	7.8	0.99	0.70	0.99	19.2
7	L2	92	1.0	92	1.0	0.072	7.6	LOS A	0.5	2.8	0.09	0.55	0.09	46.7
8	T1	92 620	1.0	92 620	1.0	* 0.267	0.7	LOSA	0.5	3.2	0.09	0.55 0.03	0.09	58.1
Appr	oach	712	1.0	712	1.0	0.267	1.5	LOSA	0.5	3.2	0.04	0.09	0.04	54.8
West	: Kmar	rt												
10	L2	223	1.0	223	1.0	0.205	1.8	LOS A	8.0	5.1	0.12	0.30	0.12	30.6
12	R2	154	0.0	154	0.0	* 0.193	46.9	LOS D	4.0	24.0	0.86	0.72	0.86	9.7
Appr	oach	377	0.6	377	0.6	0.205	20.2	LOS B	4.0	24.0	0.42	0.47	0.42	18.2
All Vehic	cles	2156	0.8	2156	0.8	0.283	5.7	LOSA	4.0	24.0	0.11	0.20	0.11	42.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Moveme	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clifton	St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgr	ave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:39 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St												
1 2	L2 T1	254 821	0.0	254 821	0.0	0.137	5.6 0.5	LOS A	0.0	0.0	0.00	0.53	0.00	37.0 58.5
Appr East:	oach : Cliftor	1075 n St	0.8	1075	0.8	0.306	1.7	LOSA	0.7	4.4	0.02	0.15	0.02	53.7
4	L2	22	0.0	22	0.0	* 0.257	73.1	LOS F	1.4	8.6	1.00	0.70	1.00	19.2
Appr		22	0.0	22	0.0	0.257	73.1	LOS F	1.4	8.6	1.00	0.70	1.00	19.2
North	n: Mus	grave St ((N)											
7 8	L2 T1	101 676	1.0 1.0	101 676	1.0 1.0	0.079 * 0.291	7.6 0.7	LOS A LOS A	0.5 0.6	3.1 3.6	0.09	0.55 0.03	0.09	46.7 58.1
Appr	oach	777	1.0	777	1.0	0.291	1.6	LOS A	0.6	3.6	0.04	0.09	0.04	54.8
West	t: Kmaı	rt												
10	L2	203	1.0	203	1.0	0.193	1.8	LOSA	0.8	4.6	0.12	0.30	0.12	30.6
12 Appr	R2 oach	140 343	0.0	140 343	0.0	* 0.175 0.193	20.1	LOS D	3.6	21.7	0.85	0.71	0.85	9.8
All Vehic	cles	2217	0.8	2217	0.8	0.306	5.2	LOSA	3.6	21.7	0.10	0.18	0.10	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestr	ian Moven	nent Per	formand	се							
Mov ID Cros	Input ssing Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clif	fton St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: M	usgrave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypa		50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kn	nart										
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:40 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St		VO11/11		V/ O			VO11	- '''				NIII/II
1 2	L2 T1	288 829	0.0 1.0	288 829	0.0 1.0	0.155 0.309	5.6 0.5	LOS A LOS A	0.0 0.7	0.0 4.5	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr East:	oach : Cliftor	1117 n St	0.7	1117	0.7	0.309	1.8	LOSA	0.7	4.5	0.02	0.16	0.02	53.3
4	L2	22	0.0	22	0.0	* 0.257	73.1	LOS F	1.4	8.6	1.00	0.70	1.00	19.2
Appr	oach	22	0.0	22	0.0	0.257	73.1	LOS F	1.4	8.6	1.00	0.70	1.00	19.2
North	n: Mus	grave St ((N)											
7 8	L2 T1	101 678	1.0 1.0	101 678	1.0 1.0	0.079 * 0.292	7.6 0.7	LOS A LOS A	0.5 0.6	3.1 3.6	0.09 0.03	0.55 0.03	0.09 0.03	46.7 58.1
Appr	oach	779	1.0	779	1.0	0.292	1.6	LOSA	0.6	3.6	0.04	0.09	0.04	54.8
West	: Kmaı	rt												
10	L2	223	1.0	223	1.0	0.213	1.8	LOS A	0.9	5.2	0.12	0.30	0.12	30.6
12	R2	154	0.0	154	0.0	* 0.193	46.9	LOS D	4.0	24.0	0.86	0.72	0.86	9.7
Appr	oach	377	0.6	377	0.6	0.213	20.2	LOS B	4.0	24.0	0.42	0.47	0.42	18.2
All Vehic	cles	2295	8.0	2295	0.8	0.309	5.4	LOSA	4.0	24.0	0.10	0.19	0.10	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Moveme	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clifton	St										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgr	ave St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:40 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2 Appr	L2 T1	254 823 1077	0.0 0.0 0.0	254 823 1077	0.0	0.137 * 0.305 0.305	5.6 0.5	LOS A LOS A	0.0 0.7 0.7	0.0 4.4 4.4	0.00 0.03 0.02	0.53 0.03 0.15	0.00 0.03 0.02	37.0 58.5 53.7
	: Cliftor	n St									0.02	0.15	0.02	
4 Appr	L2 roach	20	0.0	20	0.0	0.200	71.3 71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5 19.5
North	h: Musզ	grave St (N)											
7 8	L2 T1	78 457	1.0 3.0	78 457	1.0 3.0	0.061 0.202	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.2	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.2
Appr		535	2.7	535	2.7	0.202	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.5
10 12	t: Kmar L2 R2	185 134	2.0 3.0	185 134	2.0	0.177 * 0.171	1.8 46.6	LOS A LOS D	0.7 3.5	4.1 21.4	0.12 0.85	0.30 0.71	0.12 0.85	30.6 9.8
Appr All Vehic		319 1951	1.1	319 1951	1.1	0.177	20.6 5.5	LOS B	3.5	21.4	0.43	0.47	0.43	18.0 42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	loveme	ent Perf	orman	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:41 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	CK OF EUE Dist] m	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St		VO11/11		V/ O	300		VO11	- '''				KITI/TI
1 2	L2 T1	241 839	0.0	241 839	0.0	0.130 * 0.311	5.6 0.5	LOS A LOS A	0.0	0.0 4.5	0.00	0.53	0.00	37.0 58.5
Appr East:	oach : Cliftor	1080 n St	0.0	1080	0.0	0.311	1.7	LOSA	0.7	4.5	0.02	0.14	0.02	54.0
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr		20 grave St (0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
		,	,	70	4.0	0.000	7.0	1.00.4	0.4	0.4	0.00	0.55	0.00	40.7
7 8	L2 T1	79 465	1.0 3.0	79 465	1.0 3.0	0.062 0.205	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.2	0.09	0.55 0.02	0.09	46.7 58.2
Appr	oach	544	2.7	544	2.7	0.205	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.6
West	t: Kmaı	rt												
10	L2	185	2.0	185	2.0	0.179	1.8	LOS A	0.7	4.1	0.12	0.30	0.12	30.6
12	R2	134	3.0	134	3.0	* 0.171	46.6	LOS D	3.5	21.4	0.85	0.71	0.85	9.8
Appr	oach	319	2.4	319	2.4	0.179	20.6	LOS B	3.5	21.4	0.43	0.47	0.43	18.0
All Vehic	cles	1963	1.1	1963	1.1	0.311	5.5	LOSA	3.5	21.4	0.10	0.19	0.10	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	loveme	ent Perf	orman	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:42 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2 Appr	L2 T1	290 848 1138	0.0 0.0 0.0	290 848 1138	0.0 0.0 0.0	0.156 * 0.314 0.314	5.6 0.5 1.8	LOS A LOS A	0.0 0.8 0.8	0.0 4.5 4.5	0.00 0.03 0.02	0.53 0.03 0.16	0.00 0.03 0.02	37.0 58.4 53.3
East	: Cliftor	n St												
4 Appr	L2 roach	20	0.0	20	0.0	0.200	71.3 71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5 19.5
North	h: Musឲ	grave St ((N)											
7 8	L2 T1	79 470	1.0 3.0	79 470	1.0 3.0	0.062 0.207	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.3	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.2
Appr	oach t: Kmar	549	2.7	549	2.7	0.207	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.6
10 12	L2 R2	214 154 368	2.0 3.0 2.4	214 154 368	2.0 3.0 2.4	0.208 * 0.197 0.208	1.8 46.9 20.7	LOS A LOS D	0.8 4.0 4.0	5.0 24.8 24.8	0.12 0.86 0.43	0.30 0.72 0.48	0.12 0.86 0.43	30.6 9.7 18.0
All Vehic		2075	1.1	2075	1.1	0.314	5.8	LOSA	4.0	24.8	0.43	0.20	0.43	41.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	loveme	ent Perf	orman	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m -			sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:42 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1	253 841	0.0	253 841	0.0	0.136 * 0.311	5.6 0.5	LOS A LOS A	0.0 0.7	0.0 4.5	0.00 0.03	0.53 0.03	0.00 0.03	37.0 58.5
Appr	oach	1094	0.0	1094	0.0	0.311	1.7	LOS A	0.7	4.5	0.02	0.14	0.02	53.8
East	: Clifto	n St												
4	L2	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
Appr	oach	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5
North	h: Mus	grave St (N)											
7 8	L2 T1	79 467	1.0 3.0	79 467	1.0 3.0	0.062 0.206	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.2	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.2
-	oach	546	2.7	546	2.7	0.206	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.6
Wes	t: Kma	rt												
10 12	L2 R2	192 139	2.0 3.0	192 139	2.0 3.0	0.186 * 0.177	1.8 46.7	LOS A LOS D	0.7 3.6	4.3 22.2	0.12 0.85	0.30 0.71	0.12 0.85	30.6 9.8
	oach	331	2.4	331	2.4	0.186	20.7	LOS B	3.6	22.2	0.65	0.71	0.63	18.0
All Vehic	cles	1991	1.1	1991	1.1	0.311	5.5	LOSA	3.6	22.2	0.10	0.19	0.10	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	/loveme	ent Perf	ormano	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	UE Dist]	Prop. Et Que	fective Stop Rate	Travel Time		Aver. Speed
East: Clifton S	ped/h t	ped/h	sec		ped	m			sec	m	m/sec
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:43 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2 Appr	L2 T1	270 846 1116	0.0 0.0 0.0	270 846 1116	0.0 0.0 0.0	0.145 * 0.313 0.313	5.6 0.5 1.8	LOS A LOS A	0.0 0.8 0.8	0.0 4.5 4.5	0.00 0.03 0.02	0.53 0.03 0.15	0.00 0.03 0.02	37.0 58.4 53.6
East	: Cliftor	n St												
4 Appr	L2 roach	20	0.0	20	0.0	0.200	71.3	LOS F	1.3	7.7	0.99	0.70	0.99	19.5 19.5
Nort	h: Musឲ	grave St ((N)											
7 8	L2 T1	79 467	1.0 3.0	79 467	1.0 3.0	0.062 0.206	7.6 0.6	LOS A LOS A	0.4 0.4	2.4 2.2	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.2
Appr		546	2.7	546	2.7	0.206	1.6	LOSA	0.4	2.4	0.04	0.10	0.04	54.6
	t: Kmar													
10 12 Appr	L2 R2 roach	202 146 348	2.0 3.0 2.4	202 146 348	2.0 3.0 2.4	0.196 * 0.186 0.196	1.8 46.8 20.7	LOS A LOS D	0.8 3.8 3.8	4.6 23.4 23.4	0.12 0.86 0.43	0.30 0.72 0.47	0.12 0.86 0.43	30.6 9.7 18.0
All Vehi	cles	2030	1.1	2030	1.1	0.313	5.7	LOSA	3.8	23.4	0.11	0.20	0.11	42.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance													
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Clifton S	t													
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
North: Musgra	ve St (N)												
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51			
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
West: Kmart														
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96			
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54			

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:44 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUI [Veh. veh	ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave St	(S)											
1 2	L2 T1 oach	241 917 1158	0.0 0.0 0.0	241 917 1158	0.0 0.0 0.0	0.130 * 0.340 0.340	5.6 0.5 1.6	LOS A LOS A	0.0 0.9 0.9	0.0 5.1 5.1	0.00 0.03 0.03	0.53 0.03 0.13	0.00 0.03 0.03	37.0 58.4 54.2
East	: Cliftor	n St												
4 Appr	L2 roach	22	0.0	22	0.0	0.220	71.4	LOS F	1.4	8.5 8.5	0.99	0.71	0.99	19.5 19.5
North	h։ Musզ	grave St ((N)											
7 8	L2 T1	87 509	1.0 3.0	87 509	1.0 3.0	0.068 0.225	7.6 0.6	LOS A LOS A	0.4 0.4	2.7 2.5	0.09 0.03	0.55 0.02	0.09 0.03	46.7 58.1
	oach t: Kmar	596	2.7	596	2.7	0.225	1.7	LOSA	0.4	2.7	0.04	0.10	0.04	54.5
10 12	L2 R2 roach	185 134 319	2.0 3.0 2.4	185 134 319	2.0 3.0 2.4	0.187 * 0.171 0.187	1.8 46.6 20.6	LOS A LOS D LOS B	0.7 3.5 3.5	4.2 21.4 21.4	0.12 0.85 0.43	0.30 0.71 0.47	0.12 0.85 0.43	30.6 9.8 18.0
All Vehic		2095	1.1	2095	1.1	0.340	5.2		3.5	21.4	0.10	0.18	0.43	43.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance													
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: Clifton S	t													
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
North: Musgra	ve St (N)												
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51			
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47			
West: Kmart														
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96			
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54			

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:44 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 6 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	South: Musgrave St (S)													
1 2	L2 T1	270 924	0.0	270 924	0.0	0.145 * 0.342	5.6 0.6	LOS A	0.0	0.0 5.2	0.00	0.53	0.00	37.0 58.4
Appr East:	oach : Cliftor	1194 n St	0.0	1194	0.0	0.342	1.7	LOSA	0.9	5.2	0.03	0.14	0.03	53.9
4	L2	22	0.0	22	0.0	0.220	71.4	LOS F	1.4	8.5	0.99	0.71	0.99	19.5
Appr		22 grave St (0.0 (N)	22	0.0	0.220	71.4	LOS F	1.4	8.5	0.99	0.71	0.99	19.5
7	L2 T1	87 511	1.0	87 511	1.0	0.068 0.226	7.6 0.6	LOS A	0.4	2.7 2.5	0.09	0.55 0.02	0.09	46.7 58.1
Appr		598	2.7	598	2.7	0.226	1.7	LOSA	0.4	2.7	0.04	0.10	0.04	54.5
West	:: Kmaı	rt												
10 12	L2 R2	202 146	2.0 3.0	202 146	2.0 3.0	0.205 * 0.186	1.8 46.8	LOS A LOS D	0.8 3.8	4.7 23.4	0.12 0.86	0.30 0.72	0.12 0.86	30.6 9.7
Appr	oach	348	2.4	348	2.4	0.205	20.7	LOS B	3.8	23.4	0.43	0.47	0.43	18.0
All Vehic	cles	2162	1.1	2162	1.1	0.342	5.5	LOSA	3.8	23.4	0.10	0.19	0.10	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Pedestrian Movement Performance										
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. :	Aver. Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: Clifton S	t										
P2 Full	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
North: Musgra	ve St (N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.7	50.0	0.51
P3S Slip/ Bypass	50	50	49.2	LOS E	0.2	0.2	0.87	0.87	76.9	36.0	0.47
West: Kmart											
P4 Full	50	50	7.8	LOSA	0.1	0.1	0.35	0.35	30.1	29.0	0.96
All	200	200	41.4	LOS E	0.2	0.2	0.76	0.76	70.4	37.8	0.54

Pedestrians

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:45 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

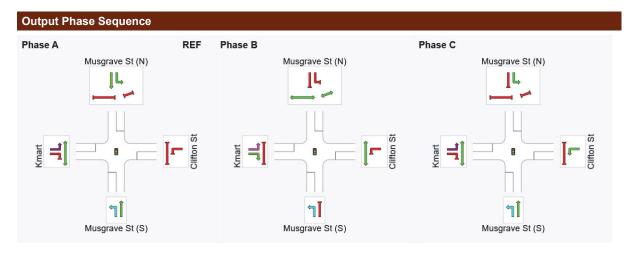
Site: 6 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

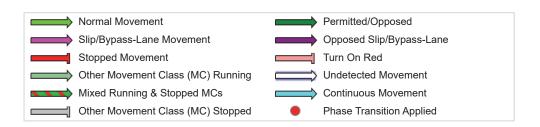
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:37 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

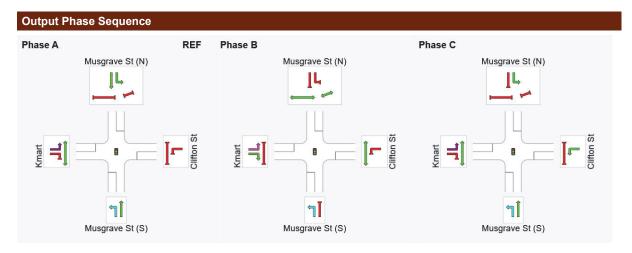
Site: 6 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:37 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

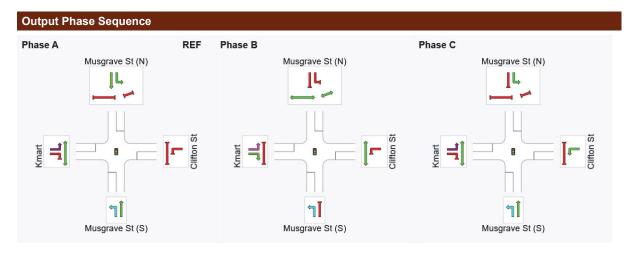
Site: 6 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

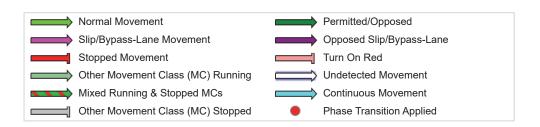
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:38 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

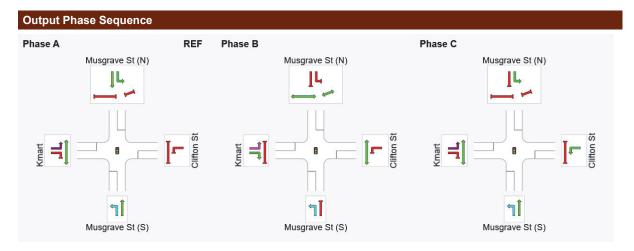
Site: 6 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

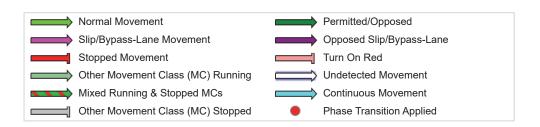
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:39 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

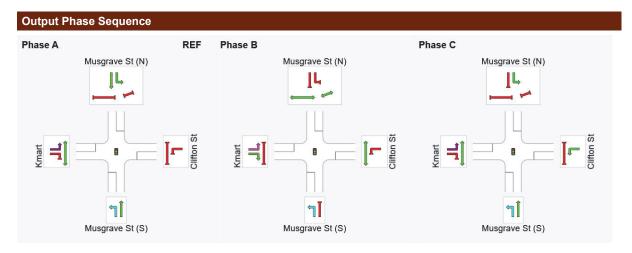
Site: 6 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

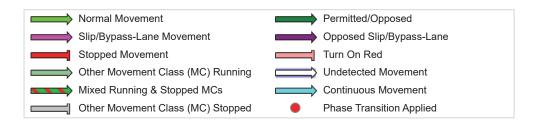
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:39 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

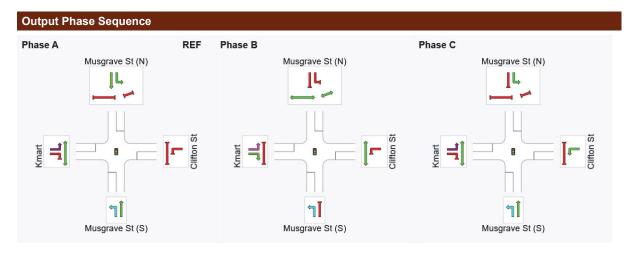
Site: 6 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:40 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

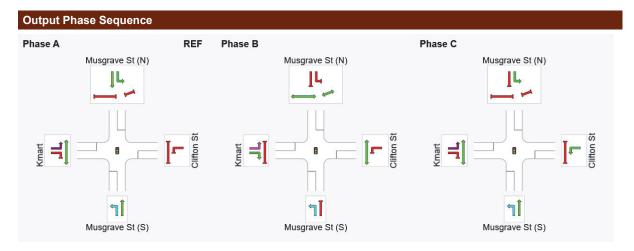
Site: 6 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave St/Kmart

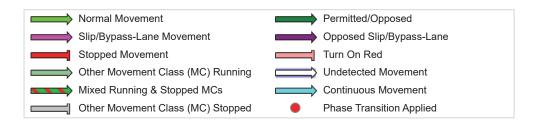
Saturday AM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	84	118
Green Time (sec)	78	28	6
Phase Time (sec)	84	34	12
Phase Split	65%	26%	9%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:40 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

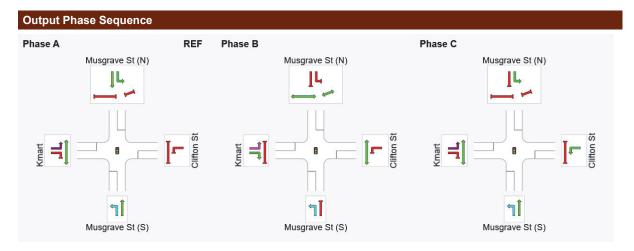
Site: 6 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

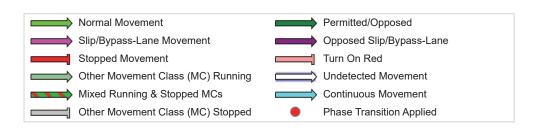
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:41 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave Rd.sip9

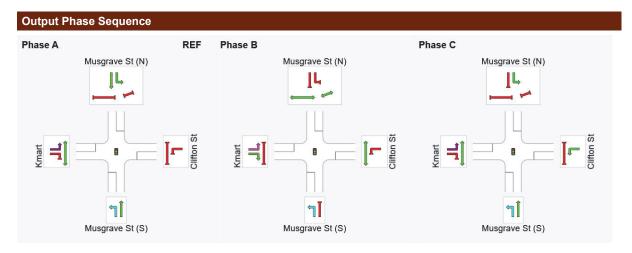
Site: 6 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

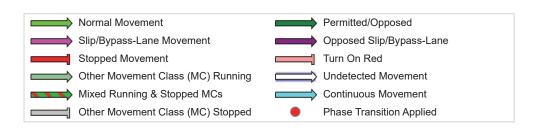
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:42 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

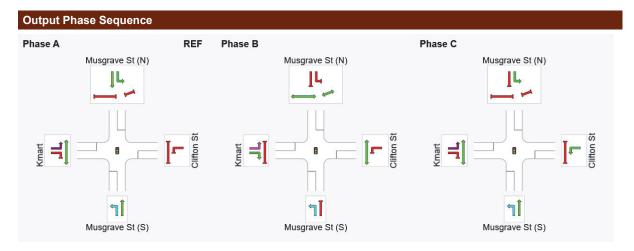
Site: 6 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:42 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

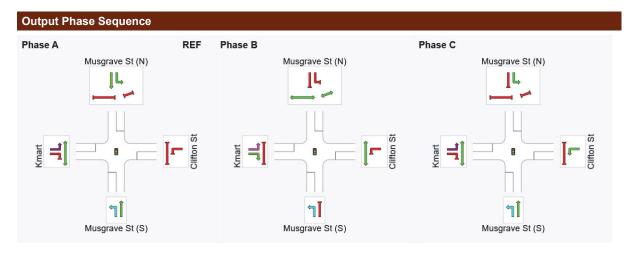
Site: 6 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

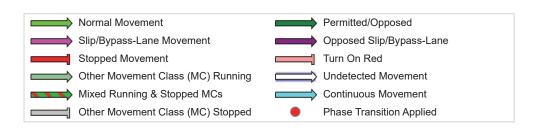
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:43 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave Rd.sip9

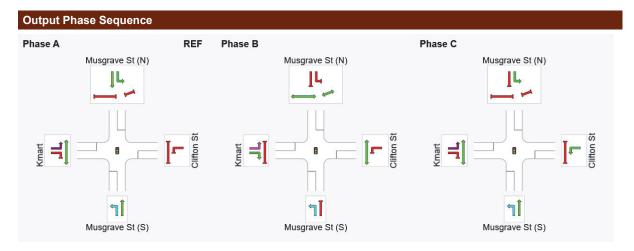
Site: 6 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:44 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

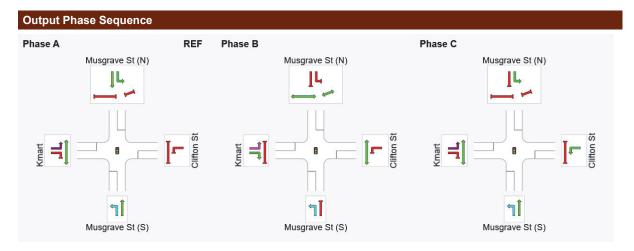
Site: 6 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

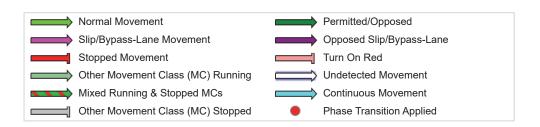
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:44 AM

Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

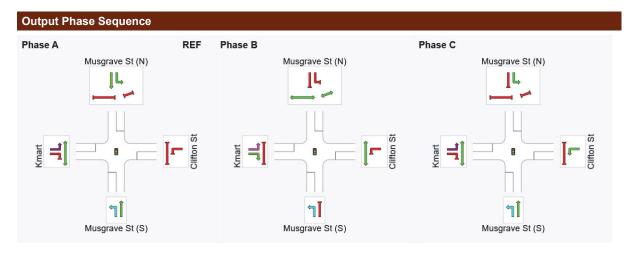
Site: 6 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave St/Kmart

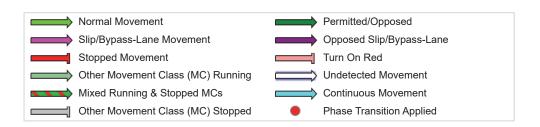
Thursday PM Peak Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Diamond 1 Reference Phase: Phase A Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	0	83	117
Green Time (sec)	77	28	7
Phase Time (sec)	83	34	13
Phase Split	64%	26%	10%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 9:43:45 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\3) Clifton-Musgrave
Rd.sip9

Site: 2 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_			_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	227	2.0	227	2.0	0.124	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	675	1.0	675	1.0	* 0.664	43.6	LOS D	11.8	71.5	0.93	0.77	0.93	21.6
3	R2	124	0.0	124	0.0	* 0.657	46.1	LOS D	10.9	65.6	0.90	0.82	0.91	22.3
3u	U	90	0.0	90	0.0	0.657	47.6	LOS D	10.9	65.6	0.90	0.82	0.91	24.5
Appr	oach	1116	1.0	1116	1.0	0.664	36.6	LOS C	11.8	71.5	0.74	0.73	0.74	25.1
East	High	Street (E)												
4	L2	47	0.0	47	0.0	0.545	48.6	LOS D	12.7	77.6	0.93	0.79	0.93	23.2
5	T1	200	2.0	200	2.0	0.545	43.1	LOS D	12.7	77.6	0.93	0.79	0.93	20.5
6	R2	211	0.0	211	0.0	* 0.649	56.2	LOS D	11.7	70.4	0.98	0.83	0.99	15.4
Appr	oach	458	0.9	458	0.9	0.649	49.7	LOS D	12.7	77.6	0.95	0.81	0.95	18.3
North	n: Mus	grave Stre	eet (N)											
7	L2	123	0.0	123	0.0	0.497	53.4	LOS D	6.5	38.8	0.92	0.78	0.92	15.5
8	T1	563	1.0	563	1.0	0.554	42.5	LOS C	9.4	57.2	0.89	0.73	0.89	22.0
9	R2	50	4.0	50	4.0	0.329	43.1	LOS D	4.6	28.1	0.79	0.76	0.79	17.5
9u	U	53	0.0	53	0.0	0.329	44.5	LOS D	4.6	28.1	0.79	0.76	0.79	15.3
Appr	oach	789	1.0	789	1.0	0.554	44.4	LOS D	9.4	57.2	0.88	0.74	0.88	20.2
West	t: High	Street (W	/)											
10	L2	64	2.0	64	2.0	0.646	40.5	LOS C	13.9	84.3	0.86	0.75	0.86	20.0
11	T1	227	1.0	227	1.0	* 0.646	35.0	LOS C	13.9	84.3	0.86	0.75	0.86	23.3
12	R2	298	2.0	298	2.0	0.465	47.4	LOS D	7.3	44.5	0.86	0.78	0.86	21.9
Appr	oach	589	1.6	589	1.6	0.646	41.9	LOS C	13.9	84.3	0.86	0.76	0.86	22.2
All Vehic	cles	2952	1.1	2952	1.1	0.664	41.7	LOSC	13.9	84.3	0.83	0.75	0.84	22.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	orman	се							
Mov	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist.	Speed
	ped/h	ped/h	sec		ped	m [*]			sec	m	m/sec
South: Musgr	ave Stre	et (S)									
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High St	reet (E)										

P2 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	79.9	37.0	0.46
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	reet (W)										
P4 Full	50	50	52.4	LOS E	0.2	0.2	0.94	0.94	82.4	39.0	0.47
All Pedestrians	200	200	53.1	LOS E	0.2	0.2	0.94	0.94	87.7	45.0	0.51

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:22 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance	_				_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	231	2.0	231	2.0	0.126	6.1	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	688	1.0	688	1.0	* 0.676	43.8	LOS D	12.1	73.4	0.93	0.78	0.94	21.6
3	R2	126	0.0	126	0.0	* 0.669	46.4	LOS D	11.2	67.4	0.91	0.82	0.92	22.2
3u	U	92	0.0	92	0.0	0.669	47.8	LOS D	11.2	67.4	0.91	0.82	0.92	24.5
Appr	oach	1137	1.0	1137	1.0	0.676	36.7	LOS C	12.1	73.4	0.74	0.74	0.75	25.0
East	High :	Street (E)												
4	L2	48	0.0	48	0.0	0.554	48.7	LOS D	13.0	79.0	0.93	0.79	0.93	23.2
5	T1	203	2.0	203	2.0	0.554	43.2	LOS D	13.0	79.0	0.93	0.79	0.93	20.5
6	R2	215	0.0	215	0.0	* 0.662	56.5	LOS E	12.0	72.2	0.99	0.83	1.00	15.3
Appr	oach	466	0.9	466	0.9	0.662	49.9	LOS D	13.0	79.0	0.96	0.81	0.96	18.2
North	n: Mus	grave Stre	eet (N)											
7	L2	125	0.0	125	0.0	0.505	53.5	LOS D	6.6	39.5	0.92	0.78	0.92	15.5
8	T1	574	1.0	574	1.0	0.564	42.6	LOS D	9.7	58.5	0.90	0.74	0.90	22.0
9	R2	51	4.0	51	4.0	0.335	43.2	LOS D	4.7	28.7	0.79	0.76	0.79	17.5
9u	U	54	0.0	54	0.0	0.335	44.5	LOS D	4.7	28.7	0.79	0.76	0.79	15.3
Appr	oach	804	1.0	804	1.0	0.564	44.4	LOS D	9.7	58.5	0.89	0.75	0.89	20.2
West	:: High	Street (W	/)											
10	L2	65	2.0	65	2.0	0.657	40.6	LOS C	14.2	86.2	0.86	0.75	0.86	20.0
11	T1	231	1.0	231	1.0	* 0.657	35.1	LOS C	14.2	86.2	0.86	0.75	0.86	23.2
12	R2	304	2.0	304	2.0	0.474	47.5	LOS D	7.4	45.6	0.87	0.78	0.87	21.9
Appr	oach	600	1.6	600	1.6	0.657	42.0	LOS C	14.2	86.2	0.87	0.77	0.87	22.2
All Vehic	cles	3007	1.1	3007	1.1	0.676	41.9	LOS C	14.2	86.2	0.84	0.76	0.84	22.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE Que		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		m/sec
South: Musgra	ave Stre	et (S)									
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High Str	eet (E)										

P2 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	79.9	37.0	0.46
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	reet (W)										
P4 Full	50	50	52.4	LOS E	0.2	0.2	0.94	0.94	82.4	39.0	0.47
All Pedestrians	200	200	53.1	LOS E	0.2	0.2	0.94	0.94	87.7	45.0	0.51

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:24 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	MES HV1	FLO	WS HV]	Satn	Delay	Service	QUE [Veh.		Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	242	2.0	242	2.0	0.132	6.2	LOSA	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	738	1.0	738	1.0	* 0.693	42.9	LOS D	13.0	78.6	0.93	0.79	0.95	21.9
3	R2	126	0.0	126	0.0	* 0.699	48.0	LOS D	11.5	69.2	0.93	0.83	0.95	21.8
3u	U	92	0.0	92	0.0	0.699	49.4	LOS D	11.5	69.2	0.93	0.83	0.95	24.0
Appr	oach	1198	1.0	1198	1.0	0.699	36.5	LOS C	13.0	78.6	0.74	0.74	0.76	25.1
East	: High :	Street (E)												
4	L2	48	0.0	48	0.0	0.575	49.0	LOS D	13.6	82.7	0.94	0.80	0.94	23.1
5	T1	213	2.0	213	2.0	0.575	43.5	LOS D	13.6	82.7	0.94	0.80	0.94	20.4
6	R2	230	0.0	230	0.0	* 0.708	57.8	LOS E	13.1	78.9	1.00	0.85	1.04	15.1
Appr	oach	491	0.9	491	0.9	0.708	50.7	LOS D	13.6	82.7	0.96	0.82	0.99	18.0
North	n: Mus	grave Stre	eet (N)											
7	L2	130	0.0	130	0.0	0.494	52.2	LOS D	6.7	40.5	0.91	0.78	0.91	15.8
8	T1	594	1.0	594	1.0	0.557	41.4	LOS C	9.8	59.7	0.88	0.73	0.88	22.4
9	R2	55	4.0	55	4.0	0.361	44.5	LOS D	5.0	30.6	0.81	0.77	0.81	17.1
9u	U	54	0.0	54	0.0	0.361	45.9	LOS D	5.0	30.6	0.81	0.77	0.81	15.0
Appr	oach	833	1.0	833	1.0	0.557	43.6	LOS D	9.8	59.7	0.88	0.74	0.88	20.4
West	t: High	Street (W	/)											
10	L2	68	2.0	68	2.0	0.688	41.0	LOS C	15.1	91.9	0.88	0.77	0.88	19.9
11	T1	242	1.0	242	1.0	* 0.688	35.4	LOS C	15.1	91.9	0.88	0.77	0.88	23.1
12	R2	316	2.0	316	2.0	0.493	47.7	LOS D	7.8	47.7	0.87	0.78	0.87	21.8
Appr	oach	626	1.6	626	1.6	0.688	42.2	LOS C	15.1	91.9	0.88	0.77	0.88	22.1
All Vehic	cles	3148	1.1	3148	1.1	0.708	41.7	LOS C	15.1	91.9	0.84	0.76	0.85	22.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE Que		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		m/sec
South: Musgra	ave Stre	et (S)									
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High Str	eet (E)										

P2 Full	50	50	50.5	LOS E	0.2	0.2	0.92	0.92	79.0	37.0	0.47
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	reet (W)										
P4 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	81.4	39.0	0.48
All Pedestrians	200	200	52.6	LOS E	0.2	0.2	0.94	0.94	87.2	45.0	0.52

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:24 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance					_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV 1	FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		veh/h	пv ј %	veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	th: Mus	grave Str	eet (S)											
1	L2	234	2.0	234	2.0	0.128	6.2	LOSA	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	700	1.0	700	1.0	* 0.688	44.0	LOS D	12.4	75.1	0.94	0.79	0.95	21.5
3	R2	126	0.0	126	0.0	* 0.669	46.4	LOS D	11.2	67.4	0.91	0.82	0.92	22.2
3u	U	92	0.0	92	0.0	0.669	47.8	LOS D	11.2	67.4	0.91	0.82	0.92	24.5
Appr	roach	1152	1.0	1152	1.0	0.688	36.9	LOS C	12.4	75.1	0.74	0.74	0.75	25.0
East	:: High	Street (E)												
4	L2	48	0.0	48	0.0	0.560	48.8	LOS D	13.1	80.1	0.93	0.79	0.93	23.2
5	T1	206	2.0	206	2.0	0.560	43.3	LOS D	13.1	80.1	0.93	0.79	0.93	20.4
6	R2	219	0.0	219	0.0	* 0.674	56.8	LOS E	12.3	73.9	0.99	0.84	1.01	15.3
Appr	roach	473	0.9	473	0.9	0.674	50.1	LOS D	13.1	80.1	0.96	0.81	0.97	18.2
Nort	h: Mus	grave Stre	eet (N)											
7	L2	126	0.0	126	0.0	0.509	53.5	LOS D	6.6	39.9	0.92	0.78	0.92	15.5
8	T1	579	1.0	579	1.0	0.569	42.6	LOS D	9.8	59.1	0.90	0.74	0.90	22.0
9	R2	52	4.0	52	4.0	0.338	43.2	LOS D	4.7	29.0	0.79	0.76	0.79	17.5
9u	U	54	0.0	54	0.0	0.338	44.5	LOS D	4.7	29.0	0.79	0.76	0.79	15.3
Appr	roach	811	1.0	811	1.0	0.569	44.5	LOS D	9.8	59.1	0.89	0.75	0.89	20.2
Wes	t: High	Street (W	/)											
10	L2	66	2.0	66	2.0	0.666	40.7	LOS C	14.5	87.8	0.87	0.76	0.87	19.9
11	T1	234	1.0	234	1.0	* 0.666	35.2	LOS C	14.5	87.8	0.87	0.76	0.87	23.2
12	R2	307	2.0	307	2.0	0.479	47.6	LOS D	7.5	46.1	0.87	0.78	0.87	21.9
Appı	roach	607	1.6	607	1.6	0.666	42.0	LOS C	14.5	87.8	0.87	0.77	0.87	22.1
All Vehi	cles	3043	1.1	3043	1.1	0.688	42.0	LOS C	14.5	87.8	0.84	0.76	0.84	22.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

ol. Flow	Delay			BACK OF	- гор. ст	fective	Travel	Travel	Aver.
	Delay	Service	QUE	UE	Que	Stop	Time	Dist.	Speed
			[Ped	Dist]		Rate			
d/h ped/h	sec		ped	m			sec	m	m/sec
Street (S)									
50 50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
	Street (S)	Street (S) 0 50 54.3	Street (S)	d/h ped/h sec ped Street (S)	d/h ped/h sec ped m Street (S)	d/h ped/h sec ped m Street (S)	d/h ped/h sec ped m Street (S)	d/h ped/h sec ped m sec Street (S)	d/h ped/h sec ped m sec m Street (S)

P2 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	79.9	37.0	0.46
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	eet (W)										
P4 Full	50	50	52.4	LOS E	0.2	0.2	0.94	0.94	82.4	39.0	0.47
All Pedestrians	200	200	53.1	LOS E	0.2	0.2	0.94	0.94	87.7	45.0	0.51

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:25 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_			_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	238	2.0	238	2.0	0.130	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	718	1.0	718	1.0	* 0.674	42.6	LOS D	12.5	75.7	0.93	0.78	0.93	22.0
3	R2	126	0.0	126	0.0	* 0.699	48.0	LOS D	11.5	69.2	0.93	0.83	0.95	21.8
3u	U	92	0.0	92	0.0	0.699	49.4	LOS D	11.5	69.2	0.93	0.83	0.95	24.0
Appr	oach	1174	1.0	1174	1.0	0.699	36.3	LOS C	12.5	75.7	0.74	0.74	0.75	25.2
East	: High \$	Street (E)												
4	L2	48	0.0	48	0.0	0.566	48.9	LOS D	13.3	81.2	0.93	0.79	0.93	23.1
5	T1	209	2.0	209	2.0	0.566	43.3	LOS D	13.3	81.2	0.93	0.79	0.93	20.4
6	R2	224	0.0	224	0.0	* 0.689	57.2	LOS E	12.7	76.1	0.99	0.84	1.02	15.2
Appr	oach	481	0.9	481	0.9	0.689	50.4	LOS D	13.3	81.2	0.96	0.82	0.98	18.1
North	h: Mus	grave Str	eet (N)											
7	L2	128	0.0	128	0.0	0.487	52.2	LOS D	6.6	39.8	0.91	0.78	0.91	15.8
8	T1	584	1.0	584	1.0	0.548	41.3	LOS C	9.6	58.5	0.88	0.73	0.88	22.4
9	R2	53	4.0	53	4.0	0.355	44.5	LOS D	4.9	30.0	0.81	0.77	0.81	17.1
9u	U	54	0.0	54	0.0	0.355	45.8	LOS D	4.9	30.0	0.81	0.77	0.81	15.0
Appr	oach	819	1.0	819	1.0	0.548	43.5	LOS D	9.6	58.5	0.88	0.74	0.88	20.5
Wes	t: High	Street (W	/)											
10	L2	67	2.0	67	2.0	0.679	40.9	LOS C	14.9	90.3	0.87	0.76	0.87	19.9
11	T1	239	1.0	239	1.0	* 0.679	35.3	LOS C	14.9	90.3	0.87	0.76	0.87	23.1
12	R2	313	2.0	313	2.0	0.488	47.6	LOS D	7.7	47.2	0.87	0.78	0.87	21.8
Appr	oach	619	1.6	619	1.6	0.679	42.1	LOS C	14.9	90.3	0.87	0.77	0.87	22.1
All Vehic	cles	3093	1.1	3093	1.1	0.699	41.6	LOS C	14.9	90.3	0.84	0.76	0.84	22.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE		Prop. Et Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
South: Musgra	ave Stre	et (S)			<u> </u>						
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High Str	eet (E)										

P2 Full	50	50	50.5	LOS E	0.2	0.2	0.92	0.92	79.0	37.0	0.47
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	eet (W)										
P4 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	81.4	39.0	0.48
All Pedestrians	200	200	52.6	LOS E	0.2	0.2	0.94	0.94	87.2	45.0	0.52

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:25 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	253	2.0	253	2.0	0.138	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	752	1.0	752	1.0	* 0.739	45.0	LOS D	13.7	82.9	0.96	0.82	0.99	21.2
3	R2	138	0.0	138	0.0	* 0.734	47.7	LOS D	12.8	76.9	0.94	0.84	0.97	21.8
3u	U	101	0.0	101	0.0	0.734	49.2	LOS D	12.8	76.9	0.94	0.84	0.97	24.1
Appr	oach	1244	1.0	1244	1.0	0.739	37.7	LOS C	13.7	82.9	0.76	0.76	0.79	24.7
East	: High :	Street (E)												
4	L2	53	0.0	53	0.0	0.607	49.4	LOS D	14.4	87.9	0.94	0.81	0.94	23.0
5	T1	222	2.0	222	2.0	0.607	43.9	LOS D	14.4	87.9	0.94	0.81	0.94	20.3
6	R2	235	0.0	235	0.0	* 0.723	58.3	LOS E	13.5	81.3	1.00	0.86	1.06	15.0
Appr	oach	510	0.9	510	0.9	0.723	51.1	LOS D	14.4	87.9	0.97	0.83	1.00	17.9
North	n: Mus	grave Stre	eet (N)											
7	L2	137	0.0	137	0.0	0.553	53.9	LOS D	7.3	43.9	0.93	0.79	0.93	15.4
8	T1	627	1.0	627	1.0	0.616	43.0	LOS D	10.8	65.2	0.91	0.75	0.91	21.8
9	R2	56	4.0	56	4.0	0.367	43.5	LOS D	5.2	31.8	0.80	0.77	0.80	17.4
9u	U	59	0.0	59	0.0	0.367	44.8	LOS D	5.2	31.8	0.80	0.77	0.80	15.3
Appr	oach	879	1.0	879	1.0	0.616	44.9	LOS D	10.8	65.2	0.90	0.76	0.90	20.1
West	t: High	Street (W	/)											
10	L2	71	2.0	71	2.0	0.719	41.6	LOS C	16.2	98.4	0.90	0.79	0.91	19.6
11	T1	253	1.0	253	1.0	* 0.719	36.1	LOS C	16.2	98.4	0.90	0.79	0.91	22.8
12	R2	332	2.0	332	2.0	0.518	47.9	LOS D	8.3	50.6	0.88	0.78	0.88	21.8
Appr	oach	656	1.6	656	1.6	0.719	42.7	LOS D	16.2	98.4	0.89	0.79	0.89	21.9
All Vehic	cles	3289	1.1	3289	1.1	0.739	42.7	LOS D	16.2	98.4	0.85	0.78	0.87	21.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist.	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Stre	et (S)									
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High Str	eet (E)										

P2 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	79.9	37.0	0.46
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	eet (W)										
P4 Full	50	50	52.4	LOS E	0.2	0.2	0.94	0.94	82.4	39.0	0.47
All Pedestrians	200	200	53.1	LOS E	0.2	0.2	0.94	0.94	87.7	45.0	0.51

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:26 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance	_				_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Mus	grave Str	eet (S)											
1	L2	260	2.0	260	2.0	0.142	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.7
2	T1	782	1.0	782	1.0	* 0.734	43.8	LOS D	14.1	85.2	0.95	0.81	0.98	21.6
3	R2	138	0.0	138	0.0	* 0.766	49.7	LOS D	13.2	79.2	0.96	0.85	1.01	21.3
3u	U	101	0.0	101	0.0	0.766	51.1	LOS D	13.2	79.2	0.96	0.85	1.01	23.5
Appr	oach	1281	1.0	1281	1.0	0.766	37.4	LOS C	14.1	85.2	0.76	0.76	0.79	24.8
East:	High	Street (E)												
4	L2	53	0.0	53	0.0	0.620	49.6	LOS D	14.8	90.2	0.95	0.81	0.95	22.9
5	T1	228	2.0	228	2.0	0.620	44.0	LOS D	14.8	90.2	0.95	0.81	0.95	20.2
6	R2	244	0.0	244	0.0	* 0.751	59.3	LOS E	14.3	85.7	1.00	0.87	1.08	14.8
Appr	oach	525	0.9	525	0.9	0.751	51.7	LOS D	14.8	90.2	0.97	0.84	1.01	17.8
North	n: Mus	grave Stre	eet (N)											
7	L2	139	0.0	139	0.0	0.528	52.5	LOS D	7.3	43.7	0.92	0.79	0.92	15.7
8	T1	638	1.0	638	1.0	0.599	41.8	LOS C	10.7	65.1	0.90	0.74	0.90	22.2
9	R2	58	4.0	58	4.0	0.389	44.8	LOS D	5.4	33.2	0.82	0.77	0.82	17.1
9u	U	59	0.0	59	0.0	0.389	46.1	LOS D	5.4	33.2	0.82	0.77	0.82	14.9
Appr	oach	894	1.0	894	1.0	0.599	43.9	LOS D	10.7	65.1	0.89	0.75	0.89	20.3
West	:: High	Street (W	/)											
10	L2	73	2.0	73	2.0	0.741	42.2	LOS C	17.0	103.3	0.91	0.80	0.93	19.4
11	T1	261	1.0	261	1.0	* 0.741	36.6	LOS C	17.0	103.3	0.91	0.80	0.93	22.6
12	R2	341	2.0	341	2.0	0.532	48.0	LOS D	8.5	52.2	0.88	0.79	0.88	21.7
Appr	oach	675	1.6	675	1.6	0.741	43.0	LOS D	17.0	103.3	0.90	0.79	0.91	21.8
All Vehic	cles	3375	1.1	3375	1.1	0.766	42.4	LOS C	17.0	103.3	0.85	0.78	0.87	21.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE Que		Prop. Ef Que	fective Stop	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec		m/sec
South: Musgrave Street (S)											
P1 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
East: High Str	eet (E)										

P2 Full	50	50	50.5	LOS E	0.2	0.2	0.92	0.92	79.0	37.0	0.47
North: Musgra	ve Street	(N)									
P3 Full	50	50	54.3	LOS E	0.2	0.2	0.95	0.95	94.3	52.0	0.55
West: High Str	reet (W)										
P4 Full	50	50	51.4	LOS E	0.2	0.2	0.93	0.93	81.4	39.0	0.48
All Pedestrians	200	200	52.6	LOS E	0.2	0.2	0.94	0.94	87.2	45.0	0.52

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:27 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEM.		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	234	4.0	234	4.0	0.130	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	773	0.0	773	0.0	* 0.786	50.4	LOS D	15.8	94.5	0.98	0.85	1.03	19.7
3	R2	184	2.0	184	2.0	* 0.760	43.4	LOS D	17.7	107.1	0.90	0.85	0.93	23.1
3u	U	137	0.0	137	0.0	0.760	44.8	LOS D	17.7	107.1	0.90	0.85	0.93	25.4
Appr	oach	1328	1.0	1328	1.0	0.786	41.1	LOS C	17.7	107.1	0.79	0.79	0.82	23.5
East	: High :	Street (E)												
4	L2	33	0.0	33	0.0	0.596	54.6	LOS D	14.5	88.7	0.95	0.80	0.95	21.6
5	T1	221	2.0	221	2.0	0.596	49.0	LOS D	14.5	88.7	0.95	0.80	0.95	19.0
6	R2	217	0.0	217	0.0	* 0.760	65.9	LOS E	13.9	83.5	1.00	0.87	1.10	13.7
Appr	oach	471	0.9	471	0.9	0.760	57.2	LOS E	14.5	88.7	0.97	0.84	1.02	16.5
North	n: Mus	grave Stre	eet (N)											
7	L2	106	0.0	106	0.0	0.436	57.2	LOS E	5.9	35.7	0.91	0.77	0.91	14.8
8	T1	462	2.0	462	2.0	0.473	46.0	LOS D	8.2	50.2	0.87	0.71	0.87	20.9
9	R2	43	17.0	43	17.0	0.173	36.3	LOS C	2.7	18.0	0.64	0.72	0.64	19.2
9u	U	27	0.0	27	0.0	0.173	37.5	LOS C	2.7	18.0	0.64	0.72	0.64	17.3
Appr	oach	638	2.6	638	2.6	0.473	46.8	LOS D	8.2	50.2	0.85	0.72	0.85	19.6
West	t: High	Street (W	/)											
10	L2	40	3.0	40	3.0	0.731	47.2	LOS D	17.3	105.9	0.92	0.80	0.93	18.1
11	T1	271	2.0	271	2.0	* 0.731	41.6	LOS C	17.3	105.9	0.92	0.80	0.93	21.1
12	R2	278	2.0	278	2.0	0.493	54.2	LOS D	7.6	46.8	0.90	0.78	0.90	20.1
Appr	oach	589	2.1	589	2.1	0.731	47.9	LOS D	17.3	105.9	0.91	0.79	0.92	20.4
All Vehic	cles	3026	1.5	3026	1.5	0.786	46.1	LOS D	17.7	107.1	0.85	0.78	0.88	20.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance														
Mov	Input	Dem.	Aver.	Level of AVERAGE BACK OF			Prop. Et	fective	Travel	Travel	Aver.				
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed				
	ped/h	ped/h	sec		ped				sec		m/sec				
South: Musgr	ave Stre	et (S)													
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52				
East: High St	reet (E)														

P2 Full	50	50	55.5	LOS E	0.2	0.2	0.93	0.93	84.0	37.0	0.44
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	56.4	LOS E	0.2	0.2	0.93	0.93	86.4	39.0	0.45
All Pedestrians	200	200	57.6	LOS E	0.2	0.2	0.94	0.94	92.2	45.0	0.49

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:27 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Mus	grave Str	eet (S)											
1	L2	239	4.0	239	4.0	0.132	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	788	0.0	788	0.0	*0.803	51.0	LOS D	16.3	97.7	0.98	0.86	1.05	19.5
3	R2	187	2.0	187	2.0	* 0.772	43.8	LOS D	18.1	110.1	0.91	0.85	0.94	22.9
3u	U	139	0.0	139	0.0	0.772	45.2	LOS D	18.1	110.1	0.91	0.85	0.94	25.3
Appr	oach	1353	1.0	1353	1.0	0.803	41.5	LOS C	18.1	110.1	0.79	0.80	0.84	23.4
East:	High :	Street (E)												
4	L2	33	0.0	33	0.0	0.605	54.7	LOS D	14.8	90.3	0.95	0.81	0.95	21.6
5	T1	225	2.0	225	2.0	0.605	49.1	LOS D	14.8	90.3	0.95	0.81	0.95	18.9
6	R2	221	0.0	221	0.0	* 0.773	66.5	LOS E	14.3	85.7	1.00	0.88	1.11	13.6
Appr	oach	479	0.9	479	0.9	0.773	57.6	LOS E	14.8	90.3	0.97	0.84	1.03	16.4
North	n: Mus	grave Stre	eet (N)											
7	L2	108	0.0	108	0.0	0.445	57.2	LOS E	6.1	36.4	0.91	0.77	0.91	14.8
8	T1	471	2.0	471	2.0	0.482	46.0	LOS D	8.4	51.3	0.88	0.71	0.88	20.9
9	R2	44	17.0	44	17.0	0.178	36.3	LOS C	2.8	18.5	0.64	0.72	0.64	19.2
9u	U	28	0.0	28	0.0	0.178	37.6	LOS C	2.8	18.5	0.64	0.72	0.64	17.3
Appr	oach	651	2.6	651	2.6	0.482	46.9	LOS D	8.4	51.3	0.86	0.72	0.86	19.5
West	:: High	Street (W	/)											
10	L2	41	3.0	41	3.0	0.746	47.5	LOS D	17.8	109.1	0.93	0.81	0.95	18.0
11	T1	276	2.0	276	2.0	* 0.746	41.9	LOS C	17.8	109.1	0.93	0.81	0.95	21.0
12	R2	284	2.0	284	2.0	0.504	54.3	LOS D	7.8	48.0	0.90	0.78	0.90	20.1
Appr	oach	601	2.1	601	2.1	0.746	48.1	LOS D	17.8	109.1	0.91	0.80	0.92	20.3
All Vehic	cles	3084	1.5	3084	1.5	0.803	46.4	LOS D	18.1	110.1	0.86	0.79	0.89	20.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Pedestrian Movement Performance														
Mov _	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Effective		Travel	Travel	Aver.				
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed				
	ped/h	ped/h	sec		ped	m		. 15.15	sec	m	m/sec				
South: Musgr	ave Stre	et (S)													
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52				
East: High Str	reet (E)														

P2 Full	50	50	55.5	LOS E	0.2	0.2	0.93	0.93	84.0	37.0	0.44
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	56.4	LOS E	0.2	0.2	0.93	0.93	86.4	39.0	0.45
All Pedestrians	200	200	57.6	LOS E	0.2	0.2	0.94	0.94	92.2	45.0	0.49

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:28 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	h: Mus	grave Str	eet (S)											
1	L2	249	4.0	249	4.0	0.138	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	831	0.0	831	0.0	* 0.794	48.4	LOS D	17.3	103.5	0.96	0.85	1.02	20.2
3	R2	187	2.0	187	2.0	* 0.820	47.9	LOS D	19.4	117.5	0.95	0.88	1.02	21.7
3u	U	139	0.0	139	0.0	0.820	49.3	LOS D	19.4	117.5	0.95	0.88	1.02	24.0
Appr	oach	1406	1.0	1406	1.0	0.820	41.0	LOS C	19.4	117.5	0.79	0.80	0.84	23.5
East:	: High :	Street (E)												
4	L2	33	0.0	33	0.0	0.623	54.9	LOS D	15.3	93.6	0.96	0.81	0.96	21.5
5	T1	233	2.0	233	2.0	0.623	49.4	LOS D	15.3	93.6	0.96	0.81	0.96	18.9
6	R2	234	0.0	234	0.0	* 0.819	69.1	LOS E	15.6	93.5	1.00	0.91	1.17	13.2
Appr	oach	500	0.9	500	0.9	0.819	59.0	LOS E	15.6	93.6	0.98	0.86	1.06	16.1
North	n: Mus	grave Stre	eet (N)											
7	L2	112	0.0	112	0.0	0.413	54.5	LOS D	6.1	36.5	0.88	0.77	0.88	15.3
8	T1	489	2.0	489	2.0	0.459	43.6	LOS D	8.4	51.5	0.85	0.69	0.85	21.6
9	R2	47	17.0	47	17.0	0.197	38.5	LOS C	3.1	20.3	0.67	0.73	0.67	18.5
9u	U	28	0.0	28	0.0	0.197	39.8	LOS C	3.1	20.3	0.67	0.73	0.67	16.7
Appr	oach	676	2.6	676	2.6	0.459	44.9	LOS D	8.4	51.5	0.84	0.71	0.84	20.1
West	t: High	Street (W	/)											
10	L2	43	3.0	43	3.0	0.772	48.3	LOS D	18.8	115.3	0.94	0.83	0.97	17.8
11	T1	285	2.0	285	2.0	* 0.772	42.7	LOS D	18.8	115.3	0.94	0.83	0.97	20.8
12	R2	294	2.0	294	2.0	0.522	54.4	LOS D	8.2	49.9	0.90	0.78	0.90	20.1
Appr	oach	622	2.1	622	2.1	0.772	48.6	LOS D	18.8	115.3	0.92	0.81	0.94	20.2
All Vehic	cles	3204	1.5	3204	1.5	0.820	46.1	LOS D	19.4	117.5	0.85	0.79	0.89	20.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Pedestrian Movement Performance														
Mov	Input	Dem.	Aver.	Level of AVERAGE BACK OF			Prop. Et			Travel	Aver.				
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed				
	ped/h	ped/h	sec		ped	m			sec	m	m/sec				
South: Musgra	ave Stre	et (S)													
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52				
East: High Str	eet (E)														

P2 Full	50	50	53.7	LOS E	0.2	0.2	0.91	0.91	82.1	37.0	0.45
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	54.6	LOS E	0.2	0.2	0.92	0.92	84.6	39.0	0.46
All Pedestrians	200	200	56.7	LOS E	0.2	0.2	0.93	0.93	91.3	45.0	0.49

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:29 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

MOVEMENT SUMMARY

Site: 2 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_			_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	HV]	FLO	ws HV]	Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		11010		km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	241	4.0	241	4.0	0.133	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	798	0.0	798	0.0	* 0.778	49.1	LOS D	16.1	96.7	0.97	0.84	1.02	20.0
3	R2	187	2.0	187	2.0	* 0.795	45.7	LOS D	18.7	113.6	0.93	0.86	0.98	22.4
3u	U	139	0.0	139	0.0	0.795	47.1	LOS D	18.7	113.6	0.93	0.86	0.98	24.7
Appr	oach	1365	1.0	1365	1.0	0.795	40.9	LOS C	18.7	113.6	0.79	0.79	0.83	23.6
East	: High	Street (E)												
4	L2	33	0.0	33	0.0	0.610	54.7	LOS D	14.9	91.1	0.95	0.81	0.95	21.6
5	T1	227	2.0	227	2.0	0.610	49.2	LOS D	14.9	91.1	0.95	0.81	0.95	18.9
6	R2	225	0.0	225	0.0	* 0.787	67.2	LOS E	14.7	88.0	1.00	0.89	1.13	13.5
Appr	oach	485	0.9	485	0.9	0.787	57.9	LOS E	14.9	91.1	0.98	0.85	1.04	16.3
North	h: Mus	grave Stre	eet (N)											
7	L2	109	0.0	109	0.0	0.424	55.8	LOS D	6.0	36.1	0.89	0.77	0.89	15.0
8	T1	475	2.0	475	2.0	0.465	44.8	LOS D	8.3	50.8	0.86	0.70	0.86	21.3
9	R2	45	17.0	45	17.0	0.186	37.4	LOS C	2.9	19.3	0.66	0.73	0.66	18.9
9u	U	28	0.0	28	0.0	0.186	38.7	LOS C	2.9	19.3	0.66	0.73	0.66	17.0
Appr	oach	657	2.6	657	2.6	0.465	45.8	LOS D	8.3	50.8	0.84	0.72	0.84	19.8
Wes	t: High	Street (W	/)											
10	L2	41	3.0	41	3.0	0.750	47.6	LOS D	18.0	110.2	0.93	0.81	0.95	18.0
11	T1	278	2.0	278	2.0	* 0.750	42.1	LOS C	18.0	110.2	0.93	0.81	0.95	21.0
12	R2	286	2.0	286	2.0	0.508	54.3	LOS D	7.9	48.4	0.90	0.78	0.90	20.1
Appr	oach	605	2.1	605	2.1	0.750	48.2	LOS D	18.0	110.2	0.91	0.80	0.93	20.3
All Vehic	cles	3112	1.5	3112	1.5	0.795	46.0	LOS D	18.7	113.6	0.85	0.79	0.88	20.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Peri	forman	се							
Mov	Input	Dem.	Aver.	Level of A	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE		Que	Stop	Time	Dist. S	Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgr	ave Stre	et (S)									
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
East: High Str	reet (E)										

P2 Full	50	50	54.6	LOS E	0.2	0.2	0.92	0.92	83.0	37.0	0.45
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	55.5	LOS E	0.2	0.2	0.93	0.93	85.5	39.0	0.46
All Pedestrians	200	200	57.2	LOS E	0.2	0.2	0.94	0.94	91.8	45.0	0.49

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:29 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

MOVEMENT SUMMARY

Site: 2 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance		_								
Mov ID	Turn	INP VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
Sout	h: Mus	grave Str	eet (S)											
1	L2	248	4.0	248	4.0	0.137	6.2	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	814	0.0	814	0.0	* 0.809	50.0	LOS D	17.1	102.8	0.97	0.86	1.04	19.8
3	R2	187	2.0	187	2.0	* 0.795	45.7	LOS D	18.7	113.6	0.93	0.86	0.98	22.4
3u	U	139	0.0	139	0.0	0.795	47.1	LOS D	18.7	113.6	0.93	0.86	0.98	24.7
Appr	oach	1388	1.0	1388	1.0	0.809	41.3	LOS C	18.7	113.6	0.79	0.80	0.84	23.4
East	: High	Street (E))											
4	L2	33	0.0	33	0.0	0.623	54.9	LOS D	15.3	93.6	0.96	0.81	0.96	21.5
5	T1	233	2.0	233	2.0	0.623	49.4	LOS D	15.3	93.6	0.96	0.81	0.96	18.9
6	R2	229	0.0	229	0.0	* 0.802	68.0	LOS E	15.1	90.4	1.00	0.90	1.15	13.3
Appr	oach	495	0.9	495	0.9	0.802	58.4	LOS E	15.3	93.6	0.98	0.85	1.05	16.2
North	n: Mus	grave Str	eet (N)											
7	L2	110	0.0	110	0.0	0.428	55.9	LOS D	6.1	36.5	0.90	0.77	0.90	15.0
8	T1	480	2.0	480	2.0	0.470	44.8	LOS D	8.4	51.4	0.86	0.70	0.86	21.3
9	R2	46	17.0	46	17.0	0.189	37.4	LOS C	2.9	19.6	0.66	0.73	0.66	18.9
9u	U	28	0.0	28	0.0	0.189	38.7	LOS C	2.9	19.6	0.66	0.73	0.66	17.0
Appr	oach	664	2.6	664	2.6	0.470	45.9	LOS D	8.4	51.4	0.85	0.72	0.85	19.8
West	t: High	Street (W	/)											
10	L2	43	3.0	43	3.0	0.777	48.4	LOS D	19.0	116.4	0.94	0.83	0.97	17.7
11	T1	287	2.0	287	2.0	* 0.777	42.9	LOS D	19.0	116.4	0.94	0.83	0.97	20.7
12	R2	296	2.0	296	2.0	0.525	54.5	LOS D	8.2	50.3	0.91	0.79	0.91	20.1
Appr	oach	626	2.1	626	2.1	0.777	48.7	LOS D	19.0	116.4	0.92	0.81	0.94	20.2
All Vehic	cles	3173	1.5	3173	1.5	0.809	46.4	LOS D	19.0	116.4	0.86	0.79	0.89	20.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Peri	orman	се							
Mov _	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m		. 15.15	sec	m	m/sec
South: Musgr	ave Stre	et (S)									
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
East: High Str	reet (E)										

P2 Full	50	50	54.6	LOS E	0.2	0.2	0.92	0.92	83.0	37.0	0.45
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	55.5	LOS E	0.2	0.2	0.93	0.93	85.5	39.0	0.46
All Pedestrians	200	200	57.2	LOS E	0.2	0.2	0.94	0.94	91.8	45.0	0.49

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:30 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

MOVEMENT SUMMARY

Site: 2 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance		_								
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Soutl	h: Mus	grave Str	eet (S)											
1	L2	261	4.0	261	4.0	0.145	6.3	LOS A	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	861	0.0	861	0.0	* 0.875	53.4	LOS D	19.6	117.5	0.99	0.92	1.12	18.9
3	R2	205	2.0	205	2.0	* 0.871	50.2	LOS D	22.4	136.2	0.98	0.91	1.09	21.1
3u	U	152	0.0	152	0.0	0.871	51.6	LOS D	22.4	136.2	0.98	0.91	1.09	23.4
Appr	oach	1479	1.0	1479	1.0	0.875	44.5	LOS D	22.4	136.2	0.81	0.84	0.92	22.4
East:	High	Street (E)												
4	L2	36	0.0	36	0.0	0.661	55.4	LOS D	16.4	100.2	0.97	0.82	0.97	21.4
5	T1	246	2.0	246	2.0	0.661	49.9	LOS D	16.4	100.2	0.97	0.82	0.97	18.7
6	R2	242	0.0	242	0.0	* 0.847	71.3	LOS F	16.5	99.0	1.00	0.93	1.22	12.9
Appr	oach	524	0.9	524	0.9	0.847	60.2	LOS E	16.5	100.2	0.98	0.87	1.08	15.9
North	n: Mus	grave Stre	eet (N)											
7	L2	118	0.0	118	0.0	0.459	56.1	LOS D	6.6	39.5	0.90	0.78	0.90	15.0
8	T1	515	2.0	515	2.0	0.504	45.1	LOS D	9.1	55.9	0.87	0.72	0.87	21.2
9	R2	48	17.0	48	17.0	0.199	37.5	LOS C	3.1	20.7	0.66	0.73	0.66	18.8
9u	U	30	0.0	30	0.0	0.199	38.8	LOS C	3.1	20.7	0.66	0.73	0.66	16.9
Appr	oach	711	2.6	711	2.6	0.504	46.2	LOS D	9.1	55.9	0.86	0.73	0.86	19.8
West	:: High	Street (W	')											
10	L2	44	3.0	44	3.0	0.813	49.8	LOS D	20.6	126.0	0.96	0.86	1.02	17.4
11	T1	302	2.0	302	2.0	* 0.813	44.2	LOS D	20.6	126.0	0.96	0.86	1.02	20.3
12	R2	310	2.0	310	2.0	0.550	54.7	LOS D	8.7	53.1	0.91	0.79	0.91	20.0
Appr	oach	656	2.1	656	2.1	0.813	49.5	LOS D	20.6	126.0	0.94	0.83	0.97	20.0
All Vehic	cles	3370	1.5	3370	1.5	0.875	48.3	LOS D	22.4	136.2	0.87	0.82	0.94	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Movem	ent Perl	formand	се							
Mov	Input	Dem.	Aver.			BACK OF	Prop. Et			Travel	Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
South: Musgra	ave Stree	et (S)									
P1 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
East: High Str	eet (E)										

P2 Full	50	50	54.6	LOS E	0.2	0.2	0.92	0.92	83.0	37.0	0.45
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	55.5	LOS E	0.2	0.2	0.93	0.93	85.5	39.0	0.46
All Pedestrians	200	200	57.2	LOS E	0.2	0.2	0.94	0.94	91.8	45.0	0.49

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:31 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

MOVEMENT SUMMARY

Site: 2 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance					_					
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	JMES HV 1	FLO		Satn	Delay	Service		EUE Diet 1	Que	Stop		Speed
		t lotal veh/h	нv ј %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	th: Mus	grave Str	eet (S)											
1	L2	270	4.0	270	4.0	0.150	6.3	LOSA	0.0	0.0	0.00	0.53	0.00	49.4
2	T1	887	0.0	887	0.0	* 0.868	51.9	LOS D	20.0	120.3	0.98	0.91	1.11	19.3
3	R2	205	2.0	205	2.0	*0.898	54.0	LOS D	23.5	142.6	1.00	0.93	1.15	20.2
3u	U	152	0.0	152	0.0	0.898	55.4	LOS D	23.5	142.6	1.00	0.93	1.15	22.4
Appı	roach	1514	1.0	1514	1.0	0.898	44.4	LOS D	23.5	142.6	0.81	0.84	0.92	22.4
East	:: High	Street (E))											
4	L2	36	0.0	36	0.0	0.679	55.7	LOS D	17.0	103.6	0.97	0.83	0.97	21.3
5	T1	254	2.0	254	2.0	0.679	50.1	LOS D	17.0	103.6	0.97	0.83	0.97	18.7
6	R2	250	0.0	250	0.0	* 0.875	74.3	LOS F	17.6	105.3	1.00	0.96	1.27	12.5
Appr	roach	540	0.9	540	0.9	0.875	61.7	LOS E	17.6	105.3	0.99	0.89	1.11	15.6
Nort	h: Mus	grave Stre	eet (N)											
7	L2	120	0.0	120	0.0	0.442	54.8	LOS D	6.6	39.5	0.89	0.77	0.89	15.2
8	T1	524	2.0	524	2.0	0.491	43.9	LOS D	9.1	55.9	0.86	0.71	0.86	21.5
9	R2	51	17.0	51	17.0	0.213	38.7	LOS C	3.3	22.1	0.68	0.73	0.68	18.5
9u	U	30	0.0	30	0.0	0.213	39.9	LOS C	3.3	22.1	0.68	0.73	0.68	16.6
Appr	roach	725	2.6	725	2.6	0.491	45.2	LOS D	9.1	55.9	0.85	0.72	0.85	20.0
Wes	t: High	Street (W	/)											
10	L2	47	3.0	47	3.0	0.845	51.4	LOS D	22.0	134.8	0.98	0.90	1.06	17.0
11	T1	312	2.0	312	2.0	* 0.845	45.8	LOS D	22.0	134.8	0.98	0.90	1.06	19.8
12	R2	322	2.0	322	2.0	0.572	54.9	LOS D	9.1	55.6	0.92	0.79	0.92	20.0
Appı	roach	681	2.1	681	2.1	0.845	50.5	LOS D	22.0	134.8	0.95	0.85	0.99	19.7
All Vehi	cles	3460	1.5	3460	1.5	0.898	48.5	LOS D	23.5	142.6	0.87	0.83	0.95	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Critical Movement (Signal Timing)

	Dem.	Aver.	Level of A	VERAGE E	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.
Vol.	Flow	Delay	Service	QUE	UE	Que	Stop	Time	Dist. S	Speed
				[Ped	Dist]		Rate			
oed/h	ped/h	sec		ped	m			sec	m	m/sec
e Street	(S)									
50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
)	ed/h e Street	ed/h ped/h e Street (S)	e Street (S)	ed/h ped/h sec e Street (S)	[Ped ed/h ped/h sec ped e Street (S)	[Ped Dist] ed/h ped/h sec ped m e Street (S)	[Ped Dist] ed/h ped/h sec ped m e Street (S)	[Ped Dist] Rate ed/h ped/h sec ped m	[Ped Dist] Rate ed/h ped/h sec ped m sec e Street (S)	[Ped Dist] Rate ed/h ped/h sec ped m sec m e Street (S)

P2 Full	50	50	53.7	LOS E	0.2	0.2	0.91	0.91	82.1	37.0	0.45
North: Musgra	ve Street	(N)									
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	99.3	52.0	0.52
West: High Str	reet (W)										
P4 Full	50	50	54.6	LOS E	0.2	0.2	0.92	0.92	84.6	39.0	0.46
All Pedestrians	200	200	56.7	LOS E	0.2	0.2	0.93	0.93	91.3	45.0	0.49

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:31 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

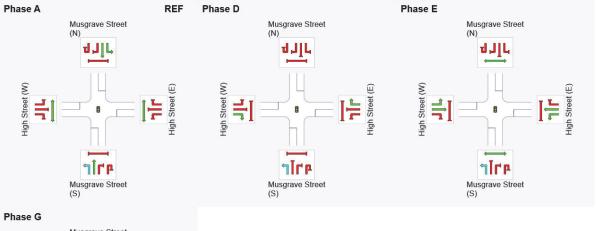
Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	0	27	54	90
Green Time (sec)	21	21	30	24
Phase Time (sec)	27	27	36	30
Phase Split	23%	23%	30%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

Musgrave Street
(N)

Musgrave Street
(N)

Musgrave Street
(S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:22 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

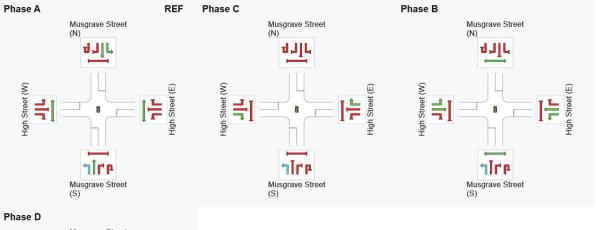
Saturday AM

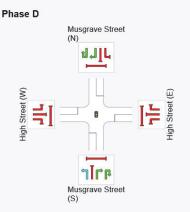
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	27	54	90
Green Time (sec)	21	21	30	24
Phase Time (sec)	27	27	36	30
Phase Split	23%	23%	30%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:24 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

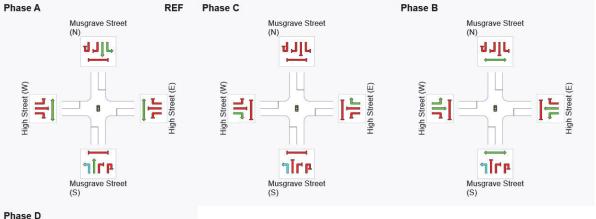
Saturday AM

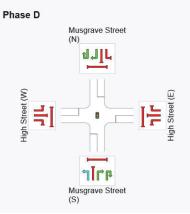
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	28	55	91
Green Time (sec)	22	21	30	23
Phase Time (sec)	28	27	36	29
Phase Split	23%	23%	30%	24%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:24 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

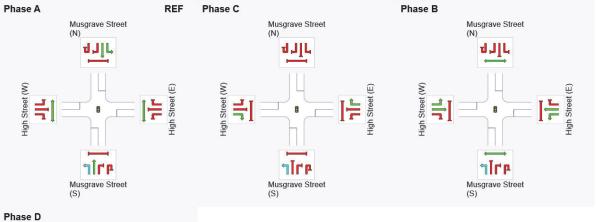
Saturday AM

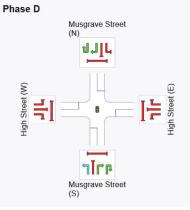
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	27	54	90
Green Time (sec)	21	21	30	24
Phase Time (sec)	27	27	36	30
Phase Split	23%	23%	30%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:25 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

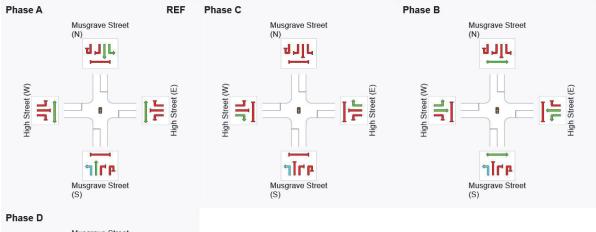
Saturday AM

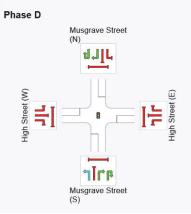
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	28	55	91
Green Time (sec)	22	21	30	23
Phase Time (sec)	28	27	36	29
Phase Split	23%	23%	30%	24%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:25 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

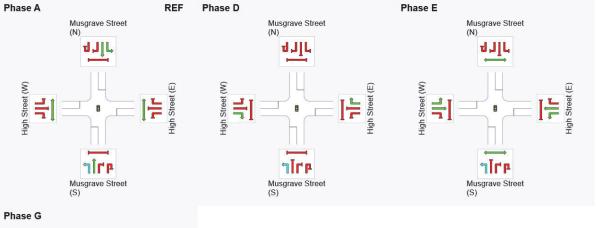
Saturday AM

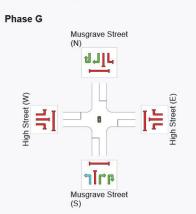
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G


Phase Timing Summary

Phase	Α	D	E	G
Phase Change Time (sec)	0	27	54	90
Green Time (sec)	21	21	30	24
Phase Time (sec)	27	27	36	30
Phase Split	23%	23%	30%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:26 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Musgrave Street/High Street

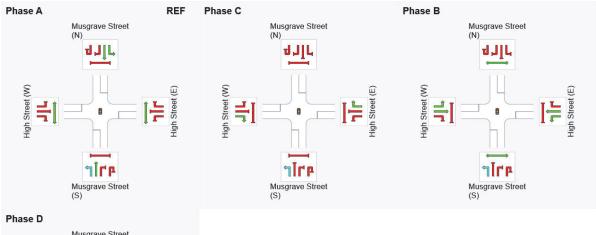
Saturday AM

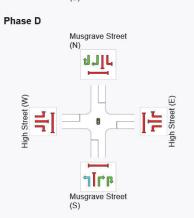
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	28	55	91
Green Time (sec)	22	21	30	23
Phase Time (sec)	28	27	36	29
Phase Split	23%	23%	30%	24%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:27 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

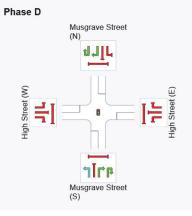
Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D

Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	28	54	90
Green Time (sec)	22	20	30	34
Phase Time (sec)	28	26	36	40
Phase Split	22%	20%	28%	31%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A REF Phase C Musgrave Street (N) Musgrave Street (N) Musgrave Street (N) Musgrave Street (S) Musgrave Street (S) Musgrave Street (S) Phase B

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:27 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Musgrave Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D

Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	28	54	90
Green Time (sec)	22	20	30	34
Phase Time (sec)	28	26	36	40
Phase Split	22%	20%	28%	31%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence Phase A REF Phase C Musgrave Street (N) Musgrave Street (N) Musgrave Street (S) Phase B Musgrave Street (N) Musgrave Street (S) Musgrave Street (S) Musgrave Street (S) Phase D

REF: Reference Phase VAR: Variable Phase

Musgrave Street

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:28 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

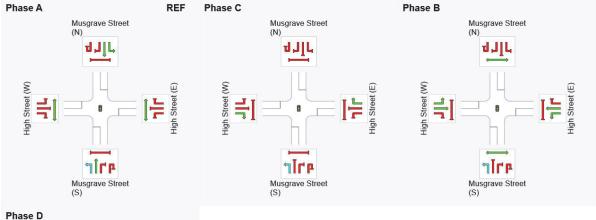
Intersection: Musgrave Street/High Street

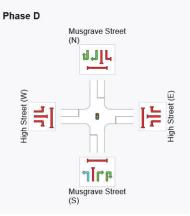
Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	30	56	92
Green Time (sec)	24	20	30	32
Phase Time (sec)	30	26	36	38
Phase Split	23%	20%	28%	29%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:29 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

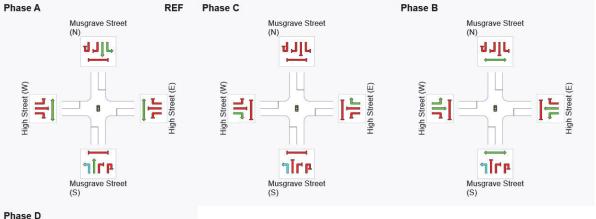
Intersection: Musgrave Street/High Street

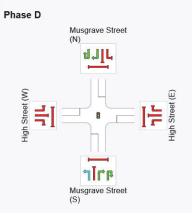
Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	29	55	91
Green Time (sec)	23	20	30	33
Phase Time (sec)	29	26	36	39
Phase Split	22%	20%	28%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:29 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

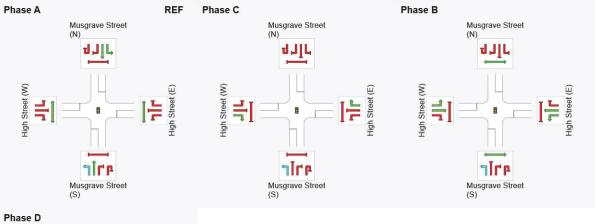
Intersection: Musgrave Street/High Street

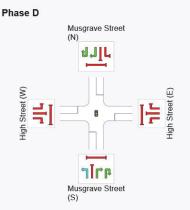
Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	29	55	91
Green Time (sec)	23	20	30	33
Phase Time (sec)	29	26	36	39
Phase Split	22%	20%	28%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:30 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

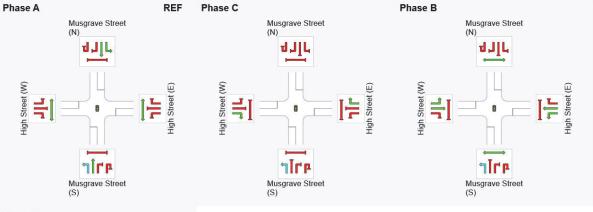
Intersection: Musgrave Street/High Street

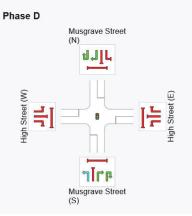
Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	29	55	91
Green Time (sec)	23	20	30	33
Phase Time (sec)	29	26	36	39
Phase Split	22%	20%	28%	30%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:31 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 2 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

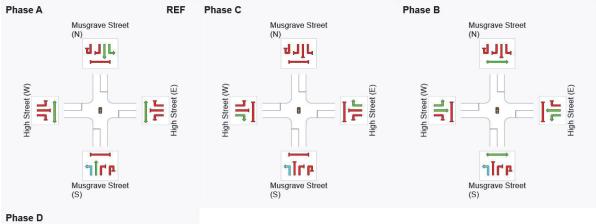
Intersection: Musgrave Street/High Street

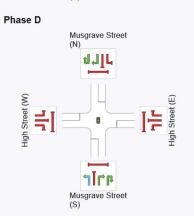
Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program


Phase Sequence: Two-phase Reference Phase: Phase A Input Phase Sequence: A, C, B, D Output Phase Sequence: A, C, B, D


Phase Timing Summary

Phase	Α	С	В	D
Phase Change Time (sec)	0	30	56	92
Green Time (sec)	24	20	30	32
Phase Time (sec)	30	26	36	38
Phase Split	23%	20%	28%	29%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:02:31 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\5) Musgrave Rd-High St.sip9

Site: 5 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Nov Turn INPUT VOLUMES FLOWS Satin Deg. Satin Delay Service Satin Delay Service Satin Delay Service Satin Delay Service Satin Delay Service Satin Delay Service Sec Stop No. Speed Rate Cycles No. Speed Cycles No. Speed Rate Cycles No. Speed Cycles No. Speed Rate Cycles No. Speed Cycles No. No. Speed Cycles No. No. Speed Cycles No. No. Speed Cycles No. No. Speed Cycles No. No. Speed Cycles No. No. Speed Cycles No. No	Vehi	cle M	ovemen	t Perfo	rmance										
East: High Street (E) 5		Turn	VOLU [Total	MES HV]	FLO [Total	WS HV]	Satn	Delay		QUE [Veh.	EUE Dist]		Stop	No.	Speed
6 R2 122 7.0 122 7.0 *0.241 16.1 LOS B 2.2 13.9 0.50 0.69 0.50 26.6 Approach 477 2.5 477 2.5 0.349 6.4 LOS A 2.5 15.0 0.27 0.30 0.27 44.8 North: Site Access 7 L2 108 0.0 108 0.0 0.101 10.1 LOS A 1.9 11.3 0.48 0.55 0.48 28.2 9 R2 240 0.0 240 0.0 *0.398 24.7 LOS B 7.3 44.1 0.82 0.75 0.82 21.1 Approach 348 0.0 348 0.0 0.398 20.2 LOS B 7.3 44.1 0.71 0.69 0.71 22.7 West: High Street (W) 10 L2 221 0.0 221 0.0 0.170 6.5 LOS A 1.1 6.9 0.23 0.62 0.23 41.2 11 T1 450 0.0 450 0.0 *0.420 26.0 LOS B 7.3 43.9 0.87 0.72 0.87 28.0 Approach 671 0.0 671 0.0 0.420 19.6 LOS B 7.3 43.9 0.66 0.69 0.66 30.6 All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9	East:	High	Street (E)												
7 L2 108 0.0 108 0.0 0.101 10.1 LOS A 1.9 11.3 0.48 0.55 0.48 28.2 9 R2 240 0.0 240 0.0 *0.398 24.7 LOS B 7.3 44.1 0.82 0.75 0.82 21.1 Approach 348 0.0 348 0.0 0.398 20.2 LOS B 7.3 44.1 0.71 0.69 0.71 22.7 West: High Street (W) 10 L2 221 0.0 221 0.0 0.170 6.5 LOS A 1.1 6.9 0.23 0.62 0.23 41.2 11 T1 450 0.0 450 0.0 *0.420 26.0 LOS B 7.3 43.9 0.87 0.72 0.87 28.0 Approach 671 0.0 671 0.0 0.420 19.6 LOS B 7.3 43.9 0.66 0.69 0.66 30.6 All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9	6	R2	122	7.0	122	7.0	* 0.241	16.1	LOS B	2.2	13.9	0.50	0.69	0.50	26.6
9 R2 240 0.0 240 0.0 *0.398 24.7 LOS B 7.3 44.1 0.82 0.75 0.82 21.1 Approach 348 0.0 348 0.0 0.398 20.2 LOS B 7.3 44.1 0.71 0.69 0.71 22.7 West: High Street (W) 10 L2 221 0.0 221 0.0 0.170 6.5 LOS A 1.1 6.9 0.23 0.62 0.23 41.2 11 T1 450 0.0 450 0.0 *0.420 26.0 LOS B 7.3 43.9 0.87 0.72 0.87 28.0 Approach 671 0.0 671 0.0 0.420 19.6 LOS B 7.3 43.9 0.66 0.69 0.66 30.6 All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9	North	: Site	Access												
10 L2 221 0.0 221 0.0 0.170 6.5 LOS A 1.1 6.9 0.23 0.62 0.23 41.2 11 T1 450 0.0 450 0.0 *0.420 26.0 LOS B 7.3 43.9 0.87 0.72 0.87 28.0 Approach 671 0.0 671 0.0 0.420 19.6 LOS B 7.3 43.9 0.66 0.69 0.66 30.6 All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9	9	R2	240	0.0	240	0.0	* 0.398	24.7	LOS B	7.3	44.1	0.82	0.75	0.82	21.1
11 T1 450 0.0 450 0.0 *0.420 26.0 LOS B 7.3 43.9 0.87 0.72 0.87 28.0 Approach 671 0.0 671 0.0 0.420 19.6 LOS B 7.3 43.9 0.66 0.69 0.66 30.6 All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9	West	: High	Street (W	/)											
All 1496 0.8 1496 0.8 0.420 15.5 LOS B 7.3 44.1 0.55 0.56 0.55 31.9															
	All														

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	formand	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	EUE	Prop. Et Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	31.6	LOS D	0.1	0.1	0.89	0.89	65.4	44.0	0.67
North: Site Acc	cess										
P3 Full	50	50	29.0	LOS C	0.1	0.1	0.85	0.85	55.9	35.0	0.63
All Pedestrians	100	100	30.3	LOS D	0.1	0.1	0.87	0.87	60.7	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:57 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)		73.7.		.,,								
5 6 Appro	T1 R2 pach	362 122 484	1.0 7.0 2.5	362 122 484	1.0 7.0 2.5	0.374 * 0.298 0.374	4.4 17.7 7.8	LOS A LOS B	3.4 2.4 3.4	20.6 15.6 20.6	0.26 0.57 0.34	0.22 0.71 0.35	0.26 0.57 0.34	50.3 25.4 42.7
North	: Site	Access												
7 9 Appro	L2 R2 pach	108 240 348	0.0 0.0 0.0	108 240 348	0.0 0.0 0.0	0.111 * 0.369 0.369	12.2 23.0 19.6	LOS A LOS B LOS B	2.1 7.1 7.1	12.6 42.3 42.3	0.53 0.79 0.71	0.58 0.73 0.68	0.53 0.79 0.71	26.4 21.8 23.0
West	: High	Street (W	')											
10 11	L2 T1	221 459	0.0 0.0	221 459	0.0	0.171 * 0.362	6.7 22.4	LOS A LOS B	1.3 6.9	7.6 41.5	0.25 0.81	0.62 0.68	0.25 0.81	40.9 30.2
Appro		680 1512	0.0	680 1512	0.0	0.362	17.3 14.8	LOS B	7.1	41.5	0.63	0.66	0.63	32.5 32.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		Itale	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	29.8	LOS C	0.1	0.1	0.86	0.86	63.7	44.0	0.69
North: Site Acc	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	27.7	LOS C	0.1	0.1	0.83	0.83	58.1	39.5	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:58 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)												
5 6 Appro	T1 R2 pach	368 140 508	1.0 7.0 2.7	368 140 508	1.0 7.0 2.7	0.371 * 0.285 0.371	3.8 17.9 7.7	LOS A LOS B LOS A	3.0 2.8 3.0	18.5 18.1 18.5	0.23 0.56 0.32	0.20 0.71 0.34	0.23 0.56 0.32	51.5 25.2 42.7
North	: Site	Access												
7 9 Appro	L2 R2 pach	126 280 406	0.0 0.0 0.0	126 280 406	0.0 0.0 0.0	0.115 * 0.447 0.447	9.7 24.4 19.9	LOS A LOS B LOS B	2.1 8.6 8.6	12.9 51.7 51.7	0.47 0.83 0.72	0.55 0.76 0.69	0.47 0.83 0.72	28.5 21.2 22.8
West	: High	Street (W	/)											
10 11	L2 T1	261 467	0.0	261 467	0.0	0.203 * 0.456	6.7 27.1	LOS A LOS B	1.5 7.8	9.3 46.7	0.25 0.89	0.62 0.74	0.25 0.89	40.9 27.4
Appro		728 1642	0.0	728 1642	0.0	0.456	19.8	LOS B	7.8 8.6	46.7 51.7	0.66	0.70	0.66	30.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	30.7	LOS D	0.1	0.1	0.88	0.88	64.5	44.0	0.68
North: Site Acc	cess										
P3 Full	50	50	29.8	LOS C	0.1	0.1	0.86	0.86	56.7	35.0	0.62
All Pedestrians	100	100	30.3	LOS D	0.1	0.1	0.87	0.87	60.6	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:58 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)												
5 6 Appro	T1 R2 pach	363 127 490	1.0 7.0 2.6	363 127 490	1.0 7.0 2.6	0.375 * 0.302 0.375	4.4 17.8 7.9	LOS A LOS B LOS A	3.4 2.5 3.4	20.7 16.3 20.7	0.26 0.57 0.34	0.22 0.71 0.35	0.26 0.57 0.34	50.3 25.3 42.5
North	: Site	Access												
7 9 Appro	L2 R2 pach	113 250 363	0.0 0.0 0.0	113 250 363	0.0 0.0 0.0	0.113 * 0.385 0.385	11.7 23.1 19.6	LOS A LOS B LOS B	2.1 7.4 7.4	12.9 44.4 44.4	0.52 0.80 0.71	0.58 0.74 0.69	0.52 0.80 0.71	26.9 21.8 23.0
West	: High	Street (W	/)											
10 11	L2 T1	231 461	0.0 0.0	231 461	0.0	0.180 * 0.378	6.7 23.3	LOS A LOS B	1.3 7.1	8.1 42.5	0.25 0.83	0.62 0.69	0.25 0.83	40.9 29.6
Appro		692 1545	0.0	692 1545	0.0	0.378 0.385	17.8 15.1	LOS B	7.1	42.5 44.4	0.63	0.67	0.63	32.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m		rtato	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	29.8	LOS C	0.1	0.1	0.86	0.86	63.7	44.0	0.69
North: Site Acc	cess										
P3 Full	50	50	26.5	LOS C	0.1	0.1	0.81	0.81	53.4	35.0	0.66
All Pedestrians	100	100	28.1	LOS C	0.1	0.1	0.84	0.84	58.5	39.5	0.67

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)		VC11/11	70	V/C	300		VCII	- '''				KIII/II
5 6	T1 R2	363 136	1.0 7.0	363 136	1.0 7.0	0.394 * 0.347	5.8 19.7	LOS A LOS B	4.3 3.0	26.0 19.5	0.32 0.63	0.28 0.73	0.32 0.63	47.8 24.0
Appro		499 Access	2.6	499	2.6	0.394	9.6	LOSA	4.3	26.0	0.41	0.40	0.41	40.0
7 9 Appro	L2 R2	130 274 404	0.0	130 274 404	0.0	0.127 * 0.393 0.393	11.2 21.8 18.4	LOS A LOS B	2.4 7.9 7.9	14.6 47.4 47.4	0.51 0.78 0.69	0.58 0.73 0.68	0.51 0.78 0.69	27.2 22.4 23.6
West	: High	Street (W	/)											
10	L2 T1	268 451	0.0	268 451	0.0	0.210 * 0.385	6.9 24.1	LOS A	7.1	10.6 42.3	0.27	0.63	0.27	40.6 29.1
Appro All Vehic		719 1622	0.0	719 1622	0.0	0.385	17.7	LOS B	7.1	42.3	0.63	0.67	0.63	31.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m		11010	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	28.1	LOS C	0.1	0.1	0.84	0.84	62.0	44.0	0.71
North: Site Acc	cess										
P3 Full	50	50	27.3	LOS C	0.1	0.1	0.83	0.83	54.2	35.0	0.65
All Pedestrians	100	100	27.7	LOS C	0.1	0.1	0.83	0.83	58.1	39.5	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Mov	Turn	INP	UT	DEM	AND	Deg.	Aver.	Level of	95% BA	ACK OF	Prop. E	ffective	Aver.	Aver.
ID		VOLU	MES	FLO	WS	Satn	Delay	Service	QUE	EUE	Que	Stop	No.	Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	High S	Street (E)												
5	T1	395	1.0	395	1.0	0.388	3.2	LOS A	2.9	17.6	0.20	0.18	0.20	52.6
6	R2	122	7.0	122	7.0	* 0.278	16.2	LOS B	2.2	14.2	0.52	0.70	0.52	26.5
Appro	oach	517	2.4	517	2.4	0.388	6.3	LOS A	2.9	17.6	0.28	0.30	0.28	45.2
North	: Site	Access												
7	L2	108	0.0	108	0.0	0.111	12.2	LOSA	2.1	12.6	0.53	0.58	0.53	26.4
9	R2	240	0.0	240	0.0	* 0.398	24.7	LOS B	7.3	44.1	0.82	0.75	0.82	21.1
Appro	oach	348	0.0	348	0.0	0.398	20.8	LOS B	7.3	44.1	0.73	0.69	0.73	22.3
West	High	Street (W	')											
10	L2	221	0.0	221	0.0	0.171	6.7	LOS A	1.3	7.6	0.25	0.62	0.25	40.9
11	T1	502	0.0	502	0.0	* 0.396	22.7	LOS B	7.7	46.0	0.82	0.69	0.82	30.0
Appro	oach	723	0.0	723	0.0	0.396	17.8	LOS B	7.7	46.0	0.65	0.67	0.65	32.1
All Vehic	les	1588	0.8	1588	0.8	0.398	14.7	LOS B	7.7	46.0	0.54	0.55	0.54	32.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		Itale	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	31.6	LOS D	0.1	0.1	0.89	0.89	65.4	44.0	0.67
North: Site Acc	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	28.6	LOS C	0.1	0.1	0.85	0.85	59.0	39.5	0.67

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn		Level of Service	95% B <i>A</i> QUE [Veh.		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	High :	Street (E)												
5	T1	396	1.0	396	1.0	0.389	3.2	LOS A	2.9	17.7	0.20	0.18	0.20	52.6
6	R2	136	7.0	136	7.0	* 0.276	17.1	LOS B	2.6	16.8	0.54	0.71	0.54	25.8
Appro	oach	532	2.5	532	2.5	0.389	6.8	LOSA	2.9	17.7	0.29	0.31	0.29	44.2
North	n: Site	Access												
7	L2	130	0.0	130	0.0	0.122	10.2	LOS A	2.3	13.7	0.48	0.56	0.48	28.1
9	R2	274	0.0	274	0.0	* 0.454	25.2	LOS B	8.6	51.5	0.84	0.76	0.84	20.8
Appro	oach	404	0.0	404	0.0	0.454	20.4	LOS B	8.6	51.5	0.73	0.70	0.73	22.5
West	: High	Street (W	/)											
10	L2	268	0.0	268	0.0	0.208	6.7	LOS A	1.6	9.6	0.25	0.62	0.25	40.9
11	T1	494	0.0	494	0.0	* 0.461	26.3	LOS B	8.1	48.8	0.88	0.73	0.88	27.8
Appro	oach	762	0.0	762	0.0	0.461	19.4	LOS B	8.1	48.8	0.66	0.70	0.66	30.6
All Vehic	cles	1698	8.0	1698	8.0	0.461	15.7	LOS B	8.6	51.5	0.56	0.58	0.56	31.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		ped	m m		Nate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	31.6	LOS D	0.1	0.1	0.89	0.89	65.4	44.0	0.67
North: Site Acc	cess										
P3 Full	50	50	29.0	LOS C	0.1	0.1	0.85	0.85	55.9	35.0	0.63
All Pedestrians	100	100	30.3	LOS D	0.1	0.1	0.87	0.87	60.7	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:00 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)		73.7.		.,,								
5 6 Appro	T1 R2 pach	442 94 536	0.0 19.0 3.3	442 94 536	0.0 19.0 3.3	0.403 * 0.194 0.403	1.5 13.7 3.6	LOS A LOS A	1.7 1.3 1.7	10.3 9.6 10.3	0.11 0.41 0.16	0.09 0.67 0.20	0.11 0.41 0.16	56.3 28.8 50.4
North	: Site	Access												
7 9 Appro	L2 R2 pach	83 173 256	2.0 0.0 0.6	83 173 256	2.0 0.0 0.6	0.086 * 0.324 0.324	12.0 26.4 21.7	LOS A LOS B LOS B	1.6 5.4 5.4	9.7 32.3 32.3	0.52 0.83 0.73	0.57 0.73 0.68	0.52 0.83 0.73	26.4 20.4 21.8
West	: High	Street (W	/)											
10 11	L2 T1	147 455	1.0 0.0	147 455	1.0 0.0	0.111 * 0.359	2.2 22.4	LOS A LOS B	0.6 6.8	3.9 41.1	0.20 0.81	0.35 0.68	0.20 0.81	29.4 30.2
Appro		1394	1.5	1394	1.5	0.359	17.5	LOS A	6.8	41.1	0.66	0.60	0.66	30.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	formand	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	EUE	Prop. Ef Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	30.0	LOS C	0.1	0.1	0.86	0.86	60.4	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:00 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High \$	Street (E)		701711	,,,	<u> </u>			7011					1011//11
5 6 Appro	T1 R2 pach	450 94 544	0.0 19.0 3.3	450 94 544	0.0 19.0 3.3	0.410 * 0.195 0.410	1.5 13.7 3.6	LOS A LOS A	1.8 1.3 1.8	10.6 9.6 10.6	0.11 0.41 0.16	0.10 0.67 0.19	0.11 0.41 0.16	56.2 28.7 50.5
North	ı: Site	Access												
7 9 Appro	L2 R2 pach	83 173 256	2.0 0.0 0.6	83 173 256	2.0 0.0 0.6	0.086 * 0.324 0.324	12.0 26.4 21.7	LOS A LOS B LOS B	1.6 5.4 5.4	9.7 32.3 32.3	0.52 0.83 0.73	0.57 0.73 0.68	0.52 0.83 0.73	26.4 20.4 21.8
West	: High	Street (W	/)											
10 11	L2 T1	147 463	1.0 0.0	147 463	1.0 0.0	0.111 * 0.365	6.4 22.5	LOS A LOS B	0.6 7.0	3.9 41.9	0.20 0.81	0.60 0.68	0.20 0.81	41.4 30.2
Appro		610 1410	1.5	610 1410	1.5	0.365	18.6	LOS A	7.0	41.9	0.66	0.66	0.66	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	QUE		Prop. Et Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Ac	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	30.0	LOS C	0.1	0.1	0.86	0.86	60.4	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:01 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehic	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM, FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)												
5 6 Appro	T1 R2 pach	456 110 566	0.0 19.0 3.7	456 110 566	0.0 19.0 3.7	0.416 * 0.224 0.416	1.5 13.9 3.9	LOS A LOS A	1.8 1.6 1.8	10.8 11.6 11.6	0.11 0.42 0.17	0.10 0.68 0.21	0.11 0.42 0.17	56.2 28.6 49.7
North	: Site	Access												
7 9 Appro	L2 R2 pach	99 208 307	2.0 0.0 0.6	99 208 307	2.0 0.0 0.6	0.101 * 0.390 0.390	11.6 26.9 22.0	LOS A LOS B LOS B	1.9 6.6 6.6	11.4 39.7 39.7	0.51 0.85 0.74	0.57 0.75 0.69	0.51 0.85 0.74	26.8 20.1 21.7
West	: High	Street (W	')											
10 11	L2 T1	182 470	1.0 0.0	182 470	1.0 0.0	0.140 * 0.386	6.5 23.4	LOS A LOS B	0.9 7.2	5.5 43.5	0.22 0.83	0.61 0.69	0.22 0.83	41.2 29.5
Appro		652 1525	1.6	652 1525	1.6	0.386	18.7	LOS B	7.2	43.5	0.66	0.67	0.66	31.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	formand	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE	EUE	Prop. Ef Que	Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	26.5	LOS C	0.1	0.1	0.81	0.81	53.4	35.0	0.66
All Pedestrians	100	100	30.4	LOS D	0.1	0.1	0.87	0.87	60.8	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:01 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Mov	Turn	INP	HT	DEM	AND	Deg.	Aver	Level of	05% R/	ACK OF	Prop. E	Effective	Aver.	Aver.
ID	Tulli	VOLU		FLO		Satn		Service		EUE	Que	Stop		Speed
טו		[Total	HV]	[Total	HV]	Jaili	Delay	OCI VICE	[Veh.	Dist]	Que	Rate	Cycles	Opeeu
		veh/h	%	veh/h	%	v/c	sec		veh	m m		Nate	Cycles	km/h
East:	High S	Street (E)												
5	T1	452	0.0	452	0.0	0.412	1.5	LOS A	1.8	10.7	0.11	0.10	0.11	56.2
6	R2	98	19.0	98	19.0	* 0.204	13.8	LOS A	1.4	10.1	0.42	0.67	0.42	28.7
Appro	ach	550	3.4	550	3.4	0.412	3.7	LOS A	1.8	10.7	0.16	0.20	0.16	50.3
North	: Site	Access												
7	L2	87	2.0	87	2.0	0.091	12.0	LOS A	1.7	10.2	0.52	0.57	0.52	26.4
9	R2	181	0.0	181	0.0	* 0.339	26.5	LOS B	5.7	34.0	0.83	0.74	0.83	20.3
Appro	ach	268	0.6	268	0.6	0.339	21.8	LOS B	5.7	34.0	0.73	0.68	0.73	21.8
West	High	Street (W	')											
10	L2	155	1.0	155	1.0	0.118	6.5	LOS A	0.8	4.6	0.22	0.61	0.22	41.3
11	T1	465	0.0	465	0.0	* 0.367	22.5	LOS B	7.0	42.1	0.81	0.68	0.81	30.1
Appro	ach	620	0.3	620	0.3	0.367	18.5	LOS B	7.0	42.1	0.66	0.66	0.66	31.9
All Vehic	les	1438	1.5	1438	1.5	0.412	13.4	LOSA	7.0	42.1	0.49	0.49	0.49	34.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Novem	ent Perf	ormano	е							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	30.0	LOS C	0.1	0.1	0.86	0.86	60.4	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:02 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Mov	Turn	INP	UT	DEM	AND	Deg.	Aver	Level of	95% BA	ACK OF	Prop. E	ffective	Aver.	Aver.
ID	1 0111	VOLU		FLO		Satn		Service		EUE	Que	Stop		Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m -				km/h
East:	High S	Street (E)												
5	T1	451	0.0	451	0.0	0.411	1.5	LOS A	1.8	10.6	0.11	0.10	0.11	56.2
6	R2	114	19.0	114	19.0	* 0.232	14.0	LOS A	1.7	12.2	0.43	0.68	0.43	28.5
Appro	oach	565	3.8	565	3.8	0.411	4.0	LOS A	1.8	12.2	0.17	0.21	0.17	49.5
North	: Site	Access												
7	L2	101	2.0	101	2.0	0.103	11.6	LOS A	1.9	11.7	0.52	0.57	0.52	26.7
9	R2	215	0.0	215	0.0	* 0.403	27.0	LOS B	6.9	41.2	0.85	0.76	0.85	20.1
Appro	oach	316	0.6	316	0.6	0.403	22.1	LOS B	6.9	41.2	0.74	0.70	0.74	21.7
West	: High	Street (W	')											
10	L2	186	1.0	186	1.0	0.143	6.5	LOS A	0.9	5.7	0.22	0.61	0.22	41.2
11	T1	471	0.0	471	0.0	* 0.386	23.4	LOS B	7.3	43.6	0.83	0.69	0.83	29.5
Appro	oach	657	0.3	657	0.3	0.386	18.6	LOS B	7.3	43.6	0.66	0.67	0.66	31.6
All Vehic	eles	1538	1.7	1538	1.7	0.411	14.0	LOSA	7.3	43.6	0.50	0.51	0.50	33.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	26.5	LOS C	0.1	0.1	0.81	0.81	53.4	35.0	0.66
All Pedestrians	100	100	30.4	LOS D	0.1	0.1	0.87	0.87	60.8	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:02 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	
Foot	ا انجام (veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East.	riigii s	Street (E)												
5	T1	493	0.0	493	0.0	0.449	1.6	LOS A	2.1	12.4	0.12	0.10	0.12	56.1
6	R2	94	19.0	94	19.0	* 0.206	13.8	LOS A	1.4	9.8	0.42	0.67	0.42	28.7
Appro	oach	587	3.0	587	3.0	0.449	3.5	LOS A	2.1	12.4	0.16	0.19	0.16	50.8
North	: Site	Access												
7	L2	83	2.0	83	2.0	0.088	12.6	LOS A	1.6	10.0	0.54	0.58	0.54	26.0
9	R2	173	0.0	173	0.0	* 0.324	26.4	LOS B	5.4	32.3	0.83	0.73	0.83	20.4
Appro	oach	256	0.6	256	0.6	0.324	21.9	LOS B	5.4	32.3	0.73	0.68	0.73	21.8
West	: High	Street (W	/)											
10	L2	147	1.0	147	1.0	0.112	2.3	LOS A	0.7	4.4	0.22	0.36	0.22	29.4
11	T1	507	0.0	507	0.0	* 0.385	21.9	LOS B	7.6	45.6	0.81	0.68	0.81	30.5
Appro	oach	654	0.2	654	0.2	0.385	17.5	LOS B	7.6	45.6	0.68	0.61	0.68	30.3
All Vehic	eles	1497	1.4	1497	1.4	0.449	12.8	LOSA	7.6	45.6	0.48	0.46	0.48	34.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian N	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of A	AVERAGE QUE [Ped	BACK OF EUE Dist]	Prop. Et Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtato	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	24.9	LOS C	0.1	0.1	0.79	0.79	51.8	35.0	0.68
All Pedestrians	100	100	29.6	LOS C	0.1	0.1	0.86	0.86	60.0	39.5	0.66

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:03 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
East:	High S	Street (E)		VO11/11	70	V/0	300		VOII	- '''				KITI/TT
5 6 Appro	T1 R2 pach	493 114 607	0.0 19.0 3.6	493 114 607	0.0 19.0 3.6	0.449 * 0.244 0.449	1.6 14.8 4.0	LOS A LOS B LOS A	2.1 1.8 2.1	12.4 13.0 13.0	0.12 0.46 0.18	0.10 0.68 0.21	0.12 0.46 0.18	56.1 27.8 49.5
North	: Site	Access												
7 9 Appro	L2 R2 pach	101 215 316	2.0 0.0 0.6	101 215 316	2.0 0.0 0.6	0.105 * 0.403 0.403	12.1 27.0 22.3	LOS A LOS B LOS B	2.0 6.9 6.9	12.0 41.2 41.2	0.53 0.85 0.75	0.58 0.76 0.70	0.53 0.85 0.75	26.3 20.1 21.6
West	: High	Street (W	/)											
10 11	L2 T1	186 514	1.0 0.0	186 514	1.0 0.0	0.143 * 0.406	6.5 22.8	LOS A LOS B	0.9 7.9	5.7 47.3	0.22 0.82	0.61 0.69	0.22 0.82	41.2 29.9
Appro		700 1623	0.3 1.6	700 1623	1.6	0.406	18.5	LOS A	7.9 7.9	47.3 47.3	0.67	0.67	0.67	31.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance										
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of a Service	AVERAGE QUE [Ped	BACK OF UE Dist]	Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rate	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	34.3	LOS D	0.1	0.1	0.93	0.93	68.1	44.0	0.65
North: Site Acc	cess										
P3 Full	50	50	25.7	LOS C	0.1	0.1	0.80	0.80	52.6	35.0	0.67
All Pedestrians	100	100	30.0	LOS C	0.1	0.1	0.86	0.86	60.4	39.5	0.65

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:03 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site Access.sip9

Site: 5 [2022 BG Saturday Peak (Site Folder: Sat AM)]

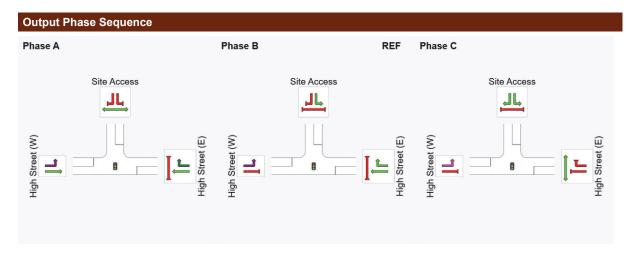
Intersection: High Street/Kmart

Saturday AM

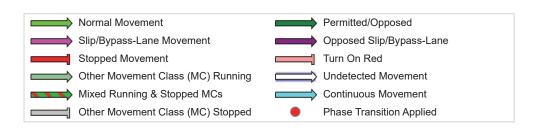
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	52	0	20
Green Time (sec)	22	14	26
Phase Time (sec)	28	20	32
Phase Split	35%	25%	40%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:57 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 BG Saturday Peak (Site Folder: Sat AM)]

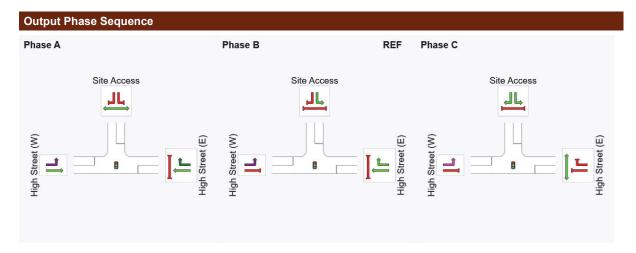
Intersection: High Street/Kmart

Saturday AM

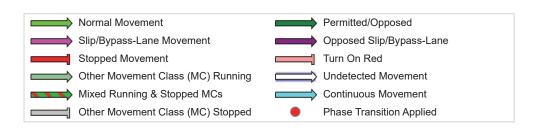
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	14
Green Time (sec)	26	8	28
Phase Time (sec)	32	14	34
Phase Split	40%	18%	43%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:58 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W Aprv Saturday Peak (Site Folder: Sat AM)]

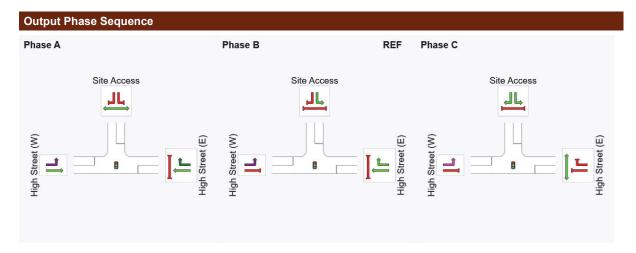
Intersection: High Street/Kmart

Saturday AM

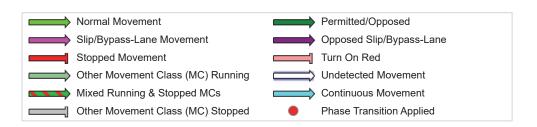
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	53	0	20
Green Time (sec)	21	14	27
Phase Time (sec)	27	20	33
Phase Split	34%	25%	41%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:58 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W Dev Saturday Peak (Site Folder: Sat AM)]

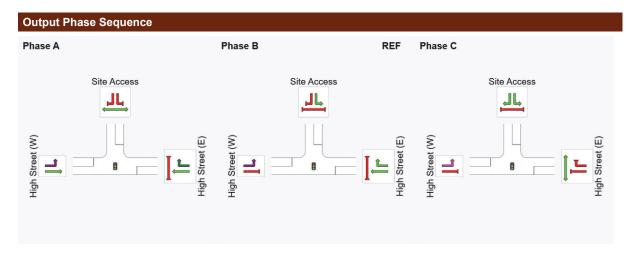
Intersection: High Street/Kmart

Saturday AM

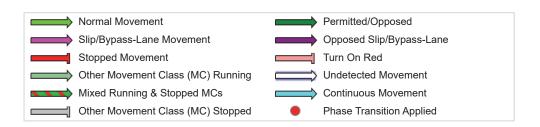
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	49	0	15
Green Time (sec)	25	9	28
Phase Time (sec)	31	15	34
Phase Split	39%	19%	43%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Kmart

Saturday AM

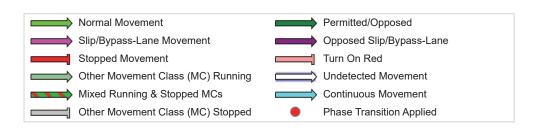
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	50	0	14
Green Time (sec)	24	8	30
Phase Time (sec)	30	14	36
Phase Split	38%	18%	45%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Phase A Phase B REF Phase C Site Access (M) total Street (M) total St

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2034 BG Saturday Peak (Site Folder: Sat AM)]

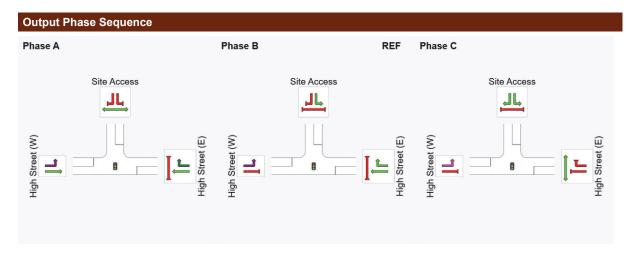
Intersection: High Street/Kmart

Saturday AM

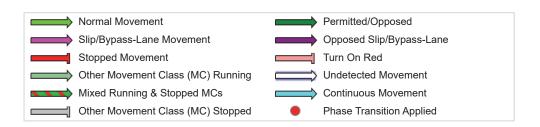
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	16
Green Time (sec)	26	10	26
Phase Time (sec)	32	16	32
Phase Split	40%	20%	40%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:41:59 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

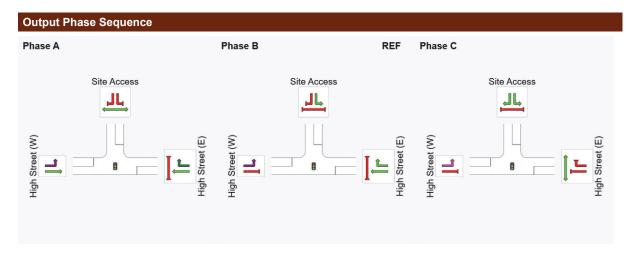
Intersection: High Street/Kmart

Saturday AM

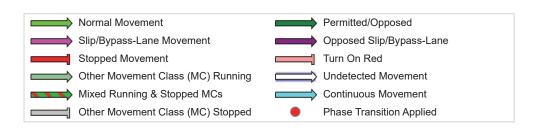
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	52	0	20
Green Time (sec)	22	14	26
Phase Time (sec)	28	20	32
Phase Split	35%	25%	40%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

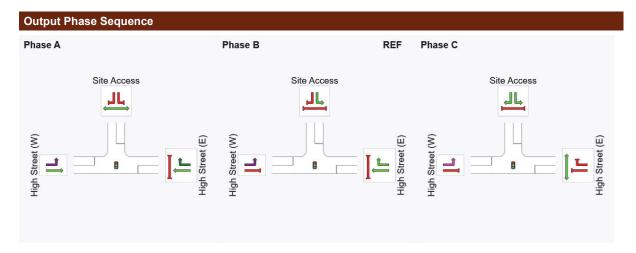
Intersection: High Street/Kmart

Thursday PM

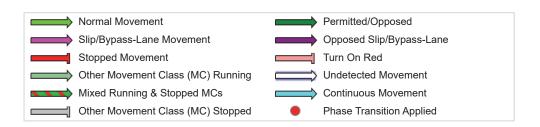
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	19
Green Time (sec)	26	13	23
Phase Time (sec)	32	19	29
Phase Split	40%	24%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

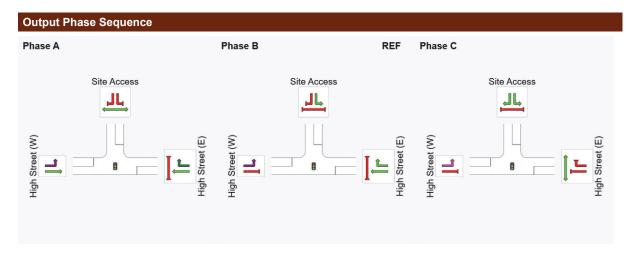
Intersection: High Street/Kmart

Thursday PM

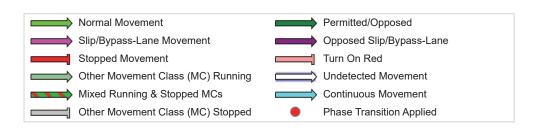
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	19
Green Time (sec)	26	13	23
Phase Time (sec)	32	19	29
Phase Split	40%	24%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:01 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W Aprv Thursday Peak (Site Folder: Thurs PM)]

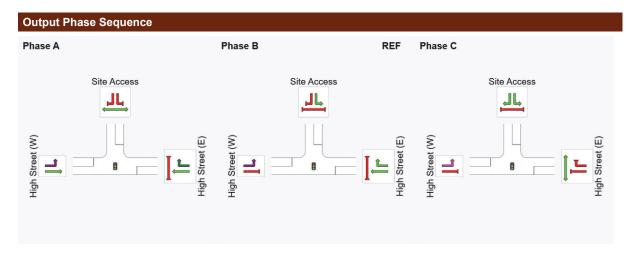
Intersection: High Street/Kmart

Thursday PM

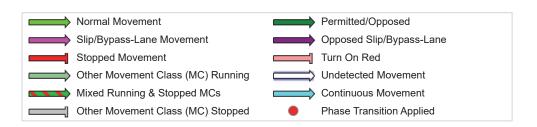
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	49	0	20
Green Time (sec)	25	14	23
Phase Time (sec)	31	20	29
Phase Split	39%	25%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:01 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W Dev Thursday Peak (Site Folder: Thurs PM)]

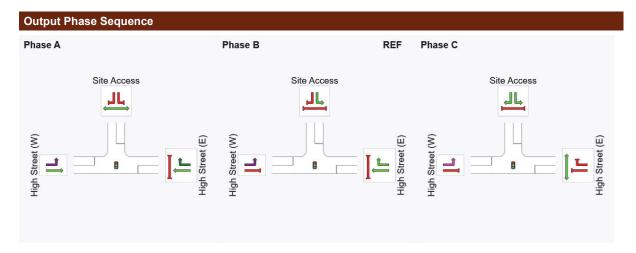
Intersection: High Street/Kmart

Thursday PM

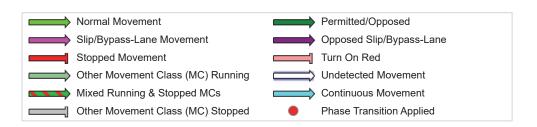
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	19
Green Time (sec)	26	13	23
Phase Time (sec)	32	19	29
Phase Split	40%	24%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:02 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

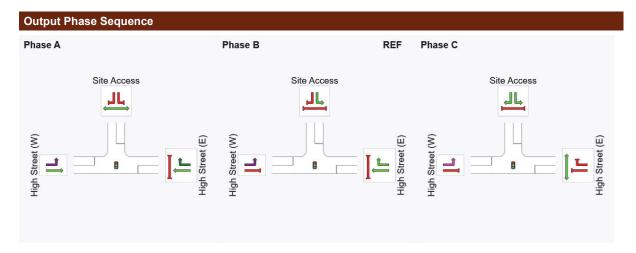
Intersection: High Street/Kmart

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C

Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	49	0	20
Green Time (sec)	25	14	23
Phase Time (sec)	31	20	29
Phase Split	39%	25%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:02 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

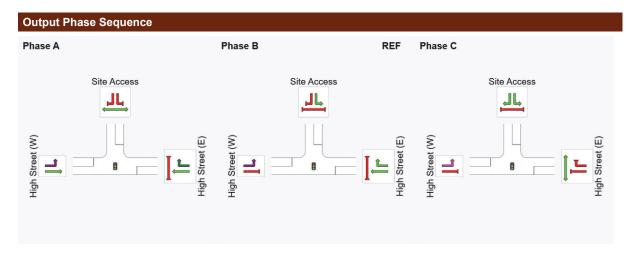
Intersection: High Street/Kmart

Thursday PM

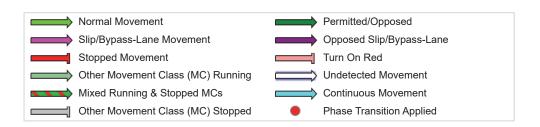
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	47	0	18
Green Time (sec)	27	12	23
Phase Time (sec)	33	18	29
Phase Split	41%	23%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:03 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 5 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

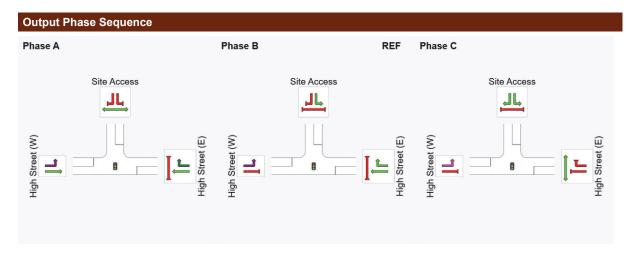
Intersection: High Street/Kmart

Thursday PM

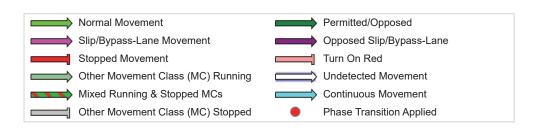
Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 80 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase B Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C


Phase Timing Summary

Phase	Α	В	С
Phase Change Time (sec)	48	0	19
Green Time (sec)	26	13	23
Phase Time (sec)	32	19	29
Phase Split	40%	24%	36%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:42:03 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\7) High St-Site
Access.sip9

Site: 4 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance		_		_						
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.56	0.45	0.56	34.5
2	T1	4	0.0	4	0.0	0.013	2.6	LOS A	0.1	0.4	0.56	0.45	0.56	25.7
3	R2	1	0.0	1	0.0	0.013	5.3	LOS A	0.1	0.4	0.56	0.45	0.56	43.2
3u	U	1	0.0	1	0.0	0.013	6.1	LOSA	0.1	0.4	0.56	0.45	0.56	22.2
Appro	oach	10	0.0	10	0.0	0.013	3.2	LOS A	0.1	0.4	0.56	0.45	0.56	30.4
East:	High \$	Street (W)											
4	L2	6	0.0	6	0.0	0.271	5.3	LOS A	1.4	9.8	0.40	0.52	0.40	43.0
5	T1	483	1.0	483	1.0	0.271	5.3	LOS A	1.4	9.8	0.40	0.55	0.40	46.5
6	R2	127	0.0	127	0.0	0.271	10.0	LOS A	1.4	9.6	0.40	0.61	0.40	42.8
6u	U	3	0.0	3	0.0	0.271	12.2	LOS A	1.4	9.6	0.40	0.61	0.40	49.2
Appro	oach	619	0.8	619	8.0	0.271	6.3	LOS A	1.4	9.8	0.40	0.57	0.40	45.7
North	: Aqua	atic Street	: (N)											
7	L2	191	1.0	191	1.0	0.503	3.7	LOSA	4.0	28.0	0.72	0.65	0.72	34.9
8	T1	2	0.0	2	0.0	0.503	3.6	LOS A	4.0	28.0	0.72	0.65	0.72	24.1
9	R2	269	1.0	269	1.0	0.503	6.4	LOS A	4.0	28.0	0.72	0.65	0.72	26.9
9u	U	1	0.0	1	0.0	0.503	7.2	LOS A	4.0	28.0	0.72	0.65	0.72	34.0
Appro	oach	463	1.0	463	1.0	0.503	5.3	LOS A	4.0	28.0	0.72	0.65	0.72	30.2
West	: High	Street (W	/)											
10	L2	467	0.0	467	0.0	0.333	4.7	LOS A	1.8	12.7	0.26	0.50	0.26	35.3
11	T1	455	0.0	455	0.0	0.354	4.8	LOS A	1.9	13.6	0.27	0.45	0.27	48.8
12	R2	2	0.0	2	0.0	0.354	9.4	LOS A	1.9	13.6	0.27	0.45	0.27	35.3
12u	U	4	0.0	4	0.0	0.354	11.6	LOS A	1.9	13.6	0.27	0.45	0.27	32.7
Appro	oach	928	0.0	928	0.0	0.354	4.8	LOS A	1.9	13.6	0.26	0.47	0.26	42.0
All Vehic	eles	2020	0.5	2020	0.5	0.503	5.4	LOSA	4.0	28.0	0.41	0.54	0.41	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:04 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM. FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver.	Aver. Speed
טו		[Total	HV]	[Total	HV]	Salli	Delay	Service	[Veh.	Dist]	Que	Rate		Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	•	atic Stree	` ,											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.57	0.46	0.57	34.4
2	T1	4	0.0	4	0.0	0.013	2.6	LOSA	0.1	0.4	0.57	0.46	0.57	25.7
3	R2	1	0.0	1	0.0	0.013	5.3	LOSA	0.1	0.4	0.57	0.46	0.57	43.2
3u	U	1	0.0	1	0.0	0.013	6.1	LOSA	0.1	0.4	0.57	0.46	0.57	22.2
Appr	oacn	10	0.0	10	0.0	0.013	3.3	LOS A	0.1	0.4	0.57	0.46	0.57	30.4
East	: High	Street (W)											
4	L2	6	0.0	6	0.0	0.275	5.3	LOS A	1.4	10.0	0.40	0.52	0.40	43.0
5	T1	492	1.0	492	1.0	0.275	5.3	LOS A	1.4	10.0	0.40	0.55	0.40	46.5
6	R2	127	0.0	127	0.0	0.275	10.0	LOS A	1.4	9.8	0.41	0.61	0.41	42.8
6u	U	3	0.0	3	0.0	0.275	12.2	LOS A	1.4	9.8	0.41	0.61	0.41	49.2
Appr	oach	628	8.0	628	8.0	0.275	6.3	LOS A	1.4	10.0	0.40	0.57	0.40	45.7
North	n: Aqua	atic Street	(N)											
7	L2	191	1.0	191	1.0	0.505	3.8	LOS A	4.0	28.3	0.73	0.65	0.73	34.8
8	T1	2	0.0	2	0.0	0.505	3.7	LOS A	4.0	28.3	0.73	0.65	0.73	24.0
9	R2	269	1.0	269	1.0	0.505	6.5	LOS A	4.0	28.3	0.73	0.65	0.73	26.9
9u	U	1	0.0	1	0.0	0.505	7.3	LOS A	4.0	28.3	0.73	0.65	0.73	33.9
Appr	oach	463	1.0	463	1.0	0.505	5.4	LOS A	4.0	28.3	0.73	0.65	0.73	30.2
West	t: High	Street (W	/)											
10	L2	467	0.0	467	0.0	0.359	4.8	LOS A	2.0	13.9	0.27	0.50	0.27	35.2
11	T1	463	0.0	463	0.0	0.335	4.7	LOS A	1.8	12.8	0.26	0.44	0.26	49.0
12	R2	2	0.0	2	0.0	0.335	9.4	LOS A	1.8	12.8	0.26	0.44	0.26	35.5
12u	U	4	0.0	4	0.0	0.335	11.5	LOS A	1.8	12.8	0.26	0.44	0.26	32.7
Appr	oach	936	0.0	936	0.0	0.359	4.8	LOS A	2.0	13.9	0.26	0.47	0.26	42.1
All Vehic	oloc	2037	0.5	2037	0.5	0.505	5.4	LOSA	4.0	28.3	0.41	0.54	0.41	39.7
verill	UGS .													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:05 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

🦁 Site: 4 [2024 W Aprv Saturday Peak - Import (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.9	LOS A	0.1	0.4	0.58	0.47	0.58	34.2
2	T1	4	0.0	4	0.0	0.013	2.8	LOS A	0.1	0.4	0.58	0.47	0.58	25.6
3	R2	1	0.0	1	0.0	0.013	5.5	LOS A	0.1	0.4	0.58	0.47	0.58	42.9
3u	U	1	0.0	11	0.0	0.013	6.3	LOS A	0.1	0.4	0.58	0.47	0.58	22.0
Appr	oach	10	0.0	10	0.0	0.013	3.4	LOS A	0.1	0.4	0.58	0.47	0.58	30.2
East:	High	Street (W)											
4	L2	6	0.0	6	0.0	0.299	5.3	LOS A	1.6	11.2	0.42	0.53	0.42	42.8
5	T1	534	1.0	534	1.0	0.299	5.4	LOS A	1.6	11.2	0.42	0.56	0.42	46.4
6	R2	132	0.0	132	0.0	0.299	10.1	LOS A	1.6	10.9	0.42	0.62	0.42	42.8
6u	U	3	0.0	3	0.0	0.299	12.2	LOS A	1.6	10.9	0.42	0.62	0.42	49.2
Appr	oach	675	8.0	675	8.0	0.299	6.4	LOS A	1.6	11.2	0.42	0.57	0.42	45.6
North	n: Aqua	atic Street	(N)											
7	L2	196	1.0	196	1.0	0.536	4.9	LOS A	4.8	33.7	0.78	0.73	0.82	33.8
8	T1	2	0.0	2	0.0	0.536	4.7	LOS A	4.8	33.7	0.78	0.73	0.82	23.1
9	R2	277	1.0	277	1.0	0.536	7.5	LOS A	4.8	33.7	0.78	0.73	0.82	26.1
9u	U	1	0.0	1	0.0	0.536	8.3	LOS A	4.8	33.7	0.78	0.73	0.82	32.6
Appr	oach	476	1.0	476	1.0	0.536	6.4	LOSA	4.8	33.7	0.78	0.73	0.82	29.3
West	t: High	Street (W	/)											
10	L2	475	0.0	475	0.0	0.370	4.9	LOS A	2.1	14.5	0.28	0.51	0.28	35.1
11	T1	506	0.0	506	0.0	0.366	4.8	LOS A	2.1	14.7	0.27	0.45	0.27	48.8
12	R2	2	0.0	2	0.0	0.366	9.4	LOS A	2.1	14.7	0.27	0.45	0.27	35.3
12u	U	4	0.0	4	0.0	0.366	11.5	LOS A	2.1	14.7	0.27	0.45	0.27	32.6
Appr	oach	987	0.0	987	0.0	0.370	4.9	LOSA	2.1	14.7	0.28	0.48	0.28	42.2
All Vehic	cles	2148	0.5	2148	0.5	0.536	5.7	LOSA	4.8	33.7	0.43	0.56	0.44	39.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:06 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic Pl.sip9

😽 Site: 4 [2024 W Dev Saturday Peak - Import (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	icle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM/ FLO [Total	WS HV]	Deg. Satn		Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Stop	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.57	0.46	0.57	34.4
2	T1	4	0.0	4	0.0	0.013	2.6	LOS A	0.1	0.4	0.57	0.46	0.57	25.7
3	R2	1	0.0	1	0.0	0.013	5.4	LOS A	0.1	0.4	0.57	0.46	0.57	43.1
3u	U	1	0.0	1	0.0	0.013	6.2	LOS A	0.1	0.4	0.57	0.46	0.57	22.1
Appr	oach	10	0.0	10	0.0	0.013	3.3	LOS A	0.1	0.4	0.57	0.46	0.57	30.3
East	: High	Street (W)											
4	L2	6	0.0	6	0.0	0.281	5.3	LOS A	1.5	10.3	0.40	0.52	0.40	42.9
5	T1	503	1.0	503	1.0	0.281	5.4	LOS A	1.5	10.3	0.41	0.55	0.41	46.5
6	R2	128	0.0	128	0.0	0.281	10.1	LOS A	1.4	10.1	0.41	0.61	0.41	42.8
6u	U	3	0.0	3	0.0	0.281	12.2	LOS A	1.4	10.1	0.41	0.61	0.41	49.2
Appr	oach	640	8.0	640	8.0	0.281	6.3	LOSA	1.5	10.3	0.41	0.57	0.41	45.7
North	n: Aqua	atic Street	(N)											
7	L2	192	1.0	192	1.0	0.512	4.0	LOS A	4.2	29.5	0.74	0.67	0.75	34.5
8	T1	2	0.0	2	0.0	0.512	3.9	LOS A	4.2	29.5	0.74	0.67	0.75	23.8
9	R2	271	1.0	271	1.0	0.512	6.7	LOS A	4.2	29.5	0.74	0.67	0.75	26.7
9u	U	1	0.0	11	0.0	0.512	7.5	LOS A	4.2	29.5	0.74	0.67	0.75	33.6
Appr	oach	466	1.0	466	1.0	0.512	5.6	LOS A	4.2	29.5	0.74	0.67	0.75	30.0
West	t: High	Street (W	/)											
10	L2	469	0.0	469	0.0	0.361	4.8	LOS A	2.0	14.0	0.27	0.51	0.27	35.2
11	T1	474	0.0	474	0.0	0.343	4.8	LOS A	1.9	13.3	0.26	0.45	0.26	48.9
12	R2	2	0.0	2	0.0	0.343	9.4	LOS A	1.9	13.3	0.26	0.45	0.26	35.4
12u	U	4	0.0	4	0.0	0.343	11.5	LOS A	1.9	13.3	0.26	0.45	0.26	32.7
Appr	oach	949	0.0	949	0.0	0.361	4.8	LOSA	2.0	14.0	0.27	0.48	0.27	42.1
All Vehic	cles	2065	0.5	2065	0.5	0.512	5.5	LOSA	4.2	29.5	0.42	0.55	0.42	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:06 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic Pl.sip9

▼ Site: 4 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

		ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver.	Aver. Speed
טו		[Total	HV]	[Total	HV]	Jain	Delay	Service	[Veh.	Dist]	Que		Cycles	Opeeu
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South		atic Street	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.8	LOS A	0.1	0.4	0.58	0.47	0.58	34.2
2	T1	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.58	0.47	0.58	25.6
3	R2	1	0.0	1	0.0	0.013	5.5	LOS A	0.1	0.4	0.58	0.47	0.58	42.9
3u	U	11	0.0	11	0.0	0.013	6.3	LOS A	0.1	0.4	0.58	0.47	0.58	22.0
Appro	oach	10	0.0	10	0.0	0.013	3.4	LOS A	0.1	0.4	0.58	0.47	0.58	30.2
East:	High :	Street (W))											
4	L2	6	0.0	6	0.0	0.297	5.3	LOS A	1.6	11.1	0.41	0.52	0.41	42.8
5	T1	540	1.0	540	1.0	0.297	5.4	LOSA	1.6	11.1	0.41	0.55	0.41	46.5
6	R2	127	0.0	127	0.0	0.297	10.1	LOS A	1.5	10.9	0.42	0.61	0.42	42.9
6u	U	3	0.0	3	0.0	0.297	12.2	LOS A	1.5	10.9	0.42	0.61	0.42	49.3
Appro	oach	676	8.0	676	8.0	0.297	6.3	LOSA	1.6	11.1	0.42	0.57	0.42	45.7
North	: Aqua	itic Street	(N)											
7	L2	191	1.0	191	1.0	0.525	4.8	LOS A	4.6	32.3	0.78	0.73	0.81	33.8
8	T1	2	0.0	2	0.0	0.525	4.7	LOS A	4.6	32.3	0.78	0.73	0.81	23.1
9	R2	269	1.0	269	1.0	0.525	7.5	LOS A	4.6	32.3	0.78	0.73	0.81	26.1
9u	U	1	0.0	1	0.0	0.525	8.3	LOSA	4.6	32.3	0.78	0.73	0.81	32.7
Appro	oach	463	1.0	463	1.0	0.525	6.4	LOS A	4.6	32.3	0.78	0.73	0.81	29.3
West	: High	Street (W	')											
10	L2	467	0.0	467	0.0	0.364	4.8	LOS A	2.0	14.2	0.27	0.51	0.27	35.2
11	T1	516	0.0	516	0.0	0.371	4.8	LOS A	2.1	15.0	0.27	0.45	0.27	48.9
12	R2	2	0.0	2	0.0	0.371	9.4	LOS A	2.1	15.0	0.27	0.45	0.27	35.4
12u	U	4	0.0	4	0.0	0.371	11.5	LOS A	2.1	15.0	0.27	0.45	0.27	32.7
Appro	oach	989	0.0	989	0.0	0.371	4.8	LOSA	2.1	15.0	0.27	0.47	0.27	42.4
All		2138	0.5	2138	0.5	0.525	5.6	LOSA	4.6	32.3	0.43	0.56	0.44	39.7
Vehic	les													

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:07 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO\ [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	ffective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	h: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	2.8	LOS A	0.1	0.4	0.58	0.47	0.58	34.2
2	T1	4	0.0	4	0.0	0.013	2.7	LOS A	0.1	0.4	0.58	0.47	0.58	25.6
3	R2	1	0.0	1	0.0	0.013	5.5	LOS A	0.1	0.4	0.58	0.47	0.58	42.9
3u	U	1	0.0	1	0.0	0.013	6.3	LOSA	0.1	0.4	0.58	0.47	0.58	22.0
Appr	oach	10	0.0	10	0.0	0.013	3.4	LOS A	0.1	0.4	0.58	0.47	0.58	30.2
East:	High	Street (W)											
4	L2	6	0.0	6	0.0	0.296	5.3	LOS A	1.6	11.1	0.41	0.52	0.41	42.8
5	T1	538	1.0	538	1.0	0.296	5.4	LOS A	1.6	11.1	0.41	0.55	0.41	46.5
6	R2	127	0.0	127	0.0	0.296	10.1	LOS A	1.5	10.8	0.42	0.61	0.42	42.9
6u	U	3	0.0	3	0.0	0.296	12.2	LOS A	1.5	10.8	0.42	0.61	0.42	49.3
Appr	oach	674	8.0	674	8.0	0.296	6.3	LOS A	1.6	11.1	0.41	0.57	0.41	45.7
North	n: Aqua	atic Street	(N)											
7	L2	191	1.0	191	1.0	0.521	4.6	LOSA	4.5	31.6	0.77	0.71	0.80	34.0
8	T1	2	0.0	2	0.0	0.521	4.5	LOS A	4.5	31.6	0.77	0.71	0.80	23.3
9	R2	269	1.0	269	1.0	0.521	7.3	LOS A	4.5	31.6	0.77	0.71	0.80	26.3
9u	U	1	0.0	1	0.0	0.521	8.1	LOS A	4.5	31.6	0.77	0.71	0.80	32.9
Appr	oach	463	1.0	463	1.0	0.521	6.2	LOS A	4.5	31.6	0.77	0.71	0.80	29.5
West	t: High	Street (W	/)											
10	L2	467	0.0	467	0.0	0.363	4.8	LOS A	2.0	14.1	0.27	0.51	0.27	35.2
11	T1	507	0.0	507	0.0	0.365	4.8	LOS A	2.1	14.6	0.27	0.45	0.27	48.9
12	R2	2	0.0	2	0.0	0.365	9.4	LOS A	2.1	14.6	0.27	0.45	0.27	35.4
12u	U	4	0.0	4	0.0	0.365	11.5	LOS A	2.1	14.6	0.27	0.45	0.27	32.7
Appr	oach	980	0.0	980	0.0	0.365	4.8	LOSA	2.1	14.6	0.27	0.47	0.27	42.4
All Vehic	cles	2127	0.5	2127	0.5	0.521	5.6	LOSA	4.5	31.6	0.43	0.56	0.43	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:07 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic Pl.sip9

Site: 4 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: High Street/Acquatic Place

Saturday AM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total		DEM/ FLO' [Total		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
South	h: Aqua	atic Stree	t (S)											
1	L2	4	0.0	4	0.0	0.013	3.0	LOS A	0.1	0.4	0.59	0.48	0.59	34.0
2	T1	4	0.0	4	0.0	0.013	2.9	LOS A	0.1	0.4	0.59	0.48	0.59	25.5
3	R2	1	0.0	1	0.0	0.013	5.6	LOS A	0.1	0.4	0.59	0.48	0.59	42.7
3u	U	1	0.0	1	0.0	0.013	6.4	LOS A	0.1	0.4	0.59	0.48	0.59	21.8
Appro	oach	10	0.0	10	0.0	0.013	3.5	LOS A	0.1	0.4	0.59	0.48	0.59	30.1
East:	High	Street (W	')											
4	L2	6	0.0	6	0.0	0.318	5.3	LOS A	1.7	12.2	0.42	0.52	0.42	42.7
5	T1	586	1.0	586	1.0	0.318	5.4	LOS A	1.7	12.2	0.43	0.56	0.43	46.4
6	R2	127	0.0	127	0.0	0.318	10.1	LOS A	1.7	11.9	0.43	0.61	0.43	42.9
6u	U	3	0.0	3	0.0	0.318	12.2	LOS A	1.7	11.9	0.43	0.61	0.43	49.3
Appro	oach	722	8.0	722	8.0	0.318	6.3	LOSA	1.7	12.2	0.43	0.57	0.43	45.7
North	n: Aqua	atic Street	t (N)											
7	L2	191	1.0	191	1.0	0.542	5.8	LOS A	5.1	36.1	0.82	0.79	0.89	33.0
8	T1	2	0.0	2	0.0	0.542	5.7	LOS A	5.1	36.1	0.82	0.79	0.89	22.3
9	R2	269	1.0	269	1.0	0.542	8.5	LOS A	5.1	36.1	0.82	0.79	0.89	25.4
9u	U	1	0.0	1	0.0	0.542	9.3	LOS A	5.1	36.1	0.82	0.79	0.89	31.6
Appro	oach	463	1.0	463	1.0	0.542	7.4	LOS A	5.1	36.1	0.82	0.79	0.89	28.6
West	:: High	Street (V	V)											
10	L2	467	0.0	467	0.0	0.369	4.8	LOS A	2.1	14.4	0.28	0.51	0.28	35.1
11	T1	559	0.0	559	0.0	0.400	4.8	LOS A	2.4	16.8	0.28	0.45	0.28	48.8
12	R2	2	0.0	2	0.0	0.400	9.4	LOS A	2.4	16.8	0.28	0.45	0.28	35.3
12u	U	4	0.0	4	0.0	0.400	11.5	LOS A	2.4	16.8	0.28	0.45	0.28	32.6
Appro	oach	1032	0.0	1032	0.0	0.400	4.9	LOSA	2.4	16.8	0.28	0.48	0.28	42.6
All Vehic	cles	2227	0.5	2227	0.5	0.542	5.8	LOSA	5.1	36.1	0.44	0.57	0.45	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:08 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INF VOLU [Total		DEM FLO		Deg. Satn		Level of Service		ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m m		rtate	Cycles	km/h
South	n: Aqua	atic Stree	et (S)											
1	L2	1	0.0	1	0.0	0.007	2.3	LOS A	0.0	0.2	0.52	0.46	0.52	33.3
2	T1	2	0.0	2	0.0	0.007	2.2	LOS A	0.0	0.2	0.52	0.46	0.52	25.5
3	R2	2	0.0	2	0.0	0.007	4.9	LOS A	0.0	0.2	0.52	0.46	0.52	41.5
3u	U	1	0.0	1	0.0	0.007	5.7	LOS A	0.0	0.2	0.52	0.46	0.52	22.2
Appro	oach	6	0.0	6	0.0	0.007	3.7	LOS A	0.0	0.2	0.52	0.46	0.52	31.8
East:	High :	Street (W	')											
4	L2	3	33.0	3	33.0	0.241	5.5	LOS A	1.2	8.3	0.33	0.48	0.33	43.8
5	T1	498	0.0	498	0.0	0.241	5.0	LOS A	1.2	8.3	0.34	0.51	0.34	47.5
6	R2	82	0.0	82	0.0	0.241	9.7	LOS A	1.2	8.1	0.34	0.56	0.34	44.0
6u	U	2	0.0	2	0.0	0.241	11.8	LOS A	1.2	8.1	0.34	0.56	0.34	50.5
Appro	oach	585	0.2	585	0.2	0.241	5.7	LOSA	1.2	8.3	0.34	0.52	0.34	46.9
North	ı: Aqua	atic Stree	t (N)											
7	L2	109	0.0	109	0.0	0.344	3.6	LOS A	2.5	17.3	0.66	0.60	0.66	34.9
8	T1	1	0.0	1	0.0	0.344	3.5	LOS A	2.5	17.3	0.66	0.60	0.66	24.1
9	R2	200	1.0	200	1.0	0.344	6.3	LOS A	2.5	17.3	0.66	0.60	0.66	26.9
9u	U	2	0.0	2	0.0	0.344	7.1	LOS A	2.5	17.3	0.66	0.60	0.66	33.9
Appro	oach	312	0.6	312	0.6	0.344	5.3	LOS A	2.5	17.3	0.66	0.60	0.66	29.8
West	: High	Street (V	V)											
10	L2	362	0.0	362	0.0	0.280	4.6	LOS A	1.4	9.6	0.20	0.48	0.20	35.6
11	T1	492	0.0	492	0.0	0.339	4.5	LOS A	1.8	12.9	0.20	0.42	0.20	49.5
12	R2	4	0.0	4	0.0	0.339	9.2	LOSA	1.8	12.9	0.20	0.42	0.20	36.1
12u	U	5	0.0	5	0.0	0.339	11.3	LOS A	1.8	12.9	0.20	0.42	0.20	33.1
Appro	oach	863	0.0	863	0.0	0.339	4.6	LOS A	1.8	12.9	0.20	0.45	0.20	43.7
All Vehic	eles	1766	0.2	1766	0.2	0.344	5.1	LOSA	2.5	17.3	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:08 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance		_								
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 11		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
	•	atic Stree	` '											
1	L2	1	0.0	1	0.0	0.007		LOS A	0.0	0.2	0.53	0.46	0.53	33.3
2	T1	2	0.0	2	0.0	0.007	2.2	LOS A	0.0	0.2	0.53	0.46	0.53	25.4
3	R2	2	0.0	2	0.0	0.007	4.9	LOS A	0.0	0.2	0.53	0.46	0.53	41.4
3u	U	11	0.0	1	0.0	0.007	5.8	LOS A	0.0	0.2	0.53	0.46	0.53	22.2
Appr	oach	6	0.0	6	0.0	0.007	3.7	LOS A	0.0	0.2	0.53	0.46	0.53	31.8
East:	High	Street (W)											
4	L2	3	33.0	3	33.0	0.244	5.5	LOS A	1.2	8.4	0.34	0.48	0.34	43.7
5	T1	507	0.0	507	0.0	0.244	5.0	LOS A	1.2	8.4	0.34	0.51	0.34	47.5
6	R2	82	0.0	82	0.0	0.244	9.7	LOS A	1.2	8.3	0.34	0.56	0.34	44.0
6u	U	2	0.0	2	0.0	0.244	11.8	LOS A	1.2	8.3	0.34	0.56	0.34	50.5
Appr	oach	594	0.2	594	0.2	0.244	5.7	LOSA	1.2	8.4	0.34	0.52	0.34	46.9
North	n: Aqua	itic Street	(N)											
7	L2	109	0.0	109	0.0	0.347	3.7	LOS A	2.5	17.6	0.67	0.61	0.67	34.8
8	T1	1	0.0	1	0.0	0.347	3.6	LOS A	2.5	17.6	0.67	0.61	0.67	24.0
9	R2	200	1.0	200	1.0	0.347	6.4	LOS A	2.5	17.6	0.67	0.61	0.67	26.8
9u	U	2	0.0	2	0.0	0.347	7.2	LOS A	2.5	17.6	0.67	0.61	0.67	33.8
Appr	oach	312	0.6	312	0.6	0.347	5.4	LOS A	2.5	17.6	0.67	0.61	0.67	29.7
West	:: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.281	4.6	LOS A	1.4	9.6	0.20	0.48	0.20	35.6
11	T1	502	0.0	502	0.0	0.345	4.5	LOS A	1.9	13.3	0.20	0.42	0.20	49.5
12	R2	4	0.0	4	0.0	0.345	9.2	LOS A	1.9	13.3	0.20	0.42	0.20	36.1
12u	U	5	0.0	5	0.0	0.345	11.3	LOS A	1.9	13.3	0.20	0.42	0.20	33.1
Appr	oach	873	0.0	873	0.0	0.345	4.6	LOS A	1.9	13.3	0.20	0.45	0.20	43.7
All Vehic	cles	1785	0.2	1785	0.2	0.347	5.1	LOSA	2.5	17.6	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:09 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2024 W Aprv Thursday Peak - Import (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	200		[Veh. veh	Dist]		Rate	Cycles	Icm/b
South	h. Vans	atic Stree		Veri/II	/0	V/C	sec	_	ven	m		_	_	km/h
1	L2	1	0.0	1	0.0	0.007	2.4	LOS A	0.0	0.2	0.54	0.47	0.54	33.1
2	T1	2	0.0	2	0.0	0.007	2.4	LOSA	0.0	0.2	0.54	0.47	0.54	25.3
3	R2	2	0.0	2	0.0	0.007	5.1	LOSA	0.0	0.2	0.54	0.47	0.54	41.2
3u	U	1	0.0	1	0.0	0.007	5.9	LOSA	0.0	0.2	0.54	0.47	0.54	22.0
Appr		6	0.0	6	0.0	0.007	3.9	LOSA	0.0	0.2	0.54	0.47	0.54	31.6
East:	High	Street (W)											
4	L2	3	33.0	3	33.0	0.263	5.6	LOS A	1.3	9.3	0.35	0.49	0.35	43.6
5	T1	543	0.0	543	0.0	0.263	5.1	LOS A	1.3	9.3	0.35	0.52	0.35	47.3
6	R2	86	0.0	86	0.0	0.263	9.7	LOS A	1.3	9.1	0.36	0.56	0.36	43.9
6u	U	2	0.0	2	0.0	0.263	11.9	LOS A	1.3	9.1	0.36	0.56	0.36	50.4
Appr	oach	634	0.2	634	0.2	0.263	5.7	LOS A	1.3	9.3	0.35	0.52	0.35	46.8
North	n: Aqua	atic Street	(N)											
7	L2	113	0.0	113	0.0	0.369	4.1	LOS A	2.8	19.5	0.70	0.64	0.70	34.4
8	T1	1	0.0	1	0.0	0.369	4.0	LOS A	2.8	19.5	0.70	0.64	0.70	23.6
9	R2	207	1.0	207	1.0	0.369	6.8	LOS A	2.8	19.5	0.70	0.64	0.70	26.5
9u	U	2	0.0	2	0.0	0.369	7.6	LOS A	2.8	19.5	0.70	0.64	0.70	33.2
Appr	oach	323	0.6	323	0.6	0.369	5.9	LOS A	2.8	19.5	0.70	0.64	0.70	29.3
West	:: High	Street (W	/)											
10	L2	369	0.0	369	0.0	0.291	4.6	LOS A	1.4	10.1	0.21	0.49	0.21	35.6
11	T1	539	0.0	539	0.0	0.371	4.6	LOS A	2.1	14.9	0.21	0.43	0.21	49.4
12	R2	4	0.0	4	0.0	0.371	9.2	LOS A	2.1	14.9	0.21	0.43	0.21	36.0
12u	U	5	0.0	5	0.0	0.371	11.3	LOS A	2.1	14.9	0.21	0.43	0.21	33.0
Appr	oach	917	0.0	917	0.0	0.371	4.6	LOSA	2.1	14.9	0.21	0.45	0.21	43.8
All Vehic	cles	1880	0.2	1880	0.2	0.371	5.2	LOSA	2.8	19.5	0.35	0.51	0.35	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:09 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic Pl.sip9

Site: 4 [2024 W Dev Thursday Peak - Import (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service		ACK OF EUE	Prop. E Que	ffective Stop	Aver. No.	Aver. Speed
		[Total	HV]	[Total	HV]				[Veh.	Dist]		Rate	Cycles	
		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	•	atic Stree	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.4	LOS A	0.0	0.2	0.53	0.46	0.53	33.2
2	T1	2	0.0	2	0.0	0.007	2.3	LOS A	0.0	0.2	0.53	0.46	0.53	25.4
3	R2	2	0.0	2	0.0	0.007	5.0	LOS A	0.0	0.2	0.53	0.46	0.53	41.4
3u	U	1	0.0	1	0.0	0.007	5.8	LOS A	0.0	0.2	0.53	0.46	0.53	22.1
Appr	oach	6	0.0	6	0.0	0.007	3.8	LOS A	0.0	0.2	0.53	0.46	0.53	31.7
East:	High :	Street (W)											
4	L2	3	33.0	3	33.0	0.249	5.6	LOS A	1.2	8.6	0.34	0.49	0.34	43.7
5	T1	516	0.0	516	0.0	0.249	5.0	LOS A	1.2	8.6	0.34	0.51	0.34	47.4
6	R2	83	0.0	83	0.0	0.249	9.7	LOS A	1.2	8.5	0.35	0.56	0.35	44.0
6u	U	2	0.0	2	0.0	0.249	11.8	LOSA	1.2	8.5	0.35	0.56	0.35	50.5
Appr	oach	604	0.2	604	0.2	0.249	5.7	LOS A	1.2	8.6	0.34	0.52	0.34	46.9
North	n: Aqua	atic Street	(N)											
7	L2	110	0.0	110	0.0	0.352	3.8	LOS A	2.6	18.0	0.68	0.62	0.68	34.7
8	T1	1	0.0	1	0.0	0.352	3.7	LOS A	2.6	18.0	0.68	0.62	0.68	23.9
9	R2	202	1.0	202	1.0	0.352	6.5	LOS A	2.6	18.0	0.68	0.62	0.68	26.8
9u	U	2	0.0	2	0.0	0.352	7.3	LOS A	2.6	18.0	0.68	0.62	0.68	33.6
Appr	oach	315	0.6	315	0.6	0.352	5.5	LOS A	2.6	18.0	0.68	0.62	0.68	29.6
West	:: High	Street (W	/)											
10	L2	364	0.0	364	0.0	0.284	4.6	LOS A	1.4	9.7	0.20	0.48	0.20	35.6
11	T1	511	0.0	511	0.0	0.352	4.6	LOS A	2.0	13.7	0.21	0.43	0.21	49.5
12	R2	4	0.0	4	0.0	0.352	9.2	LOS A	2.0	13.7	0.21	0.43	0.21	36.1
12u	U	5	0.0	5	0.0	0.352	11.3	LOSA	2.0	13.7	0.21	0.43	0.21	33.1
Appr	oach	884	0.0	884	0.0	0.352	4.6	LOS A	2.0	13.7	0.21	0.45	0.21	43.7
All Vehic	cles	1809	0.2	1809	0.2	0.352	5.1	LOSA	2.6	18.0	0.33	0.50	0.33	41.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:10 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic Pl.sip9

Site: 4 [2024 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance		_		_	_					
	Turn	INP		DEM.		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Soutl	n: Aqua	atic Stree	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.4	LOSA	0.0	0.2	0.54	0.47	0.54	33.1
2	T1	2	0.0	2	0.0	0.007	2.3	LOS A	0.0	0.2	0.54	0.47	0.54	25.4
3	R2	2	0.0	2	0.0	0.007	5.0	LOS A	0.0	0.2	0.54	0.47	0.54	41.3
3u	U	11	0.0	1	0.0	0.007	5.9	LOS A	0.0	0.2	0.54	0.47	0.54	22.1
Appr	oach	6	0.0	6	0.0	0.007	3.8	LOSA	0.0	0.2	0.54	0.47	0.54	31.7
East:	High :	Street (W)											
4	L2	3	33.0	3	33.0	0.261	5.6	LOS A	1.3	9.2	0.34	0.49	0.34	43.6
5	T1	547	0.0	547	0.0	0.261	5.0	LOS A	1.3	9.2	0.35	0.51	0.35	47.4
6	R2	82	0.0	82	0.0	0.261	9.7	LOS A	1.3	9.0	0.35	0.55	0.35	44.0
6u	U	2	0.0	2	0.0	0.261	11.8	LOS A	1.3	9.0	0.35	0.55	0.35	50.5
Appr	oach	634	0.2	634	0.2	0.261	5.7	LOS A	1.3	9.2	0.35	0.52	0.35	46.9
North	n: Aqua	itic Street	: (N)											
7	L2	109	0.0	109	0.0	0.358	4.2	LOS A	2.7	18.8	0.70	0.64	0.70	34.3
8	T1	1	0.0	1	0.0	0.358	4.1	LOS A	2.7	18.8	0.70	0.64	0.70	23.6
9	R2	200	1.0	200	1.0	0.358	6.9	LOS A	2.7	18.8	0.70	0.64	0.70	26.5
9u	U	2	0.0	2	0.0	0.358	7.7	LOS A	2.7	18.8	0.70	0.64	0.70	33.2
Appr	oach	312	0.6	312	0.6	0.358	5.9	LOS A	2.7	18.8	0.70	0.64	0.70	29.3
West	: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.286	4.6	LOS A	1.4	9.8	0.20	0.49	0.20	35.6
11	T1	546	0.0	546	0.0	0.374	4.6	LOS A	2.1	15.0	0.21	0.43	0.21	49.5
12	R2	4	0.0	4	0.0	0.374	9.2	LOS A	2.1	15.0	0.21	0.43	0.21	36.0
12u	U	5	0.0	5	0.0	0.374	11.3	LOS A	2.1	15.0	0.21	0.43	0.21	33.0
Appr	oach	917	0.0	917	0.0	0.374	4.6	LOS A	2.1	15.0	0.21	0.45	0.21	44.0
All Vehic	eles	1869	0.2	1869	0.2	0.374	5.2	LOSA	2.7	18.8	0.34	0.50	0.34	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:10 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance		_								
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 11		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
Sout	•	atic Stree	t (S)											
1	L2	1	0.0	1	0.0	0.007	2.4	LOS A	0.0	0.2	0.54	0.47	0.54	33.1
2	T1	2	0.0	2	0.0	0.007	2.3	LOS A	0.0	0.2	0.54	0.47	0.54	25.4
3	R2	2	0.0	2	0.0	0.007	5.1	LOS A	0.0	0.2	0.54	0.47	0.54	41.3
3u	U	11	0.0	1	0.0	0.007	5.9	LOS A	0.0	0.2	0.54	0.47	0.54	22.0
Appr	oach	6	0.0	6	0.0	0.007	3.9	LOS A	0.0	0.2	0.54	0.47	0.54	31.6
East	High	Street (W)											
4	L2	3	33.0	3	33.0	0.264	5.6	LOS A	1.3	9.4	0.34	0.49	0.34	43.6
5	T1	555	0.0	555	0.0	0.264	5.0	LOS A	1.3	9.4	0.35	0.51	0.35	47.4
6	R2	82	0.0	82	0.0	0.264	9.7	LOS A	1.3	9.2	0.35	0.55	0.35	44.0
6u	U	2	0.0	2	0.0	0.264	11.9	LOS A	1.3	9.2	0.35	0.55	0.35	50.5
Appr	oach	642	0.2	642	0.2	0.264	5.7	LOSA	1.3	9.4	0.35	0.52	0.35	46.9
North	n: Aqua	itic Street	(N)											
7	L2	109	0.0	109	0.0	0.358	4.2	LOS A	2.7	18.9	0.71	0.64	0.71	34.3
8	T1	1	0.0	1	0.0	0.358	4.1	LOS A	2.7	18.9	0.71	0.64	0.71	23.6
9	R2	200	1.0	200	1.0	0.358	6.9	LOSA	2.7	18.9	0.71	0.64	0.71	26.5
9u	U	2	0.0	2	0.0	0.358	7.7	LOS A	2.7	18.9	0.71	0.64	0.71	33.1
Appr	oach	312	0.6	312	0.6	0.358	6.0	LOSA	2.7	18.9	0.71	0.64	0.71	29.2
West	:: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.286	4.6	LOS A	1.4	9.8	0.20	0.49	0.20	35.6
11	T1	549	0.0	549	0.0	0.376	4.6	LOS A	2.2	15.1	0.21	0.43	0.21	49.5
12	R2	4	0.0	4	0.0	0.376	9.2	LOS A	2.2	15.1	0.21	0.43	0.21	36.0
12u	U	5	0.0	5	0.0	0.376	11.3	LOS A	2.2	15.1	0.21	0.43	0.21	33.0
Appr	oach	920	0.0	920	0.0	0.376	4.6	LOS A	2.2	15.1	0.21	0.45	0.21	44.0
All Vehic	cles	1880	0.2	1880	0.2	0.376	5.2	LOSA	2.7	18.9	0.34	0.50	0.34	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:11 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 4 [2034 W SENS Thursday Peak (Site Folder: Thurs PM)]

Intersection: High Street/Acquatic Place

Thursday PM

Configuration: Existing Site Category: (None)

Roundabout

Vehi	cle M	ovemen	t Perfo	rmance										
Mov ID	Turn	INP VOLU [Total	MES HV]	DEM FLO [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
0 11		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
	•	atic Stree	` '											
1	L2	1	0.0	1	0.0	0.008	2.5	LOS A	0.0	0.2	0.55	0.48	0.55	33.0
2	T1	2	0.0	2	0.0	0.008	2.4	LOS A	0.0	0.2	0.55	0.48	0.55	25.3
3	R2	2	0.0	2	0.0	0.008	5.2	LOS A	0.0	0.2	0.55	0.48	0.55	41.1
3u	U	11	0.0	1	0.0	0.008	6.0	LOS A	0.0	0.2	0.55	0.48	0.55	21.9
Appr	oach	6	0.0	6	0.0	0.008	4.0	LOS A	0.0	0.2	0.55	0.48	0.55	31.5
East:	High	Street (W)											
4	L2	3	33.0	3	33.0	0.280	5.6	LOS A	1.5	10.2	0.35	0.49	0.35	43.5
5	T1	595	0.0	595	0.0	0.280	5.0	LOS A	1.5	10.2	0.35	0.52	0.35	47.4
6	R2	82	0.0	82	0.0	0.280	9.7	LOS A	1.4	10.0	0.36	0.55	0.36	44.1
6u	U	2	0.0	2	0.0	0.280	11.9	LOS A	1.4	10.0	0.36	0.55	0.36	50.6
Appr	oach	682	0.1	682	0.1	0.280	5.6	LOSA	1.5	10.2	0.36	0.52	0.36	46.9
North	n: Aqua	itic Street	(N)											
7	L2	109	0.0	109	0.0	0.370	4.8	LOS A	2.9	20.4	0.74	0.67	0.74	33.8
8	T1	1	0.0	1	0.0	0.370	4.7	LOS A	2.9	20.4	0.74	0.67	0.74	23.1
9	R2	200	1.0	200	1.0	0.370	7.5	LOS A	2.9	20.4	0.74	0.67	0.74	26.1
9u	U	2	0.0	2	0.0	0.370	8.3	LOSA	2.9	20.4	0.74	0.67	0.74	32.5
Appr	oach	312	0.6	312	0.6	0.370	6.5	LOS A	2.9	20.4	0.74	0.67	0.74	28.8
West	:: High	Street (W	/)											
10	L2	362	0.0	362	0.0	0.290	4.6	LOSA	1.4	10.0	0.21	0.49	0.21	35.6
11	T1	593	0.0	593	0.0	0.404	4.6	LOS A	2.4	17.0	0.22	0.43	0.22	49.4
12	R2	4	0.0	4	0.0	0.404	9.2	LOS A	2.4	17.0	0.22	0.43	0.22	35.9
12u	U	5	0.0	5	0.0	0.404	11.3	LOS A	2.4	17.0	0.22	0.43	0.22	33.0
Appr	oach	964	0.0	964	0.0	0.404	4.6	LOS A	2.4	17.0	0.21	0.45	0.21	44.2
All Vehic	cles	1964	0.2	1964	0.2	0.404	5.3	LOSA	2.9	20.4	0.35	0.51	0.35	41.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:45:11 AM Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\8) High St-Aquatic

Pl.sip9

Site: 3 [2034 W SENS Thusday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	30	42	76	98
Green Time (sec)	24	6	28	16	26
Phase Time (sec)	30	12	34	22	32
Phase Split	23%	9%	26%	17%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:02 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	cle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Bruc	e Hwy (S	5)											
1	L2	260	3.0	260	3.0	0.183	9.3	LOS A	3.5	21.8	0.27	0.66	0.27	55.7
2	T1	766	2.0	766	2.0	0.457	29.5	LOS C	18.1	111.0	0.76	0.66	0.76	44.8
3	R2	576	0.0	576	0.0	* 0.749	64.5	LOS E	19.0	114.1	1.00	0.87	1.04	22.6
Appr	oach	1602	1.4	1602	1.4	0.749	38.8	LOS C	19.0	114.1	0.76	0.73	0.78	36.6
East	: High	Street (E)												
4	L2	374	0.0	374	0.0	0.322	15.7	LOS B	10.5	62.7	0.49	0.70	0.49	41.7
5	T1	307	2.0	307	2.0	* 0.759	66.4	LOS E	13.7	84.0	1.00	0.88	1.10	18.9
6	R2	86	1.0	86	1.0	0.759	72.1	LOS F	13.5	82.1	1.00	0.88	1.10	21.1
Appr	oach	767	0.9	767	0.9	0.759	42.3	LOS C	13.7	84.0	0.75	0.79	0.80	27.0
North	n: Bruc	e Hwy (N)											
7	L2	109	0.0	109	0.0	0.101	12.1	LOS A	2.0	11.9	0.37	0.67	0.37	47.8
8	T1	803	3.0	803	3.0	0.776	50.3	LOS D	27.1	167.3	0.97	0.87	1.00	35.7
9	R2	66	0.0	66	0.0	* 0.773	83.8	LOS F	5.7	34.5	1.00	0.85	1.23	24.3
9u	U	12	0.0	12	0.0	0.773	84.0	LOS F	5.7	34.5	1.00	0.85	1.23	25.6
Appr	oach	990	2.4	990	2.4	0.776	48.7	LOS D	27.1	167.3	0.91	0.84	0.95	35.2
West	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.457	59.7	LOS E	9.6	57.4	0.89	0.74	0.89	29.2
11	T1	272	0.0	272	0.0	* 0.457	53.7	LOS D	10.1	60.9	0.89	0.74	0.89	21.6
12	R2	197	4.0	197	4.0	0.457	59.1	LOS E	10.1	60.9	0.88	0.78	0.88	28.7
Appr	oach	506	1.6	506	1.6	0.457	56.3	LOS D	10.1	60.9	0.88	0.76	0.88	25.4
All Vehic	cles	3865	1.6	3865	1.6	0.776	44.3	LOS D	27.1	167.3	0.81	0.78	0.84	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		Tale	sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	62.4	LOS F	0.2	0.2	0.94	0.94	126.2	83.0	0.66
North: Bruce I	Hwy (N)										
P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48

All	100	100	63.3	LOS F	0.2	0.2	0.95	0.95	114.1	66.0	0.58
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:53 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV1	FLO	ws HV]	Satn	Delay	Service	QUE [Veh.	±UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	S)											
1	L2	269	3.0	269	3.0	0.190	9.6	LOS A	3.8	23.6	0.28	0.66	0.28	55.5
2	T1	793	2.0	793	2.0	0.481	30.5	LOS C	19.2	117.5	0.77	0.68	0.77	44.2
3	R2	597	0.0	597	0.0	* 0.776	65.9	LOS E	20.1	120.5	1.00	0.88	1.07	22.3
Appr	oach	1659	1.4	1659	1.4	0.776	39.8	LOS C	20.1	120.5	0.77	0.75	0.80	36.1
East	: High	Street (E))											
4	L2	381	0.0	381	0.0	0.334	16.3	LOS B	11.0	66.1	0.51	0.71	0.51	41.3
5	T1	312	2.0	312	2.0	* 0.773	67.0	LOS E	14.1	86.1	1.00	0.89	1.11	18.8
6	R2	88	1.0	88	1.0	0.773	72.7	LOS F	13.8	84.2	1.00	0.89	1.11	21.0
Appr	oach	781	0.9	781	0.9	0.773	42.9	LOS D	14.1	86.1	0.76	0.80	0.82	26.8
North	h: Bruc	e Hwy (N	l)											
7	L2	113	0.0	113	0.0	0.106	12.4	LOS A	2.1	12.8	0.38	0.68	0.38	47.5
8	T1	832	3.0	832	3.0	0.804	52.2	LOS D	28.9	178.4	0.98	0.89	1.04	35.1
9	R2	68	0.0	68	0.0	* 0.715	81.2	LOS F	5.8	35.1	1.00	0.82	1.15	24.8
9u	U	13	0.0	13	0.0	0.715	81.4	LOS F	5.8	35.1	1.00	0.82	1.15	26.0
Appr	oach	1026	2.4	1026	2.4	0.804	50.1	LOS D	28.9	178.4	0.91	0.87	0.98	34.7
West	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.465	59.8	LOS E	9.8	58.6	0.89	0.75	0.89	29.2
11	T1	277	0.0	277	0.0	* 0.465	53.8	LOS D	10.3	62.1	0.89	0.74	0.89	21.6
12	R2	201	4.0	201	4.0	0.465	59.2	LOS E	10.3	62.1	0.88	0.78	0.88	28.7
Appr	oach	515	1.6	515	1.6	0.465	56.4	LOS D	10.3	62.1	0.89	0.76	0.89	25.4
All Vehic	cles	3981	1.6	3981	1.6	0.804	45.2	LOS D	28.9	178.4	0.82	0.79	0.86	32.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian l	Pedestrian Movement Performance													
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time		Aver. Speed			
	ped/h	ped/h	sec		ped	m Î			sec	m	m/sec			
East: High Str	reet (E)													
P2 Full	50	50	63.3	LOS F	0.2	0.2	0.95	0.95	127.2	83.0	0.65			
North: Bruce I	Hwy (N)													
P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48			

All	100	100	63.8	LOS F	0.2	0.2	0.96	0.96	114.6	66.0	0.58
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W Aprv Saturday Peak - Import (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

	MAND Deg. OWS Satn HV] % v/c	Aver. Level of Delay Service	95% BACK OF QUEUE	Prop. Effective	Aver. Aver.
[Total veh/h % veh/h] South: Bruce Hwy (S) 1	HV]	Delay Service	QUEUE		
veh/h % veh/h South: Bruce Hwy (S) 1 L2 269 3.0 269 2 T1 793 2.0 793 3 R2 623 0.0 623 Approach 1685 1.4 1685 East: High Street (E) 4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)			[Veh. Dist]	Que Stop Rate	No. Speed Cycles
1 L2 269 3.0 269 2 T1 793 2.0 793 3 R2 623 0.0 623 Approach 1685 1.4 1685 East: High Street (E) 4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)		sec	veh m	Rate	km/h
2 T1 793 2.0 793 3 R2 623 0.0 623 Approach 1685 1.4 1685 East: High Street (E) 4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)					
3 R2 623 0.0 623 Approach 1685 1.4 1685 East: High Street (E) 4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)	3.0 0.192	9.8 LOS A	4.0 24.5	0.29 0.66	0.29 55.3
Approach 1685 1.4 1685 East: High Street (E) 4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)	2.0 0.481	30.5 LOS C	19.2 117.5	0.77 0.68	0.77 44.2
East: High Street (E) 4	0.0 * 0.810	68.0 LOS E	21.5 129.2	1.00 0.89	1.11 21.8
4 L2 406 0.0 406 5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)	1.4 0.810	41.1 LOS C	21.5 129.2	0.78 0.75	0.82 35.5
5 T1 336 2.0 336 6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)					
6 R2 89 1.0 89 Approach 831 0.9 831 North: Bruce Hwy (N)	0.0 0.360	17.0 LOS B	12.3 73.6	0.53 0.72	0.53 40.8
Approach 831 0.9 831 North: Bruce Hwy (N)	2.0 * 0.780	66.5 LOS E	14.9 91.4	1.00 0.89	1.11 18.9
North: Bruce Hwy (N)	1.0 0.780	72.2 LOS F	14.7 89.5	1.00 0.89	1.12 21.1
3 ()	0.9 0.780	42.9 LOS D	14.9 91.4	0.77 0.81	0.83 26.8
7 12 115 0.0 115					
	0.0 0.110	13.0 LOS A	2.3 13.7	0.40 0.68	0.40 46.9
8 T1 839 3.0 839	3.0 0.831	55.3 LOS D	30.1 186.1	0.99 0.92	1.08 34.1
9 R2 69 0.0 69	0.0 * 0.814	85.3 LOS F	6.1 36.8	1.00 0.87	1.30 24.0
9u U 13 0.0 13	0.0 0.814	85.5 LOS F	6.1 36.8	1.00 0.87	1.30 25.3
Approach 1036 2.4 1036	2.4 0.831	53.0 LOS D	30.1 186.1	0.92 0.89	1.02 33.7
West: Alexandra Street (W)					
10 L2 37 0.0 37	0.0 0.485	60.1 LOS E	10.3 61.6	0.90 0.75	0.90 29.2
11 T1 300 0.0 300	0.0 * 0.485	54.1 LOS D	10.8 65.3	0.89 0.75	0.89 21.6
12 R2 201 4.0 201	4.0 0.485	59.4 LOS E	10.8 65.3	0.89 0.79	0.89 28.6
Approach 538 1.5 538	1.5 0.485	56.5 LOS D	10.8 65.3	0.89 0.76	0.89 25.2
All 4090 1.6 4090 Vehicles	1.6 0.831	46.5 LOS D	30.1 186.1	0.83 0.80	0.88 32.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance Mov Input Dem. Aver. Level of AVERAGE BACK OF Prop. Effective Travel Travel Aver.													
			Level of AV Service			Prop. Effe Que	ective Stop	Travel Time		Aver. Speed			
od/b	nod/b	200					Rate	000	, m	m/ooo			
et (E)	pea/n	sec		pea	111			sec	111	m/sec			
50	50	63.3	LOS F	0.2	0.2	0.95	0.95	127.2	83.0	0.65			
	vol. ed/h ret (E)	vol. Flow ed/h ped/h et (E)	vol. Flow Delay ed/h ped/h sec et (E)	vol. Flow Delay Service ed/h ped/h sec et (E)	vol. Flow Delay Service QUEUE [Ped ed/h ped/h sec ped et (E)	vol. Flow Delay Service QUEUE [Ped Dist] ed/h ped/h sec ped m	vol. Flow Delay Service QUEUE Que [Ped Dist] ed/h ped/h sec ped m	vol. Flow Delay Service QUEUE Que Stop [Ped Dist] Rate ed/h ped/h sec ped m	vol. Flow Delay Service QUEUE Que Stop Time [Ped Dist] Rate ed/h ped/h sec ped m sec	vol. Flow Delay Service QUEUE Que Stop Time Dist. S [Ped Dist] Rate ed/h ped/h sec ped m sec m et (E)			

P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48
All Pedestri	100 ans	100	63.8	LOS F	0.2	0.2	0.96	0.96	114.6	66.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra St.sip9

Site: 3 [2024 W Dev Saturday Peak - Import (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		_evel of	95% BA			Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay :	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Bruc	ce Hwy (S												
1	L2	269	3.0	269	3.0	0.190	9.6	LOS A	3.8	23.6	0.28	0.66	0.28	55.5
2	T1	793	2.0	793	2.0	0.481	30.5	LOS C	19.2	117.5	0.77	0.68	0.77	44.2
3	R2	604	0.0	604	0.0	* 0.785	66.4	LOS E	20.5	122.7	1.00	0.88	1.08	22.2
Appr	oach	1666	1.4	1666	1.4	0.785	40.1	LOS C	20.5	122.7	0.77	0.75	0.80	36.0
East	: High	Street (E)												
4	L2	387	0.0	387	0.0	0.340	16.3	LOS B	11.3	67.6	0.51	0.71	0.51	41.3
5	T1	318	2.0	318	2.0	* 0.784	67.5	LOS E	14.4	87.9	1.00	0.90	1.13	18.7
6	R2	88	1.0	88	1.0	0.784	73.2	LOS F	14.1	86.0	1.00	0.90	1.13	20.9
Appr	oach	793	0.9	793	0.9	0.784	43.2	LOS D	14.4	87.9	0.76	0.81	0.83	26.7
North	h: Bruc	e Hwy (N)											
7	L2	113	0.0	113	0.0	0.106	12.4	LOS A	2.1	12.8	0.38	0.68	0.38	47.5
8	T1	834	3.0	834	3.0	0.806	52.4	LOS D	29.0	179.4	0.98	0.90	1.04	35.0
9	R2	69	0.0	69	0.0	* 0.723	81.4	LOS F	5.9	35.6	1.00	0.83	1.16	24.7
9u	U	13	0.0	13	0.0	0.723	81.6	LOS F	5.9	35.6	1.00	0.83	1.16	26.0
Appr	oach	1029	2.4	1029	2.4	0.806	50.3	LOS D	29.0	179.4	0.91	0.87	0.98	34.6
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	37	0.0	37	0.0	0.470	59.9	LOS E	9.9	59.4	0.89	0.75	0.89	29.2
11	T1	283	0.0	283	0.0	* 0.470	53.9	LOS D	10.4	62.9	0.89	0.74	0.89	21.6
12	R2	201	4.0	201	4.0	0.470	59.3	LOS E	10.4	62.9	0.89	0.78	0.89	28.6
Appr	oach	521	1.5	521	1.5	0.470	56.4	LOS D	10.4	62.9	0.89	0.76	0.89	25.3
All Vehic	cles	4009	1.6	4009	1.6	0.806	45.5	LOS D	29.0	179.4	0.82	0.79	0.86	32.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance													
Mov	Input	Dem.	Aver.			BACK OF	Prop. Ef				Aver.			
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	:UE Dist]	Que	Stop Rate	Time	Dist. S	Speed			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec			
East: High Str	eet (E)													
P2 Full	50	50	63.3	LOS F	0.2	0.2	0.95	0.95	127.2	83.0	0.65			
North: Bruce I	Hwy (N)													

P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48
All Pedestrians	100	100	63.8	LOS F	0.2	0.2	0.96	0.96	114.6	66.0	0.58

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:55 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra St.sip9

Site: 3 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	MES HV]	FLO' [Total		Satn	Delay	Service	QUE		Que	Stop	No.	Speed
		veh/h	пv ј %	veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Bru	ce Hwy (S	5)											
1	L2	269	3.0	269	3.0	0.192	9.8	LOS A	4.0	24.5	0.29	0.66	0.29	55.3
2	T1	793	2.0	793	2.0	0.481	30.5	LOS C	19.2	117.5	0.77	0.68	0.77	44.2
3	R2	616	0.0	616	0.0	* 0.801	67.4	LOS E	21.1	126.7	1.00	0.89	1.10	22.0
Appr	oach	1678	1.4	1678	1.4	0.801	40.7	LOS C	21.1	126.7	0.78	0.75	0.81	35.7
East	: High	Street (E)												
4	L2	399	0.0	399	0.0	0.352	16.9	LOS B	11.9	71.6	0.52	0.71	0.52	40.9
5	T1	367	2.0	367	2.0	* 0.791	67.1	LOS E	15.2	93.2	1.00	0.90	1.13	18.8
6	R2	65	1.0	65	1.0	0.791	72.7	LOS F	15.1	91.8	1.00	0.90	1.13	21.2
Appr	oach	831	1.0	831	1.0	0.791	43.4	LOS D	15.2	93.2	0.77	0.81	0.84	26.6
Nort	h: Bruc	e Hwy (N)											
7	L2	114	0.0	114	0.0	0.108	12.7	LOS A	2.2	13.2	0.39	0.68	0.39	47.2
8	T1	832	3.0	832	3.0	0.824	54.7	LOS D	29.6	183.0	0.99	0.92	1.07	34.3
9	R2	68	0.0	68	0.0	* 0.804	84.9	LOS F	6.0	36.2	1.00	0.87	1.28	24.1
9u	U	13	0.0	13	0.0	0.804	85.1	LOS F	6.0	36.2	1.00	0.87	1.28	25.4
Appr	oach	1027	2.4	1027	2.4	0.824	52.4	LOS D	29.6	183.0	0.92	0.89	1.01	33.9
Wes	t: Alexa	andra Stre	et (W)											
10	L2	37	0.0	37	0.0	0.481	60.0	LOS E	10.2	60.9	0.90	0.75	0.90	29.2
11	T1	295	0.0	295	0.0	* 0.481	54.0	LOS D	10.7	64.6	0.89	0.75	0.89	21.6
12	R2	201	4.0	201	4.0	0.481	59.4	LOS E	10.7	64.6	0.89	0.79	0.89	28.6
Appr	oach	533	1.5	533	1.5	0.481	56.5	LOS D	10.7	64.6	0.89	0.76	0.89	25.2
All Vehi	cles	4069	1.6	4069	1.6	0.824	46.3	LOS D	29.6	183.0	0.83	0.80	0.88	32.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perf	orman	ce							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed
	ped/h	ped/h	sec		ped	m m		rtate	sec		m/sec
East: High Str	eet (E)										
P2 Full	50	50	63.3	LOS F	0.2	0.2	0.95	0.95	127.2	83.0	0.65
North: Bruce I	Hwy (N)										
P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48

All	100	100	63.8	LOS F	0.2	0.2	0.96	0.96	114.6	66.0	0.58
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM/		Deg.		Level of	95% BA			ffective	Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO ¹ [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven.	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	293	3.0	293	3.0	0.210	10.1	LOS A	4.6	28.2	0.30	0.67	0.30	55.0
2	T1	863	2.0	863	2.0	0.532	32.1	LOS C	21.7	132.6	0.80	0.71	0.80	43.4
3	R2	650	0.0	650	0.0	* 0.845	71.1	LOS F	23.2	139.5	1.00	0.91	1.15	21.2
Appr	oach	1806	1.4	1806	1.4	0.845	42.5	LOS D	23.2	139.5	0.79	0.77	0.85	35.0
East	: High	Street (E)												
4	L2	417	0.0	417	0.0	0.386	19.1	LOS B	13.8	82.7	0.57	0.73	0.57	39.3
5	T1	342	2.0	342	2.0	* 0.846	71.6	LOS F	16.2	98.9	1.00	0.95	1.21	18.0
6	R2	96	1.0	96	1.0	0.846	77.3	LOS F	15.9	96.7	1.00	0.95	1.21	20.1
Appr	oach	855	0.9	855	0.9	0.846	46.6	LOS D	16.2	98.9	0.79	0.84	0.90	25.6
Nortl	h: Bruc	e Hwy (N)											
7	L2	123	0.0	123	0.0	0.119	13.4	LOS A	2.5	15.2	0.41	0.68	0.41	46.6
8	T1	905	3.0	905	3.0	* 0.874	60.0	LOS E	34.5	213.1	0.99	0.98	1.15	32.6
9	R2	74	0.0	74	0.0	0.699	79.8	LOS F	6.3	37.7	1.00	0.82	1.12	25.1
9u	U	14	0.0	14	0.0	0.699	80.0	LOS F	6.3	37.7	1.00	0.82	1.12	26.3
Appr	oach	1116	2.4	1116	2.4	0.874	56.4	LOS D	34.5	213.1	0.93	0.93	1.06	32.6
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	41	0.0	41	0.0	0.510	60.4	LOS E	10.8	65.0	0.90	0.76	0.90	29.1
11	T1	303	0.0	303	0.0	* 0.510	54.4	LOS D	11.4	69.0	0.90	0.76	0.90	21.5
12	R2	220	4.0	220	4.0	0.510	59.8	LOS E	11.4	69.0	0.90	0.79	0.90	28.5
Appr	oach	564	1.6	564	1.6	0.510	56.9	LOS E	11.4	69.0	0.90	0.77	0.90	25.3
All Vehi	cles	4341	1.6	4341	1.6	0.874	48.8	LOS D	34.5	213.1	0.84	0.83	0.92	31.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Podostrian	Movem	ont Borf	orman	20									
	Pedestrian Movement Performance												
Mov	Input	Dem.	Aver.	Level of .	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.		
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist.	Speed		
					[Ped	Dist]		Rate					
	ped/h	ped/h	sec		ped	m			sec	m	m/sec		
East: High St	reet (E)												
P2 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	128.1	83.0	0.65		
North: Bruce	Hwy (N)												
P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48		

All	100	100	64.3	LOS F	0.2	0.2	0.96	0.96	115.0	66.0	0.57
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEMAND		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV1	FLO	ws HV]	Satn	Delay	Service	QUE [Veh.	±UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	m m		Rate	Cycles	km/h
South: Bruce Hwy (S)														
1	L2	293	3.0	293	3.0	0.211	10.1	LOS A	4.6	28.2	0.30	0.67	0.30	55.0
2	T1	863	2.0	863	2.0	0.532	32.1	LOS C	21.7	132.6	0.80	0.71	0.80	43.4
3	R2	669	0.0	669	0.0	* 0.870	74.0	LOS F	24.6	147.8	1.00	0.93	1.19	20.7
Appr	oach	1825	1.4	1825	1.4	0.870	43.9	LOS D	24.6	147.8	0.79	0.78	0.86	34.5
East	: High	Street (E))											
4	L2	435	0.0	435	0.0	0.404	19.3	LOS B	14.7	88.0	0.58	0.74	0.58	39.1
5	T1	359	2.0	359	2.0	* 0.877	74.7	LOS F	17.2	105.4	1.00	0.98	1.27	17.4
6	R2	95	1.0	95	1.0	0.877	80.4	LOS F	16.9	103.2	1.00	0.98	1.27	19.6
Appr	oach	889	0.9	889	0.9	0.877	48.2	LOS D	17.2	105.4	0.79	0.86	0.93	25.1
Norti	h: Bruc	e Hwy (N	l)											
7	L2	124	0.0	124	0.0	0.121	13.7	LOS A	2.6	15.7	0.42	0.69	0.42	46.2
8	T1	905	3.0	905	3.0	* 0.874	60.0	LOS E	34.5	213.1	0.99	0.98	1.15	32.6
9	R2	74	0.0	74	0.0	0.699	79.8	LOS F	6.3	37.7	1.00	0.82	1.12	25.1
9u	U	14	0.0	14	0.0	0.699	80.0	LOS F	6.3	37.7	1.00	0.82	1.12	26.3
Appr	oach	1117	2.4	1117	2.4	0.874	56.4	LOS D	34.5	213.1	0.93	0.93	1.06	32.6
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	41	0.0	41	0.0	0.526	60.6	LOS E	11.3	67.6	0.91	0.76	0.91	29.0
11	T1	321	0.0	321	0.0	* 0.526	54.6	LOS D	11.8	71.1	0.91	0.76	0.91	21.4
12	R2	220	4.0	220	4.0	0.526	60.0	LOS E	11.8	71.1	0.90	0.80	0.90	28.5
Appr	oach	582	1.5	582	1.5	0.526	57.0	LOS E	11.8	71.1	0.90	0.77	0.90	25.1
All Vehic	cles	4413	1.6	4413	1.6	0.877	49.7	LOS D	34.5	213.1	0.84	0.83	0.93	31.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian	Movem	ent Perf	ormano	се							
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	Level of AVERAGE BACK OF Service QUEUE			fective Stop	Travel Time	Travel Dist.	Aver. Speed
	ped/h	ped/h	sec		[Ped ped	Dist] m		Rate	sec	m	m/sec
East: High Str		роалт	- 555		pou						111/000
P2 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	128.1	83.0	0.65
North: Bruce	Hwy (N)										
P3 Full	50	50	64.3	LOS F	0.2	0.2	0.96	0.96	102.0	49.0	0.48

All	100	100	64.3	LOS F	0.2	0.2	0.96	0.96	115.0	66.0	0.57
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:57 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

MOVEMENT SUMMARY

Site: 3 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	MES HV]	FLO' [Total	ws HV]	Satn	Delay	Service	QUE [Veh.	±UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	395	5.0	395	5.0	0.282	9.6	LOS A	5.6	35.5	0.31	0.67	0.31	55.1
2	T1	1253	3.0	1253	3.0	0.793	34.9	LOS C	35.3	218.0	0.93	0.84	0.93	42.0
3	R2	499	0.0	499	0.0	* 0.728	62.3	LOS E	15.4	92.5	1.00	0.86	1.05	23.1
Appr	oach	2147	2.7	2147	2.7	0.793	36.6	LOS C	35.3	218.0	0.83	0.81	0.84	38.6
East	: High	Street (E)												
4	L2	324	0.0	324	0.0	0.299	16.7	LOS B	9.0	54.2	0.52	0.71	0.52	41.0
5	T1	340	0.0	340	0.0	* 0.798	64.3	LOS E	13.5	80.7	1.00	0.91	1.16	19.4
6	R2	64	0.0	64	0.0	0.798	69.9	LOS E	13.3	79.6	1.00	0.91	1.16	21.7
Appr	oach	728	0.0	728	0.0	0.798	43.6	LOS D	13.5	80.7	0.79	0.82	0.88	26.4
North	h: Bruc	e Hwy (N)											
7	L2	63	2.0	63	2.0	0.059	12.0	LOS A	1.1	6.6	0.38	0.66	0.38	47.8
8	T1	822	5.0	822	5.0	0.798	48.9	LOS D	26.3	165.4	0.98	0.90	1.04	36.2
9	R2	59	0.0	59	0.0	* 0.797	81.0	LOS F	4.6	27.7	1.00	0.85	1.31	24.9
9u	U	7	0.0	7	0.0	0.797	81.2	LOS F	4.6	27.7	1.00	0.85	1.31	26.1
Appr	oach	951	4.5	951	4.5	0.798	48.7	LOS D	26.3	165.4	0.94	0.88	1.02	35.6
West	t: Alexa	andra Stre	eet (W)											
10	L2	26	0.0	26	0.0	0.549	55.4	LOS D	11.9	71.6	0.90	0.76	0.90	30.6
11	T1	322	0.0	322	0.0	* 0.549	49.6	LOS D	11.9	71.6	0.90	0.76	0.90	22.7
12	R2	303	4.0	303	4.0	0.549	54.9	LOS D	11.8	71.7	0.90	0.79	0.90	29.9
Appr	oach	651	1.9	651	1.9	0.549	52.3	LOS D	11.9	72.1	0.90	0.78	0.90	26.9
All Vehic	cles	4477	2.5	4477	2.5	0.798	42.6	LOS D	35.3	218.0	0.86	0.82	0.89	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	**	AVERAGE	BACK OF	Prop. Et	fective	Travel	Travel	Aver.
ID Crossing		Flow	Delay	Service	QUE	UE	Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	58.3	LOS E	0.2	0.2	0.95	0.95	122.2	83.0	0.68
North: Bruce I	Hwy (N)										
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51

All	100	100	58.8	LOS E	0.2	0.2	0.95	0.95	109.6	66.0	0.60
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:57 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

MOVEMENT SUMMARY

Site: 3 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	icle M	ovemen	t Perfo	rmance										
	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLU [Total	MES HV]	FLO' [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	:UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	409	5.0	409	5.0	0.293	9.6	LOS A	5.9	37.3	0.31	0.67	0.31	55.0
2	T1	1298	3.0	1298	3.0	* 0.856	41.1	LOS C	42.5	262.7	0.95	0.91	1.03	39.3
3	R2	518	0.0	518	0.0	0.725	61.4	LOS E	15.9	95.4	1.00	0.86	1.04	23.3
Appr	oach	2225	2.7	2225	2.7	0.856	40.0	LOS C	42.5	262.7	0.84	0.86	0.90	37.1
East	: High	Street (E)												
4	L2	331	0.0	331	0.0	0.313	17.8	LOS B	9.7	58.4	0.55	0.72	0.55	40.2
5	T1	347	0.0	347	0.0	* 0.814	65.2	LOS E	13.9	83.1	1.00	0.92	1.18	19.2
6	R2	65	0.0	65	0.0	0.814	70.8	LOS F	13.7	81.9	1.00	0.92	1.18	21.5
Appr	oach	743	0.0	743	0.0	0.814	44.5	LOS D	13.9	83.1	0.80	0.83	0.90	26.1
North	n: Bruc	e Hwy (N)											
7	L2	65	2.0	65	2.0	0.062	12.3	LOS A	1.1	7.0	0.39	0.67	0.39	47.5
8	T1	852	5.0	852	5.0	0.849	54.3	LOS D	29.1	183.2	0.99	0.95	1.13	34.4
9	R2	62	0.0	62	0.0	* 0.832	82.3	LOS F	4.9	29.3	1.00	0.87	1.38	24.6
9u	U	7	0.0	7	0.0	0.832	82.5	LOS F	4.9	29.3	1.00	0.87	1.38	25.9
Appr	oach	986	4.5	986	4.5	0.849	53.5	LOS D	29.1	183.2	0.95	0.93	1.10	33.9
West	t: Alexa	andra Stre	et (W)											
10	L2	27	0.0	27	0.0	0.567	55.5	LOS D	12.1	72.5	0.90	0.76	0.90	30.6
11	T1	328	0.0	328	0.0	* 0.567	49.6	LOS D	12.1	72.5	0.90	0.76	0.90	22.7
12	R2	309	4.0	309	4.0	0.567	55.1	LOS D	12.0	75.0	0.90	0.80	0.90	29.8
Appr	oach	664	1.9	664	1.9	0.567	52.4	LOS D	12.1	75.0	0.90	0.78	0.90	26.8
All Vehic	cles	4618	2.5	4618	2.5	0.856	45.4	LOS D	42.5	262.7	0.87	0.86	0.94	33.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Input	Dem.	Aver.	· ·	AVERAGE	BACK OF	Prop. Et	ffective	Travel	Travel	Aver.
ID Crossing		Flow	Delay	Service	QUE	EUE	Que	Stop	Time		Speed
					[Ped	Dist]		Rate			
	ped/h	ped/h	sec		ped	m			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67
North: Bruce I	Hwy (N)										
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51

All	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:58 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

MOVEMENT SUMMARY

Site: 3 [2024 W Dev Thusday Peak - Import (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	icle M	ovemen	t Perfo	rmance	_	_	_	_		_	_			_
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	th: Brud	ce Hwy (S												
1	L2	409	5.0	409	5.0	0.294	9.6	LOSA	5.9	37.3	0.31	0.67	0.31	55.0
2	T1	1298	3.0	1298	3.0	* 0.856	41.1	LOS C	42.5	262.9	0.95	0.91	1.03	39.2
3	R2	523	0.0	523	0.0	0.732	61.6	LOS E	16.1	96.7	1.00	0.86	1.05	23.3
Appr	roach	2230	2.7	2230	2.7	0.856	40.1	LOS C	42.5	262.9	0.84	0.86	0.90	37.1
East	:: High	Street (E)												
4	L2	336	0.0	336	0.0	0.319	17.8	LOS B	9.9	59.7	0.55	0.72	0.55	40.2
5	T1	352	0.0	352	0.0	* 0.824	65.8	LOS E	14.1	84.7	1.00	0.93	1.19	19.1
6	R2	65	0.0	65	0.0	0.824	71.4	LOS F	13.9	83.5	1.00	0.93	1.20	21.4
Appr	roach	753	0.0	753	0.0	0.824	44.9	LOS D	14.1	84.7	0.80	0.84	0.91	26.0
Nort	h: Bruc	e Hwy (N)											
7	L2	65	2.0	65	2.0	0.062	12.3	LOS A	1.1	7.0	0.39	0.67	0.39	47.5
8	T1	853	5.0	853	5.0	0.850	54.4	LOS D	29.1	183.6	0.99	0.96	1.13	34.4
9	R2	62	0.0	62	0.0	* 0.832	82.3	LOS F	4.9	29.3	1.00	0.87	1.38	24.6
9u	U	7	0.0	7	0.0	0.832	82.5	LOS F	4.9	29.3	1.00	0.87	1.38	25.9
Appı	roach	987	4.5	987	4.5	0.850	53.6	LOS D	29.1	183.6	0.95	0.93	1.10	33.9
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	27	0.0	27	0.0	0.574	55.5	LOS D	12.1	72.9	0.90	0.76	0.90	30.5
11	T1	333	0.0	333	0.0	* 0.574	49.7	LOS D	12.1	72.9	0.90	0.76	0.90	22.7
12	R2	309	4.0	309	4.0	0.574	55.1	LOS D	12.2	76.1	0.90	0.80	0.90	29.8
Appr	roach	669	1.8	669	1.8	0.574	52.4	LOS D	12.2	76.1	0.90	0.78	0.90	26.8
All Vehi	cles	4639	2.5	4639	2.5	0.856	45.5	LOS D	42.5	262.9	0.87	0.86	0.94	33.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	ormano	ce							
Mov .	Input	Dem.	Aver.			BACK OF	Prop. Et		Travel		Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67
North: Bruce I	Hwy (N)										

P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51
All Pedestrians	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:59 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra St.sip9

MOVEMENT SUMMARY

Site: 3 [2024 W Aprv Thusday Peak - Import (Site Folder: Thurs

PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

		Ovemen	t Perio	rmance										
	Turn	INP		DEM		Deg.		_evel of		ACK OF		Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO	WS HV]	Satn	Delay	Service	QU [Veh.	EUE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	409	5.0	409	5.0	0.295	9.9	LOS A	6.2	38.8	0.32	0.68	0.32	54.8
2	T1	1298	3.0	1298	3.0	* 0.858	41.3	LOS C	40.5	250.1	0.94	0.91	1.03	39.2
3	R2	540	0.0	540	0.0	0.756	62.6	LOS E	16.9	101.3	1.00	0.87	1.07	23.0
Appr	oach	2247	2.6	2247	2.6	0.858	40.7	LOS C	40.5	250.1	0.84	0.86	0.91	36.8
East	: High	Street (E)												
4	L2	353	0.0	353	0.0	0.338	18.5	LOS B	10.8	64.7	0.57	0.72	0.57	39.7
5	T1	367	0.0	367	0.0	* 0.855	68.2	LOS E	15.0	90.1	1.00	0.96	1.25	18.6
6	R2	66	0.0	66	0.0	0.855	73.9	LOS F	14.8	88.9	1.00	0.96	1.25	20.9
Appr	oach	786	0.0	786	0.0	0.855	46.3	LOS D	15.0	90.1	0.80	0.86	0.94	25.5
Nort	h: Bruc	e Hwy (N)											
7	L2	67	2.0	67	2.0	0.065	12.7	LOS A	1.2	7.5	0.40	0.67	0.40	47.2
8	T1	858	5.0	858	5.0	0.855	55.0	LOS D	29.5	185.9	0.99	0.96	1.14	34.2
9	R2	62	0.0	62	0.0	* 0.832	82.3	LOS F	4.9	29.3	1.00	0.87	1.38	24.6
9u	U	7	0.0	7	0.0	0.832	82.5	LOS F	4.9	29.3	1.00	0.87	1.38	25.9
Appr	oach	994	4.5	994	4.5	0.855	54.0	LOS D	29.5	185.9	0.95	0.94	1.10	33.7
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	27	0.0	27	0.0	0.594	55.6	LOS D	12.4	74.1	0.91	0.76	0.91	30.5
11	T1	348	0.0	348	0.0	* 0.594	49.7	LOS D	12.4	74.1	0.90	0.77	0.90	22.7
12	R2	309	4.0	309	4.0	0.594	55.4	LOS D	12.7	79.3	0.91	0.80	0.91	29.7
Appr	oach	684	1.8	684	1.8	0.594	52.5	LOS D	12.7	79.3	0.91	0.78	0.91	26.7
All Vehi	cles	4711	2.5	4711	2.5	0.858	46.2	LOS D	40.5	250.1	0.87	0.86	0.95	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Movem	ent Perl	ormano	ce							
Mov .	Input	Dem.	Aver.			BACK OF	Prop. Et		Travel		Aver.
ID Crossing	Vol.	Flow	Delay	Service	QUE [Ped	EUE Dist]	Que	Stop Rate	Time	Dist. S	Speed
	ped/h	ped/h	sec		ped	m ¯			sec	m	m/sec
East: High Str	eet (E)										
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67
North: Bruce I	Hwy (N)										

P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51
All Pedestrians	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra St.sip9

MOVEMENT SUMMARY

Site: 3 [2024 W SENS Thusday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehicle Movement Performance Mov Turn INPUT DEMAND Deg. Aver. Level of 95% BACK OF Prop. Effective Aver. Aver.														
	Turn													
ID		VOLU [Total	MES HV]	FLO' [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	:UE Dist]	Que	Stop Rate		Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	m m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	409	5.0	409	5.0	0.295	9.9	LOS A	6.2	38.8	0.32	0.68	0.32	54.8
2	T1	1298	3.0	1298	3.0	* 0.858	41.3	LOS C	40.5	250.1	0.94	0.91	1.03	39.2
3	R2	542	0.0	542	0.0	0.759	62.7	LOS E	17.0	101.9	1.00	0.87	1.07	23.0
Appr	oach	2249	2.6	2249	2.6	0.858	40.7	LOS C	40.5	250.1	0.84	0.86	0.91	36.7
East	: High	Street (E)												
4	L2	353	0.0	353	0.0	0.337	18.5	LOS B	10.8	64.5	0.56	0.72	0.56	39.7
5	T1	367	0.0	367	0.0	* 0.853	68.0	LOS E	15.0	89.8	1.00	0.96	1.24	18.6
6	R2	65	0.0	65	0.0	0.853	73.7	LOS F	14.8	88.5	1.00	0.96	1.25	21.0
Appr	oach	785	0.0	785	0.0	0.853	46.2	LOS D	15.0	89.8	0.80	0.85	0.94	25.6
North	h: Bruc	e Hwy (N)											
7	L2	68	2.0	68	2.0	0.066	12.7	LOS A	1.2	7.6	0.40	0.67	0.40	47.2
8	T1	852	5.0	852	5.0	0.849	54.3	LOS D	29.1	183.2	0.99	0.95	1.13	34.4
9	R2	62	0.0	62	0.0	* 0.832	82.3	LOS F	4.9	29.3	1.00	0.87	1.38	24.6
9u	U	7	0.0	7	0.0	0.832	82.5	LOS F	4.9	29.3	1.00	0.87	1.38	25.9
Appr	oach	989	4.4	989	4.4	0.849	53.4	LOS D	29.1	183.2	0.95	0.93	1.09	33.9
West	t: Alexa	andra Stre	et (W)											
10	L2	27	0.0	27	0.0	0.594	55.6	LOS D	12.4	74.1	0.91	0.76	0.91	30.5
11	T1	348	0.0	348	0.0	* 0.594	49.7	LOS D	12.4	74.1	0.90	0.77	0.90	22.7
12	R2	309	4.0	309	4.0	0.594	55.4	LOS D	12.7	79.3	0.91	0.80	0.91	29.7
Appr	oach	684	1.8	684	1.8	0.594	52.5	LOS D	12.7	79.3	0.91	0.78	0.91	26.7
All Vehic	cles	4707	2.5	4707	2.5	0.858	46.0	LOS D	40.5	250.1	0.87	0.86	0.95	32.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Podostrian	Movomo	ont Bori	orman	20									
	Pedestrian Movement Performance												
Mov _	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.		
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed		
					[Ped	Dist]		Rate					
	ped/h	ped/h	sec		ped	m			sec	m	m/sec		
East: High St	reet (E)												
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67		
North: Bruce	Hwy (N)												
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51		

All	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

MOVEMENT SUMMARY

Site: 3 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Vehi	Vehicle Movement Performance Mov Turn INPUT DEMAND Deg. Aver. Level of 95% BACK OF Prop. Effective Aver. Aver.													
	Turn					Deg.								
ID		VOLU		FLO		Satn	Delay	Service		EUE	Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	3)											
1	L2	445	5.0	445	5.0	0.323	10.2	LOS A	7.2	45.1	0.34	0.68	0.34	54.5
2	T1	1412	3.0	1412	3.0	* 0.972	74.0	LOS F	60.0	371.0	0.98	1.16	1.34	29.0
3	R2	563	0.0	563	0.0	0.758	61.9	LOS E	17.5	105.3	1.00	0.87	1.07	23.2
Appr	oach	2420	2.7	2420	2.7	0.972	59.5	LOS E	60.0	371.0	0.86	1.00	1.09	30.4
East	High	Street (E))											
4	L2	362	0.0	362	0.0	0.369	21.4	LOS B	12.4	74.1	0.62	0.74	0.62	37.8
5	T1	379	0.0	379	0.0	* 0.945	83.3	LOS F	17.6	105.4	1.00	1.08	1.48	16.1
6	R2	71	0.0	71	0.0	0.945	89.0	LOS F	17.3	103.9	1.00	1.08	1.48	18.4
Appr	oach	812	0.0	812	0.0	0.945	56.2	LOS D	17.6	105.4	0.83	0.93	1.10	22.8
North	n: Bruc	e Hwy (N	l)											
7	L2	71	2.0	71	2.0	0.070	13.0	LOS A	1.3	8.2	0.41	0.67	0.41	46.9
8	T1	926	5.0	926	5.0	0.922	67.3	LOS E	35.9	226.5	1.00	1.06	1.28	30.7
9	R2	67	0.0	67	0.0	* 0.891	85.9	LOS F	5.4	32.4	1.00	0.92	1.51	24.0
9u	U	7	0.0	7	0.0	0.891	86.2	LOS F	5.4	32.4	1.00	0.92	1.51	25.2
Appr	oach	1071	4.5	1071	4.5	0.922	65.0	LOS E	35.9	226.5	0.96	1.03	1.24	30.6
West	t: Alexa	andra Stre	eet (W)											
10	L2	29	0.0	29	0.0	0.652	55.9	LOS D	13.0	77.9	0.91	0.77	0.91	30.4
11	T1	359	0.0	359	0.0	* 0.652	50.1	LOS D	13.0	77.9	0.91	0.77	0.91	22.6
12	R2	338	4.0	338	4.0	0.652	56.0	LOS D	14.3	89.0	0.93	0.81	0.93	29.5
Appr	oach	726	1.9	726	1.9	0.652	53.1	LOS D	14.3	89.0	0.92	0.79	0.92	26.6
All Vehic	cles	5029	2.5	5029	2.5	0.972	59.2	LOS E	60.0	371.0	0.89	0.97	1.10	28.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Podostrian	Movomo	ont Bori	orman	20									
	Pedestrian Movement Performance												
Mov _	Input	Dem.	Aver.	Level of	AVERAGE	BACK OF	Prop. Ef	fective	Travel	Travel	Aver.		
ID Crossing	Vol.	Flow	Delay	Service	QUE	EUE	Que	Stop	Time	Dist. S	Speed		
					[Ped	Dist]		Rate					
	ped/h	ped/h	sec		ped	m			sec	m	m/sec		
East: High St	reet (E)												
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67		
North: Bruce	Hwy (N)												
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51		

All	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:01 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

MOVEMENT SUMMARY

Site: 3 [2034 W SENS Thusday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Veh	Vehicle Movement Performance Mov Turn INPUT DEMAND Deg. Aver. Level of 95% BACK OF Prop. Effective Aver. Aver.													
	Turn					Deg.							Aver.	Aver.
ID		VOLU [Total	IMES HV]	FLO [Total	ws HV]	Satn	Delay	Service	QUI [Veh.		Que	Stop	No.	Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		ven. veh	Dist] m		Rate	Cycles	km/h
Sout	h: Brud	ce Hwy (S	5)											
1	L2	445	5.0	445	5.0	0.325	10.5	LOSA	7.4	46.8	0.35	0.69	0.35	54.2
2	T1	1412	3.0	1412	3.0	* 0.974	74.8	LOS F	60.2	372.1	0.98	1.16	1.35	28.9
3	R2	587	0.0	587	0.0	0.790	63.6	LOS E	18.7	112.4	1.00	0.89	1.10	22.8
Appr	oach	2444	2.6	2444	2.6	0.974	60.4	LOS E	60.2	372.1	0.87	1.01	1.10	30.1
East	: High	Street (E)												
4	L2	383	0.0	383	0.0	0.394	22.2	LOS B	13.5	80.9	0.64	0.75	0.64	37.3
5	T1	399	0.0	399	0.0	* 0.989	99.8	LOS F	20.3	121.5	1.00	1.16	1.63	14.1
6	R2	72	0.0	72	0.0	0.989	105.5	LOS F	20.0	119.8	1.00	1.16	1.63	16.2
Appr	oach	854	0.0	854	0.0	0.989	65.5	LOS E	20.3	121.5	0.84	0.98	1.18	20.7
Nort	h: Bruc	e Hwy (N)											
7	L2	73	2.0	73	2.0	0.073	13.3	LOS A	1.4	8.6	0.42	0.67	0.42	46.5
8	T1	927	5.0	927	5.0	0.923	67.6	LOS E	36.1	227.2	1.00	1.06	1.28	30.6
9	R2	67	0.0	67	0.0	* 0.891	85.9	LOS F	5.4	32.4	1.00	0.92	1.51	24.0
9u	U	7	0.0	7	0.0	0.891	86.2	LOS F	5.4	32.4	1.00	0.92	1.51	25.2
Appr	oach	1074	4.5	1074	4.5	0.923	65.2	LOS E	36.1	227.2	0.96	1.03	1.24	30.5
Wes	t: Alexa	andra Stre	eet (W)											
10	L2	29	0.0	29	0.0	0.679	56.2	LOS D	13.3	79.8	0.92	0.78	0.93	30.3
11	T1	379	0.0	379	0.0	* 0.679	50.3	LOS D	13.3	81.0	0.91	0.78	0.92	22.5
12	R2	338	4.0	338	4.0	0.679	56.4	LOS D	15.0	93.7	0.93	0.82	0.94	29.4
Appr	oach	746	1.8	746	1.8	0.679	53.3	LOS D	15.0	93.7	0.92	0.80	0.93	26.5
All Vehi	cles	5118	2.5	5118	2.5	0.989	61.2	LOSE	60.2	372.1	0.89	0.98	1.12	28.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian I	Pedestrian Movement Performance											
Mov ID Crossing	Input Vol.	Dem. Flow	Aver. Delay	Level of Service	AVERAGE QUE [Ped		Prop. Ef Que	fective Stop Rate	Travel Time	Travel Dist. S	Aver. Speed	
	ped/h	ped/h	sec		ped	m m		Tale	sec	m	m/sec	
East: High Str	eet (E)											
P2 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	123.1	83.0	0.67	
North: Bruce I	Hwy (N)											
P3 Full	50	50	59.3	LOS E	0.2	0.2	0.96	0.96	97.0	49.0	0.51	

All	100	100	59.3	LOS E	0.2	0.2	0.96	0.96	110.0	66.0	0.60
Pedestrians											

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:02 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2022 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	32	46	80	105
Green Time (sec)	26	8	28	19	29
Phase Time (sec)	32	14	34	25	35
Phase Split	23%	10%	24%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E)

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:53 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	31	46	80	105
Green Time (sec)	25	9	28	19	29
Phase Time (sec)	31	15	34	25	35
Phase Split	22%	11%	24%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W Aprv Saturday Peak - Import (Site Folder: Sat AM)]

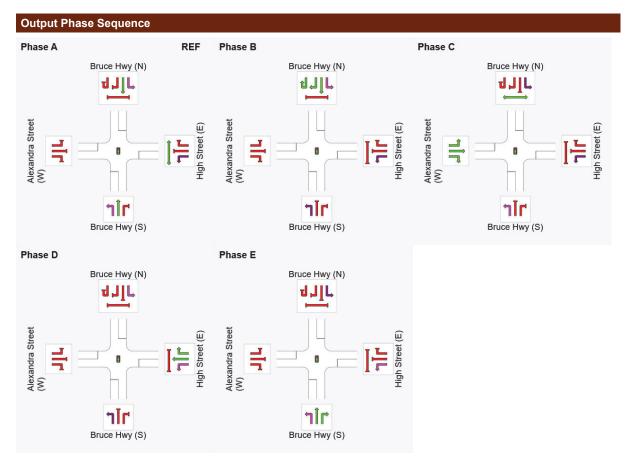
Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary							
Phase	Α	В	С	D	Е		
Phase Change Time (sec)	0	31	45	79	105		
Green Time (sec)	25	8	28	20	29		
Phase Time (sec)	31	14	34	26	35		
Phase Split	22%	10%	24%	19%	25%		

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:54 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W Dev Saturday Peak - Import (Site Folder: Sat AM)]

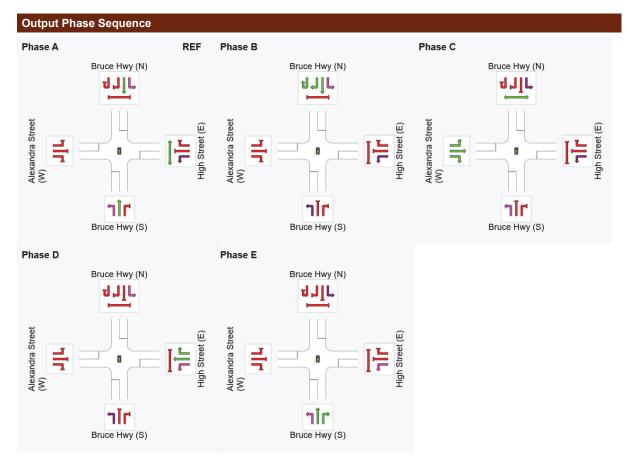
Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary							
Phase	Α	В	С	D	Е		
Phase Change Time (sec)	0	31	46	80	105		
Green Time (sec)	25	9	28	19	29		
Phase Time (sec)	31	15	34	25	35		
Phase Split	22%	11%	24%	18%	25%		

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:55 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	31	45	79	105
Green Time (sec)	25	8	28	20	29
Phase Time (sec)	31	14	34	26	35
Phase Split	22%	10%	24%	19%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2034 BG Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	30	46	80	105
Green Time (sec)	24	10	28	19	29
Phase Time (sec)	30	16	34	25	35
Phase Split	21%	11%	24%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:56 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2034 W SENS Saturday Peak (Site Folder: Sat AM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Saturday AM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	30	46	80	105
Green Time (sec)	24	10	28	19	29
Phase Time (sec)	30	16	34	25	35
Phase Split	21%	11%	24%	18%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:57 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2022 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	31	43	77	100
Green Time (sec)	25	6	28	17	24
Phase Time (sec)	31	12	34	23	30
Phase Split	24%	9%	26%	18%	23%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E)

Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

Bruce Hwy (S)

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:57 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	30	42	76	99
Green Time (sec)	24	6	28	17	25
Phase Time (sec)	30	12	34	23	31
Phase Split	23%	9%	26%	18%	24%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:58 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W Dev Thusday Peak - Import (Site Folder: Thurs PM)]

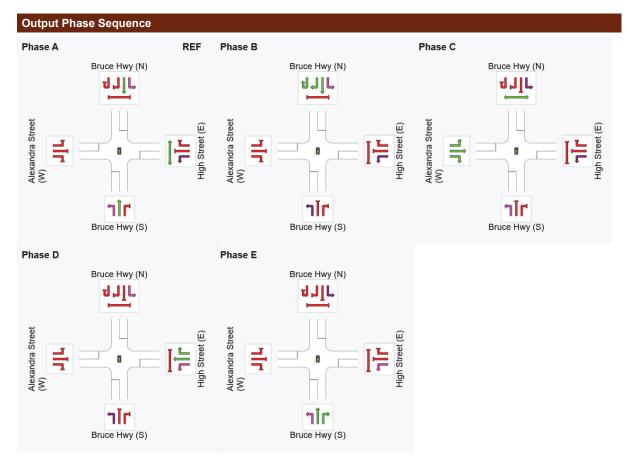
Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary							
Phase	Α	В	С	D	Е		
Phase Change Time (sec)	0	30	42	76	99		
Green Time (sec)	24	6	28	17	25		
Phase Time (sec)	30	12	34	23	31		
Phase Split	23%	9%	26%	18%	24%		

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:46:59 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Site: 3 [2024 W Aprv Thusday Peak - Import (Site Folder: Thurs PM)]

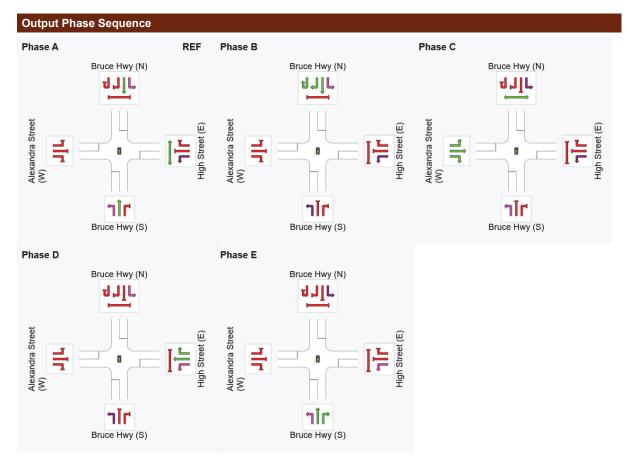
Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM

Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog


Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary							
Phase	Α	В	С	D	Е		
Phase Change Time (sec)	0	30	42	76	99		
Green Time (sec)	24	6	28	17	25		
Phase Time (sec)	30	12	34	23	31		
Phase Split	23%	9%	26%	18%	24%		

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

PHASING SUMMARY

Site: 3 [2024 W SENS Thusday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	E
Phase Change Time (sec)	0	30	42	76	99
Green Time (sec)	24	6	28	17	25
Phase Time (sec)	30	12	34	23	31
Phase Split	23%	9%	26%	18%	24%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:00 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

PHASING SUMMARY

Site: 3 [2034 BG Thursday Peak (Site Folder: Thurs PM)]

Intersection: Bruce Highway/Alexandra Street/High Street

Thursday PM Configuration: Existing Site Category: (None)

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 130 seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog

Phase Times determined by the program

Phase Sequence: Two-phase Reference Phase: Phase A

Input Phase Sequence: A, B, C, D, E Output Phase Sequence: A, B, C, D, E

Phase Timing Summary

Phase	Α	В	С	D	Е
Phase Change Time (sec)	0	30	42	76	98
Green Time (sec)	24	6	28	16	26
Phase Time (sec)	30	12	34	22	32
Phase Split	23%	9%	26%	17%	25%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

Output Phase Sequence REF Phase C Phase A Phase B Bruce Hwy (N) Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) Alexandra Street (W) High Street (E) High Street (E) חור חור Bruce Hwy (S) Bruce Hwy (S) Bruce Hwy (S) Phase D Phase E Bruce Hwy (N) Bruce Hwy (N) Alexandra Street (W) Alexandra Street (W) High Street (E) חור Bruce Hwy (S) Bruce Hwy (S)

REF: Reference Phase VAR: Variable Phase

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: CARDNO PTY LTD | Licence: NETWORK / Enterprise | Processed: Friday, 29 July 2022 10:47:01 AM
Project: G:\CEB06360 - Rockhampton Stockland Traffic Study\6360 - Analysis\6360 - SIDRA\ALDI EXPANSION\Council IR\9) High St-Alexandra
St.sip9

Area 404 - Fitzroy District Road Segment from 1.409km to 4.340km Queensland Government 24-Jun-2021 14:55

TARS

Page 1 of 2 (1 of 7)

Traffic Analysis and Reporting System

AADT Segment Report

Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)

n Segment Site 60017 Traffic Year 2020 Data Collection Year 2020

North Rockhampton Park Avenue sed on [Dataset - State Digital Road Network (SDRN)] provided Ltd (current as of 12/08) and other state government datasets. Copyright The State of Queensland 2009.
Copyright Pliney Bowes Softare Py Ltd 20 with the permission of Pitney Bowes Softa Yeppoor Maryvale Cawarral Grosvenor Park Dululu Kalka Rocklands Edinda Fitzroy Pocket The Range

Queensland Government

24-Jun-2021 14:55

Traffic Analysis and Reporting System

AADT Segment Report

Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)

n Segment Site 60017 Traffic Year 2020 Data Collection Year 2020 Area 404 - Fitzroy District Road Segment from 1.409km to 4.340km

Page 2 of 2 (2 of 7) The width of each Road Segment is proportional to its AADT End Point 260000037. Moores Creek Rd to city @ Yaamba Rd. 4.34 km Site 60017. Point 260000035. 320m S of Knight St (Moore Creek Rd). Start Point 260000727. Albert St to Base Hospital @ Bolsover St. 2.42 km 1.41 km

This report shows Annual Average Daily Traffic values (ADDTs). Because the AADT values are converted to whole numbers, there will be occasional inaccuracies due to rounding. These inaccuracies are statistically insignificant.

A 13,590 100% B 30,049 100% G 16,459 100% All Vehicles (00)

Heavy Vehicles (0B) G 1,859 11.29% 9.58% 10.52%

Light Vehicles (0A) G 14,600 88.71% 90.40% 89.47%

A 12,286 26,886

B 3,161 A 1,302

B Double (2J) G 212 1.29% A 160 1.18% B 372 1.24% G 142 0.86% A 105 0.77% B 247 0.82% 6-Axle Articulated (21) 5-Axle Articulated (2H) G 31 0.19% A 23 0.17% B 54 0.18% Articulated Vehicles (1C) G 254 1.54% B 435 1.45% A 181 1.33% 4-Axle Articulated (2G) G 48 0.29% A 31 0.23% B 79 0.26% 3-Axle Articulated (2F) G 33 0.20% A 22 0.16% B 55 0.18% G 26 0.16% A 16 0.12% 4-Axle Trucks (2E) B 42 0.14% Trucks and Buses (1B) G 1,386 8.42% A 956 7.03% B 2,342 7.79% G 127 0.77% A 77 0.57% B 204 0.68% 3-Axle Trucks and Buses (2D) G 1,233 7.49% A 863 6.35% 2-Axle Trucks and Buses (2C) B 2,096 6.98% G 332 2.02% A 247 1.82% B 579 1.93% Short Vehicles Towing (2B) Short Vehicles (1A) G 14,600 88.71% 90.40% 89.47%

A 12,286 B 26,886 Triple Road Trains (2L)

Double Road Trains (2K)

Road Trains (1D)

G 219 1.33% A 165 1.21% B 384

1.28%

G 0 0% A 0 0% B 0 0%

G 7 0.04% A 5 0.04% B 12 0.04%

Version: 1, Version Date: 16/08/2022 Document Set ID: 37967423

G 14,268 86.69% A 12,039 88.59% B 26,307 87.55%

Short 2-Axle Vehicles (2A)

Traffic Analysis and Reporting System

Report Notes for AADT Segment Report

Page 1 of 1 (3 of 7)

24-Jun-2021 14:55

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District

Central West District	401
Darling Downs District	402
Far North District	403
Fitzroy District	404
Mackay/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411
Wide Bay/Burnett District	412

AADT Values

AADT values are displayed by direction of travel as:

- Traffic flow in gazettal direction
- Traffic flow against gazettal direction
 Traffic flow in both directions
- В

Data Collection Year

Is the most recent year that data was collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane -Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

Light Vehicles

0A = 1A 1A = 2A + 2B

Heavy Vehicles 0B = 1B + 1C + 1D 1B = 2C + 2D + 2E = 2F + 2G + 2H + 2I

= 2J + 2K + 2L

The following classes are the categories for which data can be captured:

Volume

00 All vehicles

2-Bin

Light vehicles Heavy vehicles

4-Bin

Short vehicles Truck or bus

1A 1B

Articulated vehicles

1D Road train

12-Bin

Short 2 axle vehicles

Short vehicles towing 2 axle truck or bus

3 axle truck or bus

2E 2F 4 axle truck 3 axle articulated vehicle

4 axle articulated vehicle

5 axle articulated vehicle 6 axle articulated vehicle 2I 2J

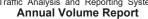
B double 2K Double road train

Triple road train

Copyright Copyright The State of Queensland (Department of Transport and Main Roads) 2013

http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013


Traffic Analysis and Reporting System

Annual Volume Report

Area 404 - Fitzroy District Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)
Site 60017 - 320m S of Knight St (Moore Creek Rd) TDist 2.415km Speed Limit 70

TARS

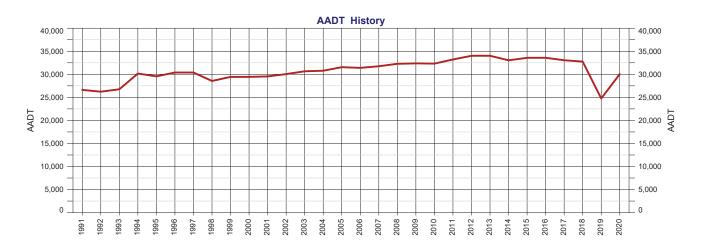
Page 2 of 3 (5 of 7)

24-Jun-2021 14:55

Queensland

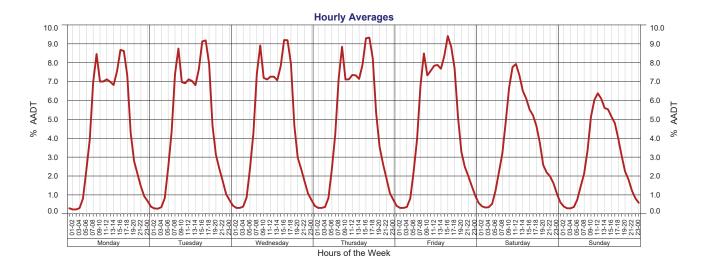
Area 404 - Fitzroy District

Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)


Site 60017 - 320m S of Knight St (Moore Creek Rd)

Thru Dist 2.415

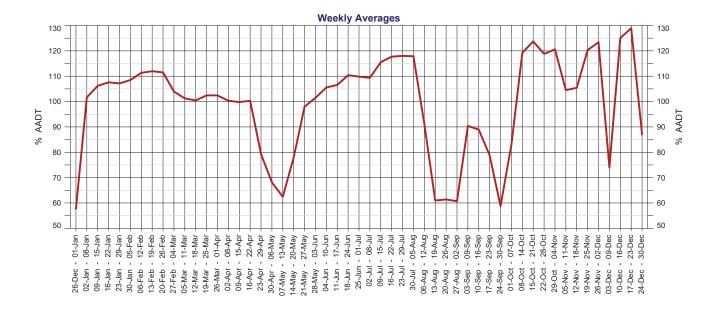
Type P - Permanent


Stream TB - Bi-directional traffic flow

Year 2020 Growth last Year 21.36% AADT 30,049 Growth last 5 Yrs -2.27% Growth last 10 Yrs -1.37% Avg Week Day 32,452 Avg Weekend Day 22,837

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2020	30,049	21.36%	-2.27%	-1.37%
2019	24,761	-24.41%	-7.74%	-4.07%
2018	32,758	-0.89%	-0.65%	-0.08%
2017	33,053	-1.59%	-0.56%	0.16%
2016	33,586	0.02%	0.00%	0.52%
2015	33,580	1.64%	0.34%	0.61%
2014	33,039	-2.90%	0.16%	0.53%
2013	34,025	0.02%	1.22%	1.09%
2012	34,018	2.40%	1.52%	1.26%
2011	33,220	2.78%	1.15%	1.09%
2010	32,320	-0.16%	0.53%	0.86%
2009	32,373	0.29%	0.89%	1.01%
2008	32,279	1.67%	1.08%	1.16%
2007	31,750	1.12%	0.97%	0.91%
2006	31,398	-0.47%	1.07%	0.73%

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2005	31,547	2.50%	1.53%	0.84%
2004	30,779	0.40%	1.05%	0.46%
2003	30,656	2.02%	1.34%	0.69%
2002	30,048	1.71%	0.49%	0.70%
2001	29,543	0.34%	-0.26%	0.68%
2000	29,444	0.02%	-0.32%	0.95%
1999	29,438	3.10%	-0.48%	1.23%
1998	28,554	-6.04%	-0.33%	1.13%
1997	30,388	0.00%	2.43%	2.57%
1996	30,389	2.82%	3.09%	3.05%
1995	29,555	-2.03%	3.15%	3.08%
1994	30,168	12.76%	4.29%	3.79%
1993	26,753	1.99%	1.53%	
1992	26,231	-1.46%	2.22%	
1991	26,620	4.66%	3.64%	



Page 3 of 3 (6 of 7)

April

2020 Calendar

March

February

M	Т	W 1	T 2	F 3	s 4	s 5	М	Т	W	Т	F	s 1	s 2	м 30	т 31	W	Т	F	S	s 1	M	Т	W 1	T 2	F 3	s 4	s 5
6	7	8	9	10	11	12	3	4	5	6	7	8	9	2	3	4	5	6	7	8	6	7	8	9	10	11	12
13	14	15	16	17	18	19	10	11	12	13	14	15	16	9	10	11	12	13	14	15	13	14	15	16	17	18	19
20	21	22	23	24	25	26	17	18	19	20	21	22	23	16	17	18	19	20	21	22	20	21	22	23	24	25	26
					25	20							23												24	25	20
27	28	29	30	31			24	25	26	27	28	29		23	24	25	26	27	28	29	27	28	29	30			
			May							June							July						Α	ugus	st		
M	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S
				1	2	3	1	2	3	4	5	6	7			1	2	3	4	5	31					1	2
4	5	6	7	8	9	10	8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	8	9
11	12	13	14	15	16	17	15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16
18	19	20	21	22	23	24	22	23	24	25	26	27	28	20	21	22	23	24	25	26	17	18	19	20	21	22	23
25	26	27	28	29	30	31	29	30						27	28	29	30	31			24	25	26	27	28	29	30
		Sei	ptem	her					0	ctobe	er					No	veml	ber					De	cemb	oer		
М	т	w	т	F	s	s	М	т	w	т	F	S	s	М	т	w	т	F	s	s	М	т	w	т	F	s	s
•••	1	2	3	4	5	6			••	1	2	3	4	30	•	••	·			1		1	2	3	4	5	6
7	8	9	10	11	12	13	5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
14	15	16	17	18	19	20	12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
21	22	23	24	25	26	27	19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
28	29	30					26	27	28	29	30	31		23	24	25	26	27	28	29	28	29	30	31			

Days on which traffic data was collected.

January

Queensland

24-Jun-2021 14:55

Traffic Analysis and Reporting System Report Notes for Annual Volume Report

24-Jun-2021 14:55

Page 1 of 1 (7 of 7)

Annual Volume Report

Displays AADT history with hourly, daily and weekly patterns by Stream in addition to annual data for AADT figures with 1 year, 5 year and 10 year growth rates.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT History

Displays the years when traffic data was collected at this count site.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District	
Central West District	401
Darling Downs District	402
Far North District	403
Fitzroy District	404
Mackáy/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411

Avg Week Day

Average daily traffic volume during the week days, Monday to Friday.

Avg Weekend Day

Average daily traffic volume during the weekend, Saturday and Sunday.

Wide Bay/Burnett District

Calendar

Days on which traffic data was collected are highlighted in green.

Gazettal Direction

The Gazettal Direction is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane - Gympie denotes that the gazettal direction is from Brisbane to Gympie.

- Traffic flowing in Gazettal Direction
- Traffic flowing against Gazettal Direction
 The combined traffic flow in both Directions

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1, 5 or 10 year period.

Hour, Day & Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

Thru Dist or TDist

The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place 24/7. Coverage means the traffic counting device is in place for a specified period of time.

Year

Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.

Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

Page 1 of 2 (1 of 7) 150.529493 **TARS** Moores Creek Rd Traffic Analysis and Reporting System

AADT Segment Report

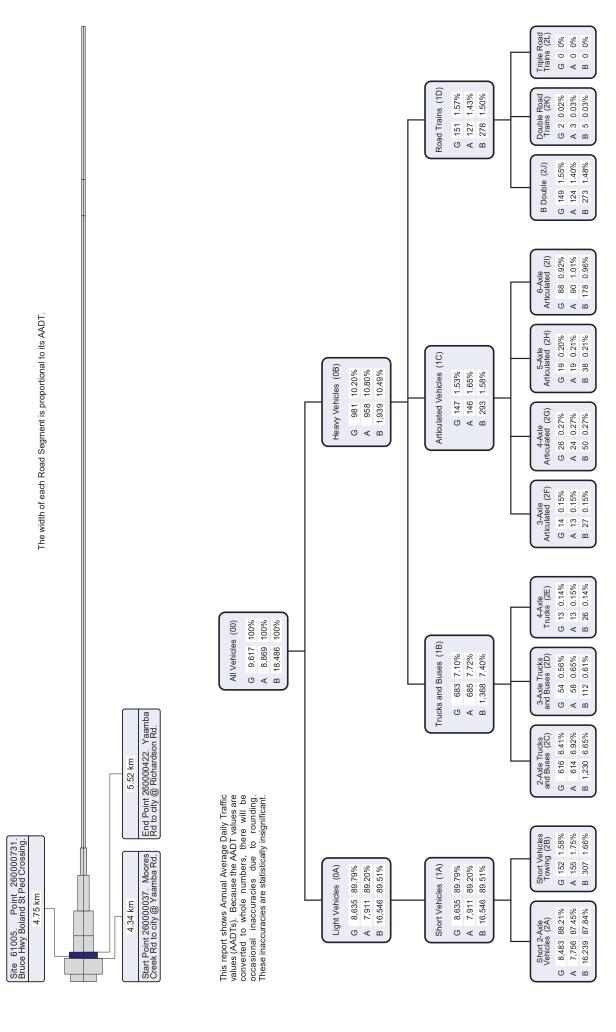
Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)

n Segment Site 61005 Traffic Year 2019 Data Collection Year 2019 -23.340594 Copyright The State of Queensland 2009.

Copyright Phrey Bowes Softare Pty Lid Cornel as of 12081 and other state government datasets. with the permission of Phtney Bowes Softare Pty Lid (current as of 1208) and other state government datasets. Area 404 - Fitzroy District Road Segment from 4.340km to 5.517km 050.514620 Yeppoor Kalka Bowenia Maryvale Frenchville Milman North Grosvenor Park Dullulu Queensland Government 25-Aug-2020 16:35 khampton West Fitzroy Pocket olburra

Page 2 of 2 (2 of 7)

Queensland Government


25-Aug-2020 16:35

Traffic Analysis and Reporting System

AADT Segment Report

Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)

n Segment Site 61005 Traffic Year 2019 Data Collection Year 2019 Area 404 - Fitzroy District Road Segment from 4.340km to 5.517km

Version: 1, Version Date: 16/08/2022 Document Set ID: 37967423

Traffic Analysis and Reporting System Report Notes for AADT Segment Report

TARS

25-Aug-2020 16:35

Page 1 of 1 (3 of 7)

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District

Central West District	401
Darling Downs District	402
Far North District	403
Fitzroy District	404
Mackay/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411
Wide Bay/Burnett District	412

AADT Values

AADT values are displayed by direction of travel as:

- Traffic flow in gazettal direction
- Traffic flow against gazettal direction
 Traffic flow in both directions
- В

Data Collection Year

Is the most recent year that data was collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane -Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

Light Vehicles

0A = 1A 1A = 2A + 2B

Heavy Vehicles 0B = 1B + 1C + 1D 1B = 2C + 2D + 2E

= 2F + 2G + 2H + 2I

= 2J + 2K + 2L

The following classes are the categories for which data can be captured:

Volume

00 All vehicles

2-Bin

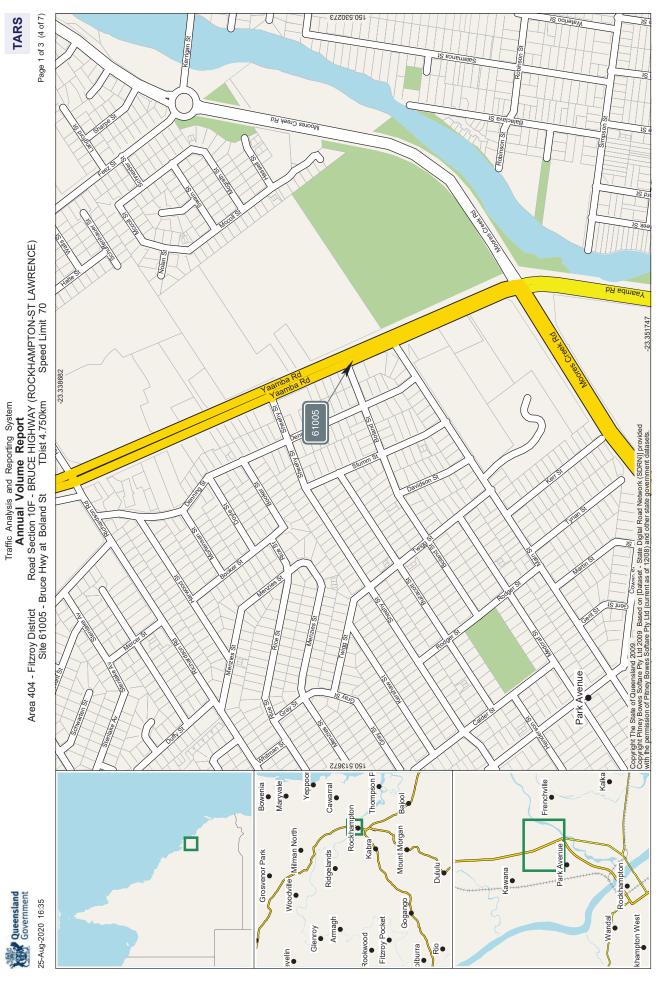
Light vehicles Heavy vehicles

4-Bin

- Short vehicles Truck or bus
- 1A 1B
- Articulated vehicles
- 1D Road train

12-Bin

- Short 2 axle vehicles
- Short vehicles towing 2 axle truck or bus
- 3 axle truck or bus
- 2E 2F 4 axle truck 3 axle articulated vehicle
- 4 axle articulated vehicle
- 5 axle articulated vehicle 6 axle articulated vehicle
- 2I 2J
- B double 2K Double road train
- Triple road train


Copyright Copyright The State of Queensland (Department of Transport and Main Roads) 2013

http://creativecommons.org/licences/by-nd/3.0/au

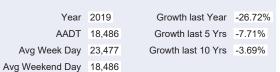
This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

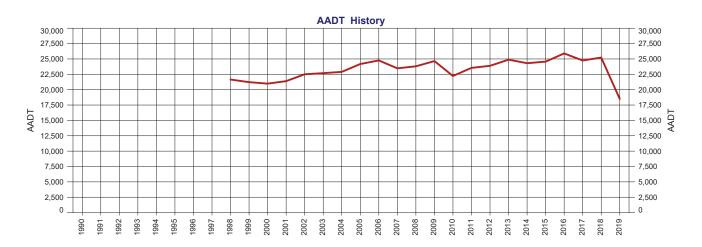
TARS

TARS

Page 2 of 3 (5 of 7)

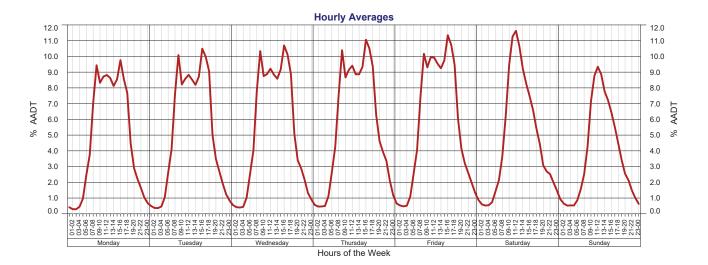
Area 404 - Fitzroy District


Road Section 10F - BRUCE HIGHWAY (ROCKHAMPTON-ST LAWRENCE)

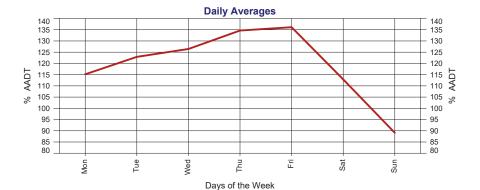

Site 61005 - Bruce Hwy at Boland St

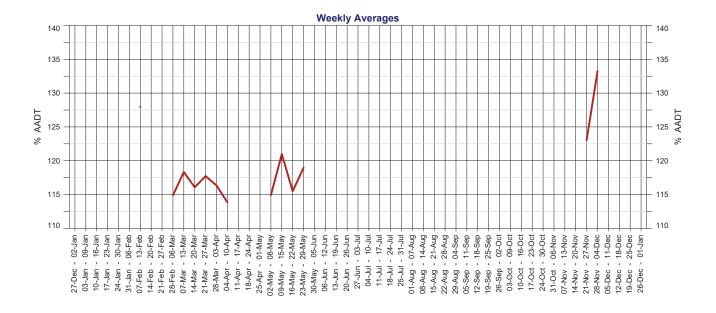
Thru Dist 4.75

Type C - Coverage


Stream TB - Bi-directional traffic flow

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2019	18,486	-26.72%	-7.71%	-3.69%
2018	25,226	1.94%	0.48%	0.75%
2017	24,747	-4.45%	0.33%	0.56%
2016	25,900	5.44%	2.02%	1.14%
2015	24,564	1.05%	1.35%	0.36%
2014	24,308	-2.31%	0.72%	0.33%
2013	24,883	4.20%	1.37%	0.79%
2012	23,881	1.41%	0.29%	0.33%
2011	23,549	5.94%	-0.55%	0.37%
2010	22,229	-9.84%	-2.25%	-0.19%
2009	24,654	3.59%	1.04%	1.52%
2008	23,800	1.39%	0.52%	1.14%
2007	23,474	-5.18%	0.56%	
2006	24,757	2.41%	2.87%	
2005	24,175	5.60%	2.94%	


Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2004	22,894	0.91%	1.79%	
2003	22,688	0.81%	1.58%	
2002	22,506	5.22%		
2001	21,389	1.93%		
2000	20,983	-1.14%		
1999	21,224	-1.97%		
1998	21,650			
1997				
1996				
1995				
1994				
1993				
1992				
1991				
1990				



Page 3 of 3 (6 of 7)

25-Aug-2020 16:35

Queensland

2019 Calendar **January** February March April Т F М W W F T W 4 5 6 1 2 3 1 2 3 3 1 5 6 7 2 4 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10 8 9 10 11 8 14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17 15 16 17 18 19 20 21 18 19 20 21 22 23 24 18 19 20 21 22 23 24 22 23 24 25 26 27 28 21 22 23 24 25 26 27 25 26 27 28 25 26 27 28 29 30 31 29 30 28 29 30 31 May June July August 1 2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 10 11 13 14 15 16 17 18 19 10 11 12 13 14 15 16 15 16 17 18 19 20 21 12 13 14 15 16 17 18 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 19 20 21 22 23 24 25 27 28 29 30 31 24 25 26 27 28 29 30 29 30 31 26 27 28 29 30 31 September October November December 1 2 3 30 31 1 30 3 4 5 6 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 6 7 8 10 11 12 13 14 15 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15

Days on which traffic data was collected.

21 22 23 24 25 26 27

28 29 30 31

18 19 20 21 22 23 24

25 26 27 28 29 30

16 17 18 19 20 21 22

23 24 25 26 27 28 29

17 18 19 20 21 22

23 24 25 26 27 28 29

Traffic Analysis and Reporting System Report Notes for Annual Volume Report

25-Aug-2020 16:35

Page 1 of 1 (7 of 7)

Annual Volume Report

Displays AADT history with hourly, daily and weekly patterns by Stream in addition to annual data for AADT figures with 1 year, 5 year and 10 year growth rates.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT History

Displays the years when traffic data was collected at this count site.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

וט	strict ivame	DISTRICT	
Ce	entral West D	istrict	401
Da	arling Downs	District	402
Fa	ır North Distri	ct	403
	zroy District		404
	ackáy/Whitsu		405
	etropolitian D		406
No	orth Coast Dis	strict	407
	orth West Dis		409
No	orthern Distric	ct	408
Sc	outh Coast Di	strict	410
Sc	outh West Dis	strict	411

Avg Week Day

Average daily traffic volume during the week days, Monday to Friday.

Avg Weekend Day

Average daily traffic volume during the weekend, Saturday and Sunday.

Wide Bay/Burnett District

Calendar

Days on which traffic data was collected are highlighted in green.

Gazettal Direction

The Gazettal Direction is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane - Gympie denotes that the gazettal direction is from Brisbane to Gympie.

- Traffic flowing in Gazettal Direction
- Traffic flowing against Gazettal Direction
 The combined traffic flow in both Directions

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1, 5 or 10 year period.

Hour, Day & Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

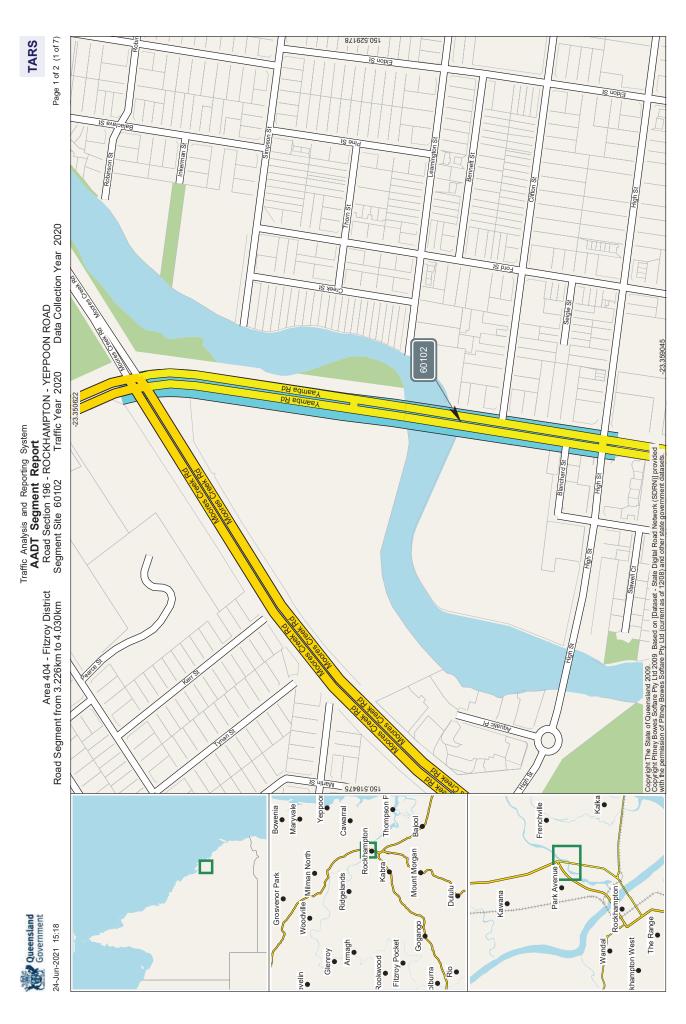
Thru Dist or TDist

The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place 24/7. Coverage means the traffic counting device is in place for a specified period of time.

Year


Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.

Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

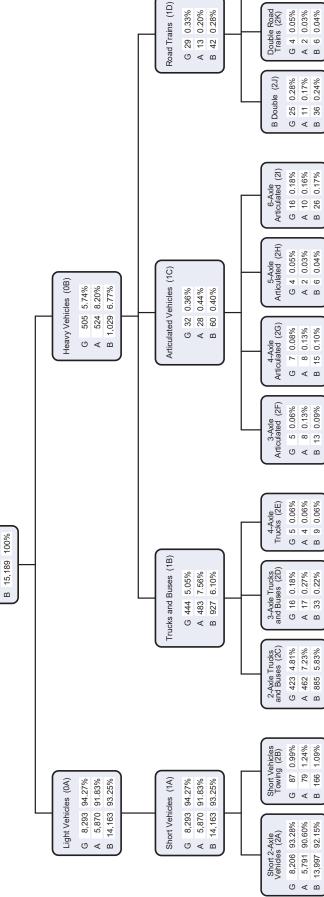
Licence http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

TARS

Page 2 of 2 (2 of 7) Data Collection Year 2020 Traffic Analysis and Reporting System

AADT Segment Report


Road Section 196 - ROCKHAMPTON - YEPPOON ROAD

Segment Site 60102 Traffic Year 2020 Data Colls The width of each Road Segment is proportional to its AADT. Area 404 - Fitzroy District Road Segment from 3.226km to 4.030km End Point 260000017. Yaamba Rd to City @ Moores C.Rd/Bruce H. 4.03 km Site 60102. Point 260000175. 65m N of Clifton St, S of Moores Creek Bridge, Berserker. Start Point 260000176. Musgrave St to R'ton CBD @ High St. 3.48 km 3.23 km 24-Jun-2021 15:18

This report shows Annual Average Daily Traffic values (AADTs). Because the AADT values are converted to whole numbers, there will be occasional inaccuracies due to rounding. These inaccuracies are statistically insignificant.

All Vehicles (00) G 8,797 100% 6,392 100%

⋖

Triple Road Trains (2L)

G 0 0% A 0 0% B 0 0%

Traffic Analysis and Reporting System

Report Notes for AADT Segment Report

TARS

Page 1 of 1 (3 of 7)

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District

401
402
403
404
405
406
407
409
408
410
411
412

AADT Values

AADT values are displayed by direction of travel as:

- Traffic flow in gazettal direction
- Traffic flow against gazettal direction
 Traffic flow in both directions
- В

Data Collection Year

Is the most recent year that data was collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane -Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

Light Vehicles

0A = 1A 1A = 2A + 2B

Heavy Vehicles 0B = 1B + 1C + 1D 1B = 2C + 2D + 2E = 2F + 2G + 2H + 2I

= 2J + 2K + 2L

The following classes are the categories for which data can be captured:

Volume

00 All vehicles

2-Bin

Light vehicles Heavy vehicles

4-Bin

- Short vehicles Truck or bus
- 1A 1B
- Articulated vehicles
- 1D Road train

12-Bin

- Short 2 axle vehicles
- Short vehicles towing 2 axle truck or bus
- 3 axle truck or bus
- 2E 2F 4 axle truck 3 axle articulated vehicle
- 4 axle articulated vehicle
- 5 axle articulated vehicle 6 axle articulated vehicle
- 2I 2J B double
- 2K Double road train
- Triple road train

Copyright Copyright The State of Queensland (Department of Transport and Main Roads) 2013

http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

Queensland Government

TARS

150.530273 Page 1 of 3 (4 of 7) Traffic Analysis and Reporting System

Annual Volume Report

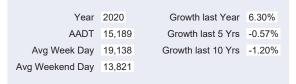
Area 404 - Fitzroy District Road Section 196 - ROCKHAMPTON - YEPPOON ROAD
Site 60102 - 65m N Clifton St, Moores Ck, Berserker TDist 3.480km Speed Limit 60 Yaamba Rd -23.362001 -23.348936 Copyright The State of Queensland 2009.
Copyright Phrey Bowse Softare Pty Ltd 2009 Based on [Dataset - State Digital Road Network (SDRN)] provided with the permission of Phtney Bowse Softare by Utd (current as of 1208) and other state government datasets. 0 k Avenue Park 279613.031 • Kalka Yeppoor Bowenia Maryvale Frenchville Ridgelands Grosvenor Park Dululu The Range 24-Jun-2021 15:18 hampton West Fitzroy Pocket olburra 운•

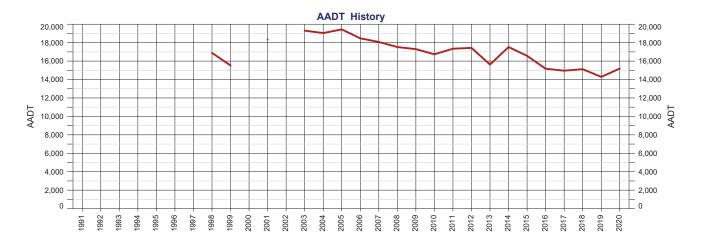
Page 2 of 3 (5 of 7)

Area 404 - Fitzroy District

Road Section 196 - ROCKHAMPTON - YEPPOON ROAD

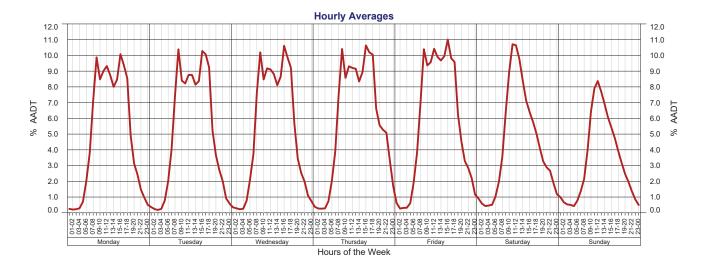
Site 60102 - 65m N Clifton St, Moores Ck, Berserker

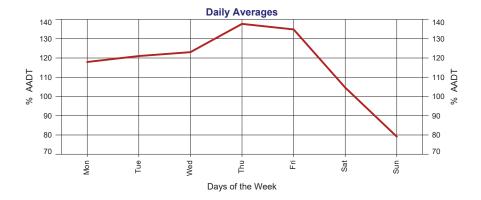

Thru Dist 3.48

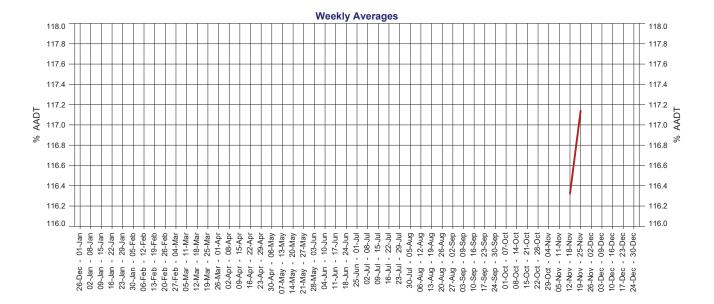

Queensland

24-Jun-2021 15:18

Type C - Coverage


Stream TB - Bi-directional traffic flow





Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2020	15,189	6.30%	-0.57%	-1.20%
2019	14,289	-5.50%	-3.47%	-2.25%
2018	15,121	1.07%	-1.85%	-1.63%
2017	14,961	-1.37%	-2.92%	-2.00%
2016	15,169	-8.47%	-3.03%	-2.03%
2015	16,572	-5.43%	-0.59%	-1.09%
2014	17,524	12.14%	0.74%	-0.52%
2013	15,627	-10.36%	-2.70%	-2.36%
2012	17,433	0.52%	-0.17%	
2011	17,343	3.60%	-0.85%	-1.06%
2010	16,740	-3.21%	-2.68%	
2009	17,295	-1.31%	-2.24%	-0.51%
2008	17,525	-3.04%	-2.27%	-0.04%
2007	18,074	-2.15%		
2006	18,472	-4.97%	-0.54%	

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2005	19,438	2.10%		
2004	19,039	-1.37%	3.24%	
2003	19,304		3.71%	
2002				
2001	18,349			
2000				
1999	15,529	-8.07%		
1998	16,892			
1997				
1996				
1995				
1994				
1993				
1992				
1991				

2020 Calendar **January** February March April М W S W S S 4 1 2 30 31 1 6 8 9 10 11 12 3 8 9 2 3 4 5 6 8 6 7 8 9 10 11 12 15 16 17 18 19 10 11 12 13 14 15 16 9 10 11 12 13 14 15 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 16 17 18 19 20 21 22 20 21 22 23 24 25 26 27 28 29 30 31 24 25 26 27 28 29 23 24 25 26 27 28 29 27 28 29 30 May June July **August** 1 5 6 7 8 10 9 10 11 12 13 14 6 7 8 9 10 11 12 3 6 8 11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16 18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23 25 26 27 28 29 30 31 29 30 27 28 29 30 31 24 25 26 27 28 29 30 September October November December W 2 3 4 5 6 1 2 3 4 30 1 3 4 5 6 8 9 10 11 12 13 5 6 7 8 10 11 2 3 4 5 6 7 8 7 8 9 10 11 12 13 9 10 11 12 13 14 15 14 15 16 17 18 19 20 13 14 15 16 17 18 14 15 16 17 18 19 20 21 22 23 24 25 26 27 19 20 21 22 23 24 25 16 17 18 19 20 21 22 21 22 23 24 25 26 27

Days on which traffic data was collected.

23 24 25 26 27 28 29

28 29 30 31

26 27 28 29 30 31

28 29 30

Traffic Analysis and Reporting System Report Notes for Annual Volume Report

Page 1 of 1 (7 of 7)

24-Jun-2021 15:18

Annual Volume Report

Displays AADT history with hourly, daily and weekly patterns by Stream in addition to annual data for AADT figures with 1 year, 5 year and 10 year growth rates.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT History

Displays the years when traffic data was collected at this count site.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District	
Central West District	401
Darling Downs District	402
Far North District	403
Fitzroy District	404
Mackáy/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411

Avg Week Day

Average daily traffic volume during the week days, Monday to Friday.

Avg Weekend Day

Average daily traffic volume during the weekend, Saturday and Sunday.

Wide Bay/Burnett District

Calendar

Days on which traffic data was collected are highlighted in green.

Gazettal Direction

The Gazettal Direction is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane - Gympie denotes that the gazettal direction is from Brisbane to Gympie.

- Traffic flowing in Gazettal Direction
- Traffic flowing against Gazettal Direction
 The combined traffic flow in both Directions

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1, 5 or 10 year period.

Hour, Day & Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

Thru Dist or TDist

The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place 24/7. Coverage means the traffic counting device is in place for a specified period of time.

Year

Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.

Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence http://creativecommons.org/licences/by-nd/3.0/au

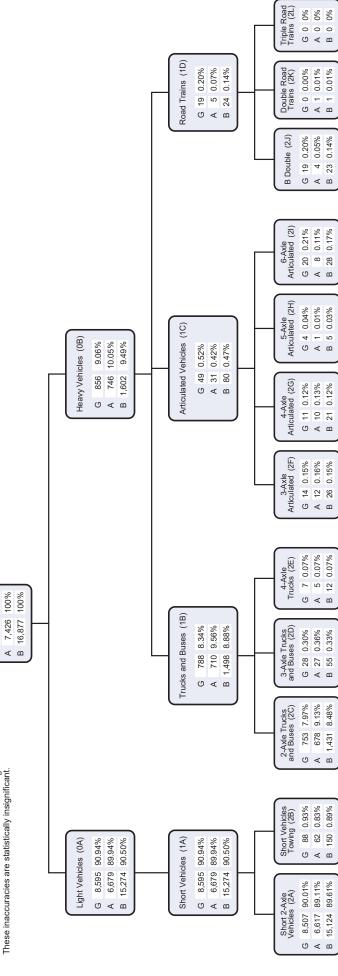
This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

Page 1 of 2 (1 of 7) **TARS** AADT Segment Reporting System
AADT Segment Report
Road Section 196 - ROCKHAMPTON - YEPPOON ROAD
Segment Site 61076 Traffic Year 2020 Data Collection Year 2019 North Rockhampton -23.373338 Copyright The State of Queensland 2009.

Copyright They Bowes Softare PY Lid 2009 Based on [Dataset - State Digital Road Nework (SDRN)] provided the permission of Pfiling Bowes Softare Py Lid (current as of 1208) and other state government datasets. 0 Area 404 - Fitzroy District Road Segment from 1.575km to 3.226km Grosvenor Park Kalka Queensland Government 24-Jun-2021 15:18 Fitzroy Pocket The Range Allenstown olburra

TARS

Page 2 of 2 (2 of 7) Data Collection Year 2019 Traffic Analysis and Reporting System


AADT Segment Report

Road Section 196 - ROCKHAMPTON - YEPPOON ROAD

Segment Site 61076 Traffic Year 2020 Data Colls The width of each Road Segment is proportional to its AADT. Area 404 - Fitzroy District Road Segment from 1.575km to 3.226km End Point 260000176. Musgrave St to R'ton CBD @ High St. 3.23 km Site 61076. Point 260000779. R'ton-Yeppoon Rd at Kirkellen St. Start Point 260018832. R'ton-Yeppoon Rd to CBD@Bridge St. 1.99 km 1.57 km 24-Jun-2021 15:18

This report shows Annual Average Daily Traffic values (AADTs). Because the AADT values are converted to whole numbers, there will be occasional inaccuracies due to rounding. These inaccuracies are statistically insignificant.

G 9,451 100% All Vehicles (00)

Traffic Analysis and Reporting System

Report Notes for AADT Segment Report

TARS

Page 1 of 1 (3 of 7)

AADT Segment Annual Volume Report

Provides summary data for the selected AADT Segment of a Road Section. Summary data is presented as both directional information and a combined bi-directional figure. The data is then broken down by Traffic Class, when available. The report also includes maps displaying the location of both the AADT Segment and the traffic count site.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT Segments

The State declared road network is broken into Road Sections and then further broken down into AADT Segments. An AADT Segment is a sub-section of the declared road network where traffic volume is similar along the entire AADT Segment.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District

401
402
403
404
405
406
407
409
408
410
411
412

AADT Values

AADT values are displayed by direction of travel as:

- Traffic flow in gazettal direction
- Traffic flow against gazettal direction
 Traffic flow in both directions
- В

Data Collection Year

Is the most recent year that data was collected at the data collection site.

Please Note:

Due to location and/or departmental policy, some sites are not counted every year.

Gazettal Direction

Is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane -Gympie denotes that the gazettal direction is from Brisbane to Gympie.

Maps

Display the selected location from a range of viewing levels, the start and end position details for the AADT Segment and the location of the traffic count site.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Segment Site

Is the unique identifier for the traffic count site representing the traffic flow within the AADT Segment.

Site

The physical location of a traffic counting device. Sites are located at a specified Through Distance along a Road Section.

Site Description

The description of the physical location of the traffic counting device.

Start and End Point

The unique identifier for the Through Distance along a Road Section.

Vehicle Class

Traffic is categorised as per the Austroads Vehicle Classification scheme. Traffic classes are in the following hierarchical format:

Volume or All Vehicles

Light Vehicles

0A = 1A 1A = 2A + 2B

Heavy Vehicles 0B = 1B + 1C + 1D 1B = 2C + 2D + 2E = 2F + 2G + 2H + 2I

= 2J + 2K + 2L

The following classes are the categories for which data can be captured:

Volume

00 All vehicles

2-Bin

Light vehicles Heavy vehicles

4-Bin

Short vehicles Truck or bus

1A 1B

Articulated vehicles

1D Road train

12-Bin

Short 2 axle vehicles

Short vehicles towing 2 axle truck or bus

3 axle truck or bus

2E 2F 4 axle truck 3 axle articulated vehicle

4 axle articulated vehicle

5 axle articulated vehicle 6 axle articulated vehicle

2I 2J B double

2K Double road train

Triple road train

Copyright Copyright The State of Queensland (Department of Transport and Main Roads) 2013

http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

24-Jun-2021 15:18

Traffic Analysis and Reporting System

Annual Volume Report

Area 404 - Filzroy District Road Section 196 - ROCKHAMPTON - YEPPOON ROAD Site 61076 - 40m S of Kirkellen St, Berserker TDist 1.985km Speed Limit 60

TARS

Page 1 of 3 (4 of 7)

North Rockhampton Lakes Creek Rd -23.359190 Local Rd Edwin St 273613.031 • Kalka Yeppoor Maryvale Frenchville The Range hampton West Fitzroy Pocket olburra

Copyright The State of Queensland 2009
Copyright Phre State of Plane Pit Lid 2009 Based on [Dataset - State Digital Road Network (SDRN)] provided with the permission of Pliney Boxes Softate Dyl Lid (current as of 1208) and other state government datasets.

Queensland Government

24-Jun-2021 15:18

TARS

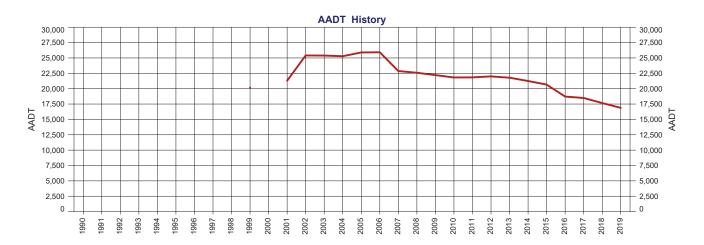
Page 2 of 3 (5 of 7)

Area 404 - Fitzroy District

Road Section 196 - ROCKHAMPTON - YEPPOON ROAD Site 61076 - 40m S of Kirkellen St, Berserker

The State of the S

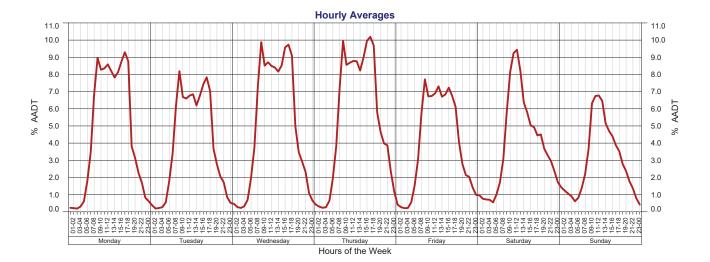
Thru Dist 1.985
Type C - Coverage


Stream TB - Bi-directional traffic flow

 Year
 2019
 Growth last Year
 -4.43%

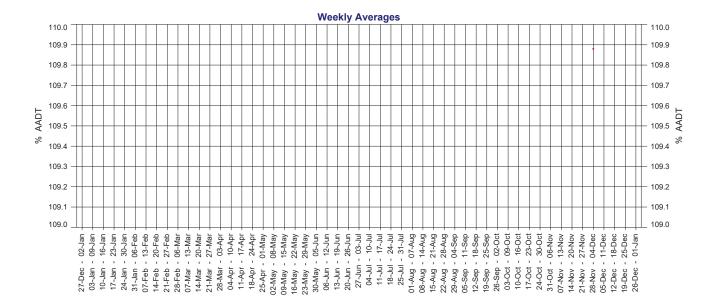
 AADT
 16,877
 Growth last 5 Yrs
 -4.44%

 Avg Week Day
 18,395
 Growth last 10 Yrs
 -3.32%


 Avg Weekend Day
 14,007

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2019	16,877	-4.43%	-4.44%	-3.32%
2018	17,659	-4.47%	-4.31%	-2.93%
2017	18,486	-1.23%	-3.89%	-2.50%
2016	18,717	-9.42%	-3.96%	-2.79%
2015	20,664	-2.75%	-1.47%	-1.80%
2014	21,248	-2.47%	-0.91%	-1.67%
2013	21,786	-0.96%	-0.50%	-1.56%
2012	21,998	0.74%	-0.55%	-1.62%
2011	21,837	0.07%	-2.12%	-1.43%
2010	21,822	-1.74%	-3.17%	
2009	22,208	-1.69%	-3.22%	-0.74%
2008	22,590	-1.21%	-3.10%	
2007	22,867	-11.80%	-2.90%	
2006	25,925	0.13%	2.17%	
2005	25,892	2.40%		

Year	AADT	1-Year Growth	5-Year Growth	10-Year Growth
2004	25,284	-0.41%	4.26%	
2003	25,388	-0.08%		
2002	25,408	19.34%		
2001	21,291			
2000				
1999	20,185			
1998				
1997				
1996				
1995				
1994				
1993				
1992				
1991				
1990				


...

Page 3 of 3 (6 of 7)

April

21	019	Cal	end	lar

March

February

N	January								i ebidai y							Watch						April								
T	M	Т		Т	F		S		M	Т	W	Т	F			M	Т	W	Т	F					Т	W	Т		S	
14		1	2	3	4	5	6						1	2	3					1	2	3		1	2	3	4	5	6	7
21 22 23 24 25 26 27	7	8	9	10	11	12	13		4	5	6	7	8	9	10	4	5	6	7	8	9	10		8	9	10	11	12	13	14
May	14	15	16	17	18	19	20		11	12	13	14	15	16	17	11	12	13	14	15	16	17		15	16	17	18	19	20	21
May June July August M T W T F S S S 1 2 3 4 5 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 M T W T F S S S M T W T F S S S M T W T F S S S M T W T F S S S M T W T W T F S S S M T W T W T F S S S M T W T W T F S S S M T W T W T F S S S M T W T W T F S S S M T W T W T W T W T W T W T W T W T W T	21	22	23	24	25	26	27		18	19	20	21	22	23	24	18	19	20	21	22	23	24		22	23	24	25	26	27	28
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S S M T W T F S S S M T W T F S S S D D C D C D C D C D C D C	28	29	30	31					25	26	27	28				25	26	27	28	29	30	31		29	30					
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S 6 7 8 9 10 11 12 3 4 5 6 7 8 9 8 9 10 11 12 3 4 16 15 16 17 18 19 20 21 22 23 22 23 24 25 26 27 28 29 30 31 26 27 28 29 30 31 26																														
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S 6 7 8 9 10 11 12 3 4 5 6 7 8 9 8 9 10 11 12 3 4 16 15 16 17 18 19 20 21 22 23 22 23 24 25 26 27 28 29 30 31 26 27 28 29 30 31 26				Mari								luma							Luke									. 4		
1 2 3 4 5 1 2 1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 17 18 19 20 21 22 23 22 23 24 25 26 27 28 29 30 31 26 27 28 29 30 31 26 27 28 29 30 31 30 31 3				iviay															July								ugus			
6 7 8 9 10 11 12 3 4 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 20 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 September October November November December November November December November November December November No	M	T		T	F				M	T	W	Т	F				T		T					M	Т	W	T			
13			1	2	3	4	5							1	2	1	2	3	4	5	6	7					1	2	3	4
20 21 22 23 24 25 26 17 18 19 20 21 22 23 24 25 26 27 28 19 20 21 22 23 24 25 26 27 28 29 30 31 September October November November December November November December November November December November	6	7	8	9	10	11	12		3	4	5	6	7	8	9	8	9	10	11	12	13	14		5	6	7	8	9	10	11
September October November December M	13	14	15	16	17	18	19		10	11	12	13	14	15	16	15	16	17	18	19	20	21		12	13	14	15	16	17	18
September October November November December M T W T F S S M T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W	20	21	22	23	24	25	26		17	18	19	20	21	22	23	22	23	24	25	26	27	28		19	20	21	22	23	24	25
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S 30 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	27	28	29	30	31				24	25	26	27	28	29	30	29	30	31						26	27	28	29	30	31	
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S 30 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19																														
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S 30 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Sentember										ctob	ar .					N	ovem	her						De	cemi	ner .			
30 1 1 2 3 4 5 6 1 2 3 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 24 25 26 27	1.4	_		т т						_		т					_		т						т					
2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 12 13 14 15 6 7 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 16 17 18 19 20 21 22 23 24 16 17 18 19 <		'	vv		г	3			IVI	1		3				IVI		vv								vv		Г	3	1
9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22		2	4	_	0	7			7							4	_	0	7						_	4	_	0	7	0
16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22	2	3	4			/			/				11			4			/		9			2		4			- /	8
	9	10	11	12	13	14	15		14	15	16	17	18	19	20	11	12	13	14	15	16	17		9	10	11	12	13	14	15
23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29	16	17	18	19	20	21	22		21	22	23	24	25	26	27	18	19	20	21	22	23	24		16	17	18	19	20	21	22
	23	24	25	26	27	28	29		28	29	30	31				25	26	27	28	29	30			23	24	25	26	27	28	29

Days on which traffic data was collected.

January

Traffic Analysis and Reporting System Report Notes for Annual Volume Report

Page 1 of 1 (7 of 7)

24-Jun-2021 15:18

Annual Volume Report

Displays AADT history with hourly, daily and weekly patterns by Stream in addition to annual data for AADT figures with 1 year, 5 year and 10 year growth rates.

Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) is the number of vehicles passing a point on a road in a 24 hour period, averaged over a calendar year.

AADT History

Displays the years when traffic data was collected at this count site.

For administration purposes the Department of Transport and Main Roads has divided Queensland into 12 Districts. The Area field in TSDM reports displays the District Name and Number.

District Name District	
Central West District	401
Darling Downs District	402
Far North District	403
Fitzroy District	404
Mackáy/Whitsunday District	405
Metropolitian District	406
North Coast District	407
North West District	409
Northern District	408
South Coast District	410
South West District	411

Avg Week Day

Average daily traffic volume during the week days, Monday to Friday.

Avg Weekend Day

Average daily traffic volume during the weekend, Saturday and Sunday.

Wide Bay/Burnett District

Calendar

Days on which traffic data was collected are highlighted in green.

Gazettal Direction

The Gazettal Direction is the direction of the traffic flow. It can be easily recognised by referring to the name of the road eg. Road Section: 10A Brisbane - Gympie denotes that the gazettal direction is from Brisbane to Gympie.

- Traffic flowing in Gazettal Direction
- Traffic flowing against Gazettal Direction
 The combined traffic flow in both Directions

Growth Percentage

Represents the increase or decrease in AADT, using a exponential fit over the previous 1, 5 or 10 year period.

Hour, Day & Week Averages

The amount of traffic on the road network will vary depending on the time of day, the day of the week and the week of the year. The ebb and flow of traffic travelling through a site over a period of time forms a pattern. The Hour, Day and Week Averages are then used in the calculation of AADT.

Road Section

Is the Gazetted road from which the traffic data is collected. Each Road Section is given a code, allocated sequentially in Gazettal Direction. Larger roads are broken down into sections and identified by an ID code with a suffix for easier data collection and reporting (eg. 10A, 10B, 10C). Road Sections are then broken into AADT Segments which are determined by traffic volume.

Site

The unique identifier and description of the physical location of a traffic counting device. Sites are located at a Through Distance along a Road Section.

Stream

The lane in which the traffic is travelling in. This report provides data for the combined flow of traffic in both directions.

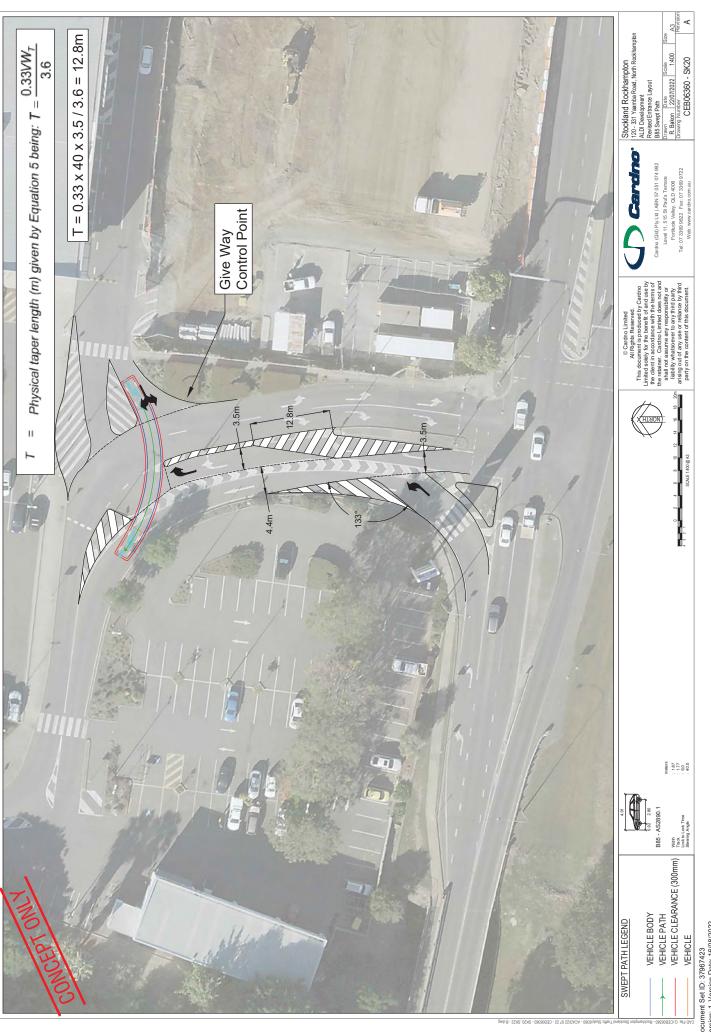
Thru Dist or TDist

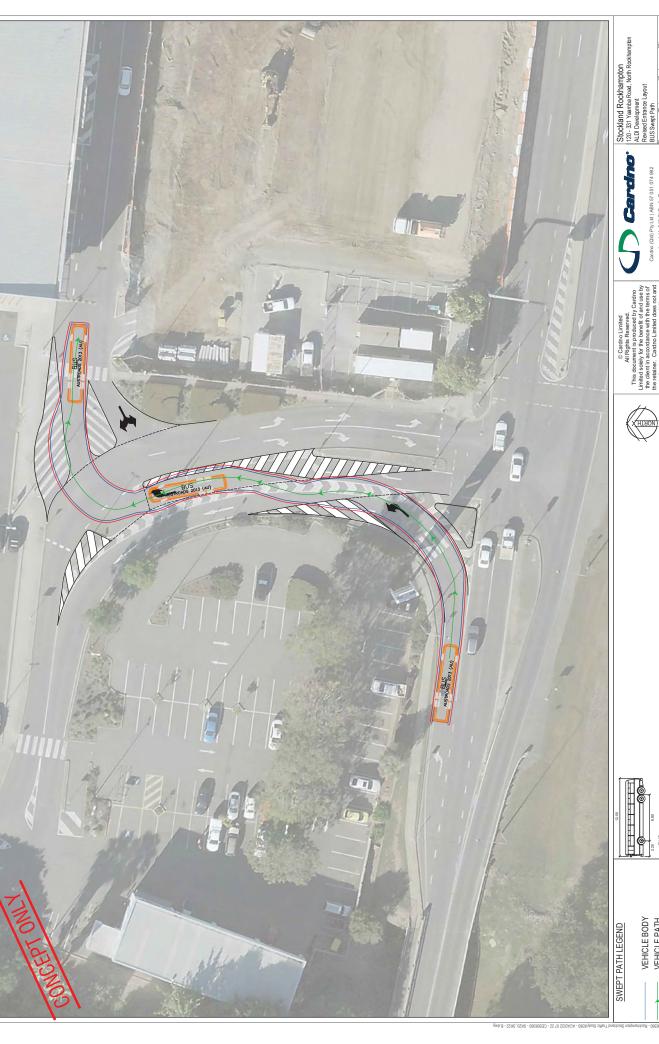
The distance from the beginning of the Road Section, in kilometres.

Type

There are two types of traffic counting sites, Permanent and Coverage. Permanent means the traffic counting device is in place 24/7. Coverage means the traffic counting device is in place for a specified period of time.

Year

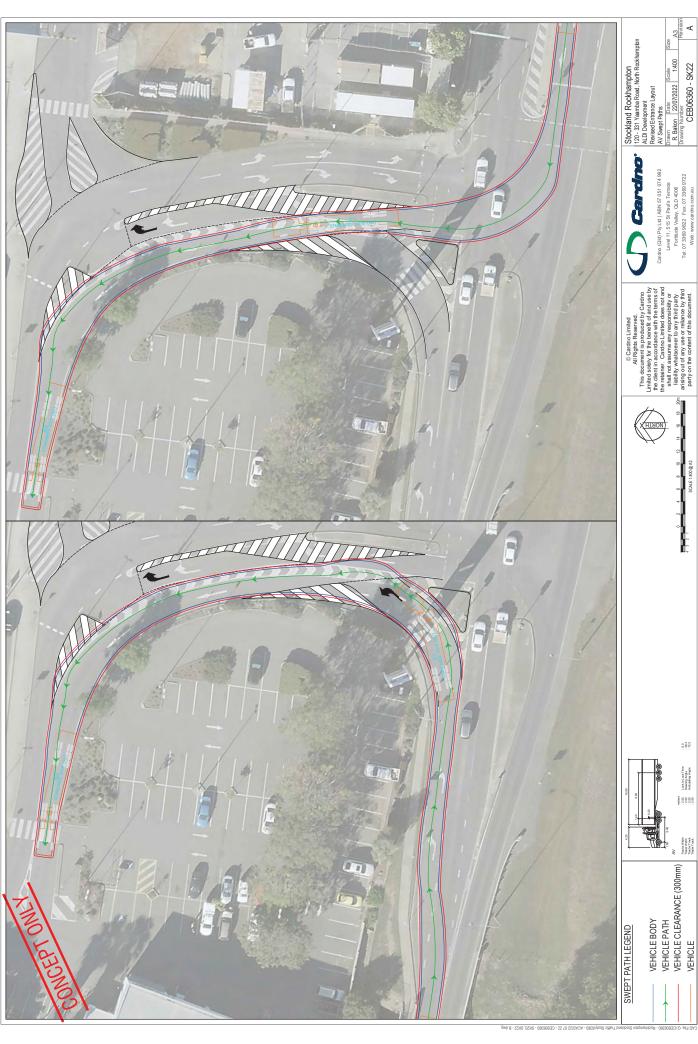

Is the current year for the report. Where an AADT Year record is missing a traffic count has not been conducted, for that year.


Copyright
Copyright The State of Queensland (Department of Transport and Main Roads) 2013

Licence http://creativecommons.org/licences/by-nd/3.0/au

This work is licensed under a Creative Commons Attribution 3.0 Australia (CC BY-ND) Licence. To attribute this material, cite State of Queensland (Department of Transport and Main Roads) 2013

VEHICLE BODY
VEHICLE PATH
VEHICLE CLEARANCE (300mm)
VEHICLE Document Set ID: 37967423 Version: 1, Version Date: 16/08/2022


BUS Width Track Lock to Lock Time Steering Angle

 Drawn
 Date
 Scale

 R. Bakon
 22/07/2022
 1:400

 Yawing Number
 1:400
 CEB06360 - SK21

Cardro (Okt) Pry Ltd | ABN 57 051 074 992 Level 11, 515 St Pauf's Terraco Formate Valley, CLD, 4006 Tel: 07 3399 9622 Fax: 07 3399 9722 Web: www.cardro.com.au

